JPS6151774A - Sodium-sulfur battery - Google Patents

Sodium-sulfur battery

Info

Publication number
JPS6151774A
JPS6151774A JP59173283A JP17328384A JPS6151774A JP S6151774 A JPS6151774 A JP S6151774A JP 59173283 A JP59173283 A JP 59173283A JP 17328384 A JP17328384 A JP 17328384A JP S6151774 A JPS6151774 A JP S6151774A
Authority
JP
Japan
Prior art keywords
sulfur
sodium
active material
battery
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59173283A
Other languages
Japanese (ja)
Other versions
JPH0415989B2 (en
Inventor
Hisamitsu Hatou
久光 波東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP59173283A priority Critical patent/JPS6151774A/en
Publication of JPS6151774A publication Critical patent/JPS6151774A/en
Publication of JPH0415989B2 publication Critical patent/JPH0415989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a sodium-sulfur battery having high utilization factor of cathode active material and long life by forming a cathode comprising carbon fibers impregnated with molten sulfur so as to have density gradient of carbon fibers in an axis direction. CONSTITUTION:A cathode is formed by accommodating sulfur 3 and carbon fibers 4 such as PAN carbon fibers in a container and heating at about 150 deg.C in an atmosphere of inactive gas. The cathode is divided into three pieces, for example. The piece 4a is formed by stacking n pieces of carbon fiber felts each of which has a specified thickness, and the pieces 4b and 4c are formed by stacking (n-1) pieces and (n-2) pieces of carbon fiber felts respectively. Or density gradient is formed by molding carbon felts having different length, then impregnating molten sulfur in the felts. Thereby, moving down of molten sulfur caused by gravity can be prevented. Therefore, a sodium-sulfur battery having high utilization factor of cathode active material, long life, and high energy density is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ナトリウム−硫黄電池に係り、特に、陰極活
物質に溶融す) IJウム、陽極活物質に炭素繊維に含
浸された溶融硫黄および電解質に固体電解質が使用され
、陽極活物質の利用率向上に好適なナトリウム−硫黄電
池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to sodium-sulfur batteries, in particular molten sulfur impregnated into carbon fibers and electrolyte in the cathode active material. The present invention relates to a sodium-sulfur battery that uses a solid electrolyte and is suitable for improving the utilization rate of anode active material.

〔発明の背景〕[Background of the invention]

従来より、ナ) IJウムー硫黄電池の効率向上のため
の改良が試みられており、特に特公昭57−33836
号公報において、ナトIJウムー硫黄電池の充放電深度
向上、すなわち充電容量を増大する几めの種々の改良が
開示されている。しかしながら、それらの改良技術によ
っても、理論値784wh/Kfという高エネルギー密
度を有するこの種の電池の特性を十分に引き出すに至っ
ていない。
Up until now, attempts have been made to improve the efficiency of IJ Umu sulfur batteries, and in particular, the
In the publication, various improvements to improve the depth of charge and discharge, that is, increase the charging capacity, of the Nato IJ Umu sulfur battery are disclosed. However, even with these improved techniques, the characteristics of this type of battery, which has a high energy density of a theoretical value of 784 wh/Kf, have not been fully brought out.

本発明者は、このナトリウム−硫黄電池の効率の一層の
向上を図るため鋭意研究した結果、この種の電池の効率
を下げている1つの大きな原因が、陽極活性物質として
働くべき硫黄が重力により電池の底部に垂下して反応に
十分寄与しなくなるためであることを見出した。したが
って、ナトリウム−硫fIc電池のすぐれた特性を十分
に引き出すためには重力による溶融硫黄の垂下を減少さ
せる何、等かの改善がなされる必要があった。
As a result of intensive research aimed at further improving the efficiency of this sodium-sulfur battery, the present inventor discovered that one of the major causes of decreasing the efficiency of this type of battery is that sulfur, which should act as an anode active material, is absorbed by gravity. It was found that this is because the particles hang down to the bottom of the battery and no longer contribute sufficiently to the reaction. Therefore, in order to fully exploit the excellent characteristics of the sodium-sulfur flc battery, it is necessary to make some kind of improvement to reduce the sagging of molten sulfur due to gravity.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、陽極活物質の利用率が高く、かつ寿命
の点でも改善されたナトリウム−硫黄電池を提供するこ
とにある。
An object of the present invention is to provide a sodium-sulfur battery that has a high utilization rate of anode active material and has an improved lifespan.

〔発明の概要〕[Summary of the invention]

本発明は、陰極活物質を有する陰極2および陽極活物質
を有する陽極3とこれらの間に配置された固体電解質1
とを備え、陰極活物質として溶融ナトリウム、陽極活物
質として炭素繊維に含浸した溶融硫黄が使用されている
チドリ、クムー硫黄電池において、炭素繊維に含浸し7
’(溶融硫黄からなる陽極に関して軸方向に炭素繊維に
密度勾配を与え次ことを特徴とするものであり、この構
成により、陽極活物質である硫黄と、電池反応生成物で
ある多硫化ナトリウム(NazSx)が重力によって電
池底部へ垂下することを防止し、活物質の利用率低下を
防止したものである。又、活物質の垂下による影響を防
止する為には、全ての陽極領域において炭素繊維の密度
を上げれば良いのであるが、係る方法によると、活物質
の初期光てん量の減少を招き、′電池設計時においてす
でに電池のもつ理論容量が減ってしまうという欠点があ
る。
The present invention provides a cathode 2 having a cathode active material, an anode 3 having a cathode active material, and a solid electrolyte 1 disposed between them.
In the Chidori and Kumu sulfur batteries, in which molten sodium is used as the cathode active material and molten sulfur impregnated with carbon fiber is used as the anode active material, 7
(With respect to the anode made of molten sulfur, a density gradient is imparted to the carbon fibers in the axial direction. This structure allows sulfur, which is the anode active material, and sodium polysulfide, which is a battery reaction product. NazSx) is prevented from hanging down to the bottom of the battery due to gravity, thereby preventing a decrease in the utilization rate of the active material.Also, in order to prevent the influence of the hanging of the active material, carbon fiber is used in all anode areas. It would be better to increase the density of the active material, but such a method has the disadvantage that the initial amount of photon of the active material decreases, and the theoretical capacity of the battery is already reduced at the time of battery design.

すなわち、電池の理論容量は、初期活物質充てん量によ
p決定されるものであシ、硫黄においては、硫黄18 
当シの理論容量は、0.5574Ahである。
In other words, the theoretical capacity of a battery is determined by the initial filling amount of active material.
Our theoretical capacity is 0.5574Ah.

つまυ、電池の初期理論容量は、初期硫黄光てん量x8
 ’xo、5574Ah/8 ’とナル。
Tsumu υ, the initial theoretical capacity of the battery is the initial sulfur capacity x 8
'xo, 5574Ah/8' and Naru.

ここで、本発明の理解を容易にするため、本発明に係る
ナトリウム−硫黄電池の作動原理について説明する。ナ
トリウム−硫黄′電池はナトリウムイオンのみを通過さ
せる固体電解質1f、介して一方に陰極活物質である溶
融ナトリウム2、他方に陽極活物質である溶融硫黄3カ
;設けられ、約300〜350Cで充放を示行われる高
温二次電池でらる。この充放電の反応は 放電 2Na+xS   Na25X 充電 で、放電時には陰極活物質のナトリウムは電子を遊離し
てナトリウムイオンとなシ、固体電解質の隔壁を通過し
て陽極活物質の硫黄と反応し、多硫化ナトリウムNaz
SXを生成する。ま次充電時には電池の開路電圧より大
きな負電圧を付加することにより、多硫化ナトリウムN
a25X ナトリウムNaと硫黄Sに分解される。この
種の電池は前記の反応によシ、充放電が行われるもので
あるから、反応に関与する硫黄が重力によシミ池低部へ
垂下して反応に関与しなくなればそれは即電池の効率を
下げることになる。この現象を図1に示す従来のす) 
IJウムー硫黄電池について説明する。なお、この実験
で用いた電池においては、活物質の垂下による影響を顕
著にする几め意図的に炭素繊維の量を少なくしている。
Here, in order to facilitate understanding of the present invention, the operating principle of the sodium-sulfur battery according to the present invention will be explained. A sodium-sulfur battery is equipped with a solid electrolyte 1f that allows only sodium ions to pass through, molten sodium 2 which is the cathode active material on one side, and 3 molten sulfur which is the anode active material on the other side, and is charged at about 300 to 350C. It is a high-temperature secondary battery that exhibits radiation. This charging/discharging reaction is a discharge 2Na+xS Na25X charge, and during discharging, sodium in the cathode active material liberates electrons and becomes sodium ions, which pass through the partition wall of the solid electrolyte and react with the sulfur in the anode active material, forming polysulfides. Sodium Naz
Generate SX. At the time of secondary charging, by applying a negative voltage greater than the open circuit voltage of the battery, sodium polysulfide N
a25X Decomposed into sodium Na and sulfur S. This type of battery is charged and discharged by the above reaction, so if the sulfur involved in the reaction hangs down to the bottom of the stain pond due to gravity and no longer participates in the reaction, the efficiency of the battery will immediately decrease. This will lower the This phenomenon is shown in Figure 1 in the conventional case).
The IJ Umu sulfur battery will be explained. Note that in the battery used in this experiment, the amount of carbon fiber was intentionally reduced to make the effect of drooping of the active material more noticeable.

この電池における放電深度と電圧を測定してみると第2
図に示すようになる。
When we measured the depth of discharge and voltage in this battery, we found that the second
The result will be as shown in the figure.

すなわち、炭素含有量の少ないこの電池は、カーブaに
表わされるとおシ、放電深度が95チ近傍で電圧の急激
な低下が発生している。この理由は炭素繊維が粗である
ため、毛細管現象による溶融硫黄の吸上げあるいは保持
力が働かず、溶融硫黄が重力によ)、電池の底部へ垂下
してしまい、反応にを与する硫黄の量が減少し之ためで
ある。このような現象が起ることは、第3図に示す炭素
繊維の含有量の異なる模擬陽極を用いた活物質の垂下量
の測定の実験からもさらに明らかである。
That is, in this battery with a low carbon content, as shown by curve a, a sudden drop in voltage occurs when the depth of discharge is around 95 inches. The reason for this is that carbon fibers are coarse, so the molten sulfur cannot be sucked up or held by capillary action, and the molten sulfur (due to gravity) hangs down to the bottom of the battery, causing the sulfur that affects the reaction to drop. This is because the amount decreases. The fact that such a phenomenon occurs is further evident from the experiment shown in FIG. 3, in which the amount of drooping of the active material was measured using simulated anodes with different carbon fiber contents.

本発明はこれらの実験結果を基にして、陽極活部質であ
る溶融硫黄の重力による垂下を減少させ、電池の効率と
寿命を向上させるためには、溶融硫黄を貫没する炭素繊
維を軸方向に密度勾配をつけて充填し、毛細管現象によ
る溶融硫黄の吸上げろるいは保持を図ることが有効であ
ることを見出してなされたものである。また電池の寿命
を決定する要因として固体電解質の寿命が挙げられる。
Based on these experimental results, the present invention has developed a carbon fiber shaft that penetrates through the molten sulfur in order to reduce the gravitational droop of molten sulfur, which is the active material of the anode, and improve the efficiency and life of the battery. This was done based on the discovery that it is effective to fill the tank with a density gradient in the direction and to absorb or retain the molten sulfur through capillary action. Furthermore, the lifespan of the solid electrolyte is cited as a factor that determines the lifespan of a battery.

そして、この固体電解質の寿命を左右する要因の一つと
して電流密度の局部的な集中あるいは不均一による破損
があるが、本発明の電池においては活物質の垂下がなく
したがって電流密度の局部集中めるいは不均一が起らず
、この点でも心電の寿命向上に効果がある。
One of the factors that affects the life of this solid electrolyte is damage due to local concentration or non-uniformity of current density, but in the battery of the present invention, there is no drooping of the active material, so local concentration of current density is prevented. There is no unevenness in the electrocardiogram, and this is also effective in improving the lifespan of the electrocardiogram.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第4図および第5図により説明
する。炭素繊維に硫黄を含浸して得られる陽極は、硫黄
3と例えばPへN系の炭素繊維4を一体の治具に収納し
、例えば、不活性ガス中にて150C程度に加熱するこ
とによって得られる。
Embodiments of the present invention will be described below with reference to FIGS. 4 and 5. An anode obtained by impregnating carbon fiber with sulfur is obtained by storing sulfur 3 and, for example, P to N-based carbon fiber 4 in an integrated jig, and heating it to about 150C in an inert gas, for example. It will be done.

そして炭素繊維に密度勾配を与える方法としては、陽極
を第4図に示すように、4a、4b、4cと例えば3つ
のピースに分割し、ピース4aについては規定の厚さの
炭素繊維をフェルト化したものをn枚、ピース4bにつ
いては(n−1)枚、44Cについては(n−2J枚と
いうように重ね、これに容融硫黄を含浸する方法が採用
できるほか、第5図に示すように分割せずに炭素繊維を
フェルト化したものの長さを変えて成形し溶融硫黄を含
浸することによっても密度勾配を有する陽極が得られる
。これらの方法以外でも密度勾配を与えるための種々の
方法が考えられることは言うまでもない。
As a method of imparting a density gradient to carbon fibers, the anode is divided into three pieces, 4a, 4b, and 4c, as shown in Figure 4, and for piece 4a, carbon fibers of a specified thickness are made into felt. In addition to the method of impregnating molten sulfur by piling up n sheets of 4b, (n-1) pieces of piece 4b, and (n-2J pieces of piece 44C), as shown in Figure 5, An anode with a density gradient can also be obtained by forming felted carbon fibers without dividing them into different lengths and impregnating them with molten sulfur.Aside from these methods, there are various methods for providing a density gradient. Needless to say, this is possible.

このようにして得られたナトリウム−硫黄電池は重力に
よる硫黄の垂下はほとんどなく、その放電深度と電圧を
測定してみても、第2図に示されるように放電深度10
0チまでほとんど急激な電圧低下が見られない。これは
、従来の電池において約5チの容量低下が見られるのに
対し著るしい効果があるとgえる。すなわち、実用プラ
ントの容量は約100Mwt嘔度というのが通論となっ
ておシ、単電池の活物質垂下によるロスを約5チとする
と、プラント全体では5Mwhの損失となシ相当大きな
損失となる。この5 M W hの損失を償うためには
実用規模の単電池がさらに約5000個程度必要と(4
′1′)、この定めのスペースおよヒ単イ池製作コスト
が無視できない。
In the sodium-sulfur battery obtained in this way, there is almost no sulfur drooping due to gravity, and when we measured the depth of discharge and voltage, we found that the depth of discharge was 10% as shown in Figure 2.
There is hardly any sudden voltage drop down to 0. This is considered to be a significant effect compared to the capacity reduction of about 5 cm in conventional batteries. In other words, it is generally accepted that the capacity of a practical plant is about 100 Mwt, and if the loss due to drooping of the active material in a single cell is about 5 inches, the loss for the entire plant is 5 MWh, which is a considerably large loss. . In order to compensate for this loss of 5 MWh, approximately 5,000 more practical-scale single cells are required (4
'1') The space required and the cost of producing the pond cannot be ignored.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、陽極活物質である溶融硫黄の重力によ
る垂下を防止でき、その結果陽極活物質の利用率が高く
かつ寿命の長い高エネルギー密度のナトリウム−硫黄電
池が実現できるという効果が得られる。
According to the present invention, it is possible to prevent molten sulfur, which is an anode active material, from sagging due to gravity, and as a result, it is possible to realize a high energy density sodium-sulfur battery with a high utilization rate of the anode active material and a long life. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来技術および本発明のナトIJウムー硫黄
電池の断面図、第2図は第1図に示す構造のナトリウム
−硫黄電池の充放電特性図、第3図は、炭素繊維の言有
量と活物質の重力による垂下の関係を示す図、第4図お
よび第5図は本発明の陽極を示す図である。 1・・・固体電解質、2a・・・陰極、2・・・ナトリ
ウム、3・・・硫黄、4・・・炭素繊維、5・・・陽極
容器、6・・・陰極容器、7・・・α−アルミナ、8・
・・陽極キャップ。
FIG. 1 is a cross-sectional view of the conventional technology and the present invention's NatoIJumu sulfur battery, FIG. 2 is a charge-discharge characteristic diagram of the sodium-sulfur battery having the structure shown in FIG. 1, and FIG. Figures 4 and 5, which show the relationship between the amount of active material and the drooping of the active material due to gravity, are diagrams showing the anode of the present invention. DESCRIPTION OF SYMBOLS 1... Solid electrolyte, 2a... Cathode, 2... Sodium, 3... Sulfur, 4... Carbon fiber, 5... Anode container, 6... Cathode container, 7... α-Alumina, 8.
...Anode cap.

Claims (1)

【特許請求の範囲】 1、陰極活物質を有する陰極と、陽極活物質を有する陽
極およびこれらの間に配置される固体電解質を備え、前
記陰極活性物質には溶融ナトリウムが使用されるととも
に前記陽極活性物質には炭素繊維に含浸した溶融硫黄が
使用されるナトリウム−硫黄電池において、前記溶融硫
黄を含浸した炭素繊維を軸方向に密度勾配を持たせたこ
とを特徴とするナトリウム−硫黄電池。 2、前記溶融硫黄を含浸した炭素繊維がPAN系の繊維
を高温焼成されたものであることを特徴とする特許請求
の範囲第1項記載のナトリウム−硫黄電池。 3、前記溶融硫黄を含浸した炭素繊維によつて構成され
る陽極が半径方向に分割されており、それぞれ異つた圧
縮率で成形されていることを特徴とする特許請求の範囲
第1項記載のナトリウム−硫黄電池。 4、前記溶融硫黄を含浸した炭素繊維によつて構成され
る陽極が、炭素繊維をフェルト化したものでその長さを
変えて成形されていることを特徴とする特許請求の範囲
第1項記載のナトリウム−硫黄電池。
[Scope of Claims] 1. A cathode having a cathode active material, an anode having an anode active material, and a solid electrolyte disposed between them, wherein molten sodium is used as the cathode active material, and the anode 1. A sodium-sulfur battery in which molten sulfur impregnated into carbon fibers is used as an active substance, characterized in that the carbon fibers impregnated with the molten sulfur have a density gradient in the axial direction. 2. The sodium-sulfur battery according to claim 1, wherein the carbon fiber impregnated with molten sulfur is a PAN-based fiber fired at a high temperature. 3. The anode according to claim 1, wherein the anode made of carbon fiber impregnated with molten sulfur is divided in the radial direction and molded with different compression ratios. Sodium-sulfur battery. 4. Claim 1, characterized in that the anode made of carbon fiber impregnated with molten sulfur is formed by felting carbon fiber and changing its length. sodium-sulfur battery.
JP59173283A 1984-08-22 1984-08-22 Sodium-sulfur battery Granted JPS6151774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59173283A JPS6151774A (en) 1984-08-22 1984-08-22 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59173283A JPS6151774A (en) 1984-08-22 1984-08-22 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPS6151774A true JPS6151774A (en) 1986-03-14
JPH0415989B2 JPH0415989B2 (en) 1992-03-19

Family

ID=15957575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59173283A Granted JPS6151774A (en) 1984-08-22 1984-08-22 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPS6151774A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353865A (en) * 1986-08-25 1988-03-08 Ngk Insulators Ltd Sodium-sulfur battery
JPH01161561U (en) * 1988-05-02 1989-11-09

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004031510D1 (en) 2003-03-27 2011-04-07 Nippon Steel Chemical Co SILICONE RESIN COMPOSITION AND FORM BODY THEREOF

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353865A (en) * 1986-08-25 1988-03-08 Ngk Insulators Ltd Sodium-sulfur battery
JPH0577156B2 (en) * 1986-08-25 1993-10-26 Ngk Insulators Ltd
JPH01161561U (en) * 1988-05-02 1989-11-09

Also Published As

Publication number Publication date
JPH0415989B2 (en) 1992-03-19

Similar Documents

Publication Publication Date Title
Dahn et al. Energy and capacity projections for practical dual‐graphite cells
US3864167A (en) Non-aqueous battery using chalcogenide electrode
US4055711A (en) Lead-acid storage battery
US5728331A (en) Method of preparing a battery separator
JPS6151774A (en) Sodium-sulfur battery
JP7245168B2 (en) Lead-acid battery separator and lead-acid battery
CN112447970A (en) Self-repairing coating for positive electrode of lithium-sulfur battery and preparation method thereof
GB2129193A (en) Manufacturing recombination electric storage cells
KR101704186B1 (en) A cathode for all-solid-state lithium sulfur battery
KR0137304B1 (en) Lead-battery
JPH04296464A (en) Sealed-type lead-acid battery
WO1980002472A1 (en) Electric storage batteries
HU196533B (en) Lead accumulator, preferably for long-lasting uniform employment
US3615859A (en) Leclanche dry cell with thick wall paste separator
CN115007861B (en) Method for preparing porous tin and application of porous tin in sodium ion battery
JPS62165857A (en) Nonaqueous electrolyte secondary cell
JPS58115775A (en) Lead-acid battery
JPH0696795A (en) Sealed nickel-zinc battery
JPH0624140B2 (en) Sealed lead acid battery
JPH07169503A (en) Sealed lead-acid battery
WO2021070231A1 (en) Positive electrode plate, lead storage battery, and method for manufacturing positive electrode plate and lead storage battery
JPH0351066B2 (en)
JP2964555B2 (en) Battery storage method for lead-acid batteries
JPH10270030A (en) Sealed lead-acid battery
JPS60185370A (en) Enclosed type lead storage battery