JPS6151711B2 - - Google Patents

Info

Publication number
JPS6151711B2
JPS6151711B2 JP4960080A JP4960080A JPS6151711B2 JP S6151711 B2 JPS6151711 B2 JP S6151711B2 JP 4960080 A JP4960080 A JP 4960080A JP 4960080 A JP4960080 A JP 4960080A JP S6151711 B2 JPS6151711 B2 JP S6151711B2
Authority
JP
Japan
Prior art keywords
valve
valve opening
dynamic pressure
check valve
bleed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4960080A
Other languages
Japanese (ja)
Other versions
JPS56147978A (en
Inventor
Tatsuo Imaizumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4960080A priority Critical patent/JPS56147978A/en
Publication of JPS56147978A publication Critical patent/JPS56147978A/en
Publication of JPS6151711B2 publication Critical patent/JPS6151711B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Indication Of The Valve Opening Or Closing Status (AREA)
  • Check Valves (AREA)

Description

【発明の詳細な説明】 本発明は、スイング式逆止弁の動作の異常を運
転中に探知する診断方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a diagnostic method for detecting abnormalities in the operation of a swing type check valve during operation.

スイング式逆止弁は流体の逆流を防止するため
に設置される弁であり、第1図にその概要を示す
如く、弁箱1内上部よりアーム3によつて円盤状
の弁体2を弁軸4に枢着してなり、流体が静止し
ている時は弁体2は自重で下がつて弁を閉止し、
流体が流れると弁体2を押し上げ、これによつて
アーム3が回転して弁が開き、逆流時には逆向き
の流れにより弁が閉じ勝手に動くと同時に自重に
より閉止される。
A swing type check valve is a valve installed to prevent backflow of fluid, and as shown in the outline in Fig. 1, a disk-shaped valve body 2 is inserted into the valve body 1 from the upper part of the valve box 1 by an arm 3. It is pivotally connected to the shaft 4, and when the fluid is stationary, the valve body 2 lowers under its own weight and closes the valve.
When fluid flows, the valve body 2 is pushed up, which causes the arm 3 to rotate and open the valve. When the fluid flows in the opposite direction, the valve moves to close due to the flow in the opposite direction, and at the same time is closed by its own weight.

このようなスイング式逆止弁は種々のところに
設置されるが、蒸気タービン発電プラントにおけ
る代表的なものは、給水ポンプ吐出側逆止弁とタ
ービン抽気ラインに設けられる抽気逆止弁であ
る。これらの逆止弁に作動不良が生じ、逆流防止
の機能を果さない場合には、主機を損傷すること
がある。即ち、給水ポンプ吐出側の逆止弁不作動
が起こると、高圧水が逆流して給水ポンプを逆転
させ、これによつて過大な振動の発生や場合によ
つては摺損、破損等を発生させることがある。ま
た前記タービンの抽気逆止弁がタービントリツプ
時等に正常に作動しないと、給水加熱器内の飽和
水がフラツシユしてタービン内に逆流し、タービ
ン内壁に急激なサーマルシヨツクを与え、熱変形
もしくはクラツクを発生させたり、タービン軸を
加速させて過大なオーバースピードを起こさせた
りする重大事故を生じやすい。このため、逆止弁
が常に正常に作動することは主機を保護する上で
重要な事項の一つとなる。
Such swing type check valves are installed in various places, but typical ones in a steam turbine power generation plant are a feed water pump discharge side check valve and a bleed air check valve installed in a turbine bleed line. If these check valves malfunction and do not function to prevent backflow, the main engine may be damaged. In other words, if the check valve on the discharge side of the water supply pump malfunctions, high-pressure water will flow backwards and reverse the water supply pump, causing excessive vibration and, in some cases, damage to the pump. Sometimes I let it happen. Furthermore, if the bleed air check valve of the turbine does not operate normally during a turbine trip, the saturated water in the feed water heater will flash and flow back into the turbine, giving a sudden thermal shock to the turbine inner wall and causing thermal deformation. Otherwise, serious accidents are likely to occur, such as cracks or accelerating the turbine shaft, causing excessive overspeed. Therefore, ensuring that the check valve always operates normally is one of the important matters in protecting the main engine.

特に、前記抽気逆止弁はタービンの保護装置の
一つであるため、その機能を正常に保つことは重
要であるから、スイング式逆止弁に弁作動装置を
追加した空気作動式又は油圧作動式抽気逆止弁が
採用されることが多い。この弁作動装置付抽気逆
止弁の一例を、空気作動式のものに例をとり、か
つ第1図の抽気逆止弁に適用されるものについ
て、第2図及び第3図により説明する。弁体2と
一体のアーム3にキー11により一体化された弁
軸4はクラツチ爪14を介して駆動軸5と接続さ
れており、駆動軸5にはキー13により駆動アー
ム6の一端が固定され、該アームの他端は空気圧
シリンダ8のピストンロツド7の一端にピン12
により連結されている。弁作動テスト時には、ピ
ストン10の下部室の圧縮空気を排出し、これに
よりばね9の力によつてピストンロツド7が押し
下げられ、駆動アーム6によつて駆動軸5が弁閉
止方向に回転し、クラツチ爪14にて弁軸4に弁
閉止力を加え、弁体2を閉じ勝手に作動させ得る
ようになつている。尚、通常運転時には、空気圧
シリンダ8のピストン10の下側に圧縮空気を送
ることにより、ばね9の力に抗してピストンロツ
ド7を押し上げ、駆動軸5を逆方向に回転させて
クラツチ爪14を退避させ、弁軸4には何ら強制
力が加わらず、単にスイング式逆止弁として働
く。即ち、弁軸4と駆動軸5との間に介在させる
クラツチ爪14は、両者を堅固に接続するのでは
なく、通常運転時には単にスイング式逆止弁とし
て作動できるように遊びを設けたものである。
In particular, since the bleed check valve is one of the protection devices of the turbine, it is important to maintain its function normally. A type bleed check valve is often used. An example of this bleed check valve with a valve operating device will be described with reference to FIGS. 2 and 3, taking a pneumatic type as an example and applying it to the bleed check valve shown in FIG. 1. A valve shaft 4 integrated with an arm 3 integrated with the valve body 2 by a key 11 is connected to a drive shaft 5 via a clutch pawl 14, and one end of a drive arm 6 is fixed to the drive shaft 5 by a key 13. The other end of the arm is connected to one end of the piston rod 7 of the pneumatic cylinder 8 with a pin 12.
are connected by. During the valve operation test, the compressed air in the lower chamber of the piston 10 is discharged, and the piston rod 7 is pushed down by the force of the spring 9, and the drive shaft 5 is rotated by the drive arm 6 in the valve closing direction, thereby closing the clutch. A valve closing force is applied to the valve stem 4 by the pawl 14, and the valve body 2 can be operated to close freely. In addition, during normal operation, by sending compressed air to the lower side of the piston 10 of the pneumatic cylinder 8, the piston rod 7 is pushed up against the force of the spring 9, the drive shaft 5 is rotated in the opposite direction, and the clutch pawl 14 is rotated. When the valve stem 4 is retracted, no force is applied to the valve stem 4, and it simply functions as a swing type check valve. That is, the clutch pawl 14 interposed between the valve shaft 4 and the drive shaft 5 does not firmly connect the two, but is provided with play so that it can simply operate as a swing type check valve during normal operation. be.

このような弁作動装置抽気逆止弁強制閉止機能
は、例えばタービントリツプ時等危急時にこれを
作動させ、できるだけ早く弁を閉止させる目的の
他、運転中に定期的に弁体を動かし、弁のステイ
ツクを防止する目的で利用されている。従来、こ
の逆止弁の作動テストは、火力プラントにあつて
は、現場にて抽気逆止弁を見ながら実施し、弁の
動きがスムーズであるか否かを見て弁の初期異常
を見出す方法が採用されて来たが、近年は運転員
の省力化のため、また原子力プラントにおいては
被曝低減のために、遠隔操作により作動テストを
実施する方法が採用されている。即ち、中央操作
室のボタン操作により操作空気制御弁を切換える
ことにより、操作空気の給排を行い、これによつ
て弁の作動テストを実施し、弁の動作確認はリミ
ツトスイツチで行い、中央操作室のランプにより
弁の開閉状況を表示している。
The purpose of such a valve operating device's bleed check valve forced closing function is to operate it in an emergency such as a turbine trip and close the valve as quickly as possible, and also to periodically move the valve body during operation to close the valve. It is used for the purpose of preventing stagnation. Traditionally, in thermal power plants, check valve operation tests were carried out on-site while observing the bleed check valve, and by checking whether the valve was moving smoothly or not, the initial abnormality of the valve could be detected. However, in recent years, a method of conducting operational tests by remote control has been adopted in order to save labor for operators and to reduce radiation exposure in nuclear power plants. In other words, operating air is supplied and discharged by switching the operating air control valve by operating a button in the central operating room.This is used to test the operation of the valve.The operation of the valve is checked using a limit switch. The open/closed status of the valve is indicated by the lamp.

また、動作確認のためのリミツトスイツチは、
アクチユエータ部に取付けてピストンロツドの動
きを検出しているものが多く(この場合、第2図
の弁軸4は弁箱1を貫通しない構造の弁が採用さ
れる)、弁体2の動きを検出することができず、
従つて弁体2がスムーズに動作しているか否かに
ついて見分けることが困難であり、極端には、弁
体が脱落している場合でさえもこれを感知するこ
とができないという欠点があつた。
In addition, the limit switch for operation confirmation is
Many valves are attached to the actuator to detect the movement of the piston rod (in this case, the valve shaft 4 shown in Fig. 2 does not penetrate the valve body 1), and detects the movement of the valve body 2. unable to
Therefore, it is difficult to determine whether the valve body 2 is operating smoothly or not, and even if the valve body has fallen off, this cannot be detected.

本発明の目的は、逆止弁の運転中において弁体
の動きがスムーズでない等の動作不良を早期に発
見し得、動作不良に基づく事故の発生を未然に防
ぐことにある。
An object of the present invention is to enable early detection of malfunctions such as non-smooth movement of a valve body during operation of a check valve, and to prevent accidents caused by malfunctions.

本発明は、第1に、弁作動装置付逆止弁の作動
テストを弁作動装置を用いて行えば、単に動圧の
変化によつて弁開度が変る場合に比べて弁開度変
化量を大きくすることができ、弁体の動作状況を
測定し易いこと、第2に、弁軸の回転摩擦抵抗が
増加した場合には、作動テスト時の弁開度変化量
が少なくなり、かつこれをリセツトした時の弁体
の動きはにぶくなる(即ち、リセツト後の弁の動
きを減衰振動とみなせば、回転摩擦抵抗の増加と
共に、減衰率が増加し、弁体は振れは少なくな
る)ことに注目し、弁作動装置により作動テスト
を行い、その作動テスト時の弁開度を記録してこ
れを時間の函数としてデータ処理し、正常データ
と比較してその偏差により弁の異常を検出するよ
うにしたものである。しかし、実際上、逆止弁の
弁開度は、その弁部を流れる流体の動圧によつて
変化するので、作動テスト時には弁開度のみなら
ず動圧(これと等価とみなせるものを含む)も検
出し、その時の動圧により、規定の動圧に対する
弁開度に補正し、該規定の動圧時の正常データと
の比較を行う必要がある。
Firstly, if the operation test of a check valve with a valve actuation device is performed using the valve actuation device, the amount of change in the valve opening will be greater than when the valve opening changes simply due to a change in dynamic pressure. secondly, if the rotational frictional resistance of the valve stem increases, the amount of change in the valve opening during the operation test will decrease; When the valve body is reset, the movement of the valve body becomes slower (that is, if the movement of the valve after resetting is regarded as damped vibration, the damping rate increases as the rotational frictional resistance increases, and the vibration of the valve body decreases). Focusing on this, perform an operation test using a valve actuation device, record the valve opening degree during the operation test, process this as a function of time, and compare it with normal data to detect valve abnormalities from the deviation. This is how it was done. However, in reality, the valve opening of a check valve changes depending on the dynamic pressure of the fluid flowing through the valve, so when testing the operation, we check not only the valve opening but also the dynamic pressure (including what can be considered equivalent to this). ), it is necessary to correct the valve opening to a specified dynamic pressure based on the dynamic pressure at that time, and to compare it with normal data at the specified dynamic pressure.

以下本発明の詳細を、第4図、第5図に示す実
施例により説明する。第4図は火力発電プラント
の抽気系統であり、空気作動式のスイング式逆止
弁23が、タービン21の抽気を給水ヒータ24
に導く抽気管22に設けられているものに本発明
を適用した一実施例を示している。抽気管22を
通して給水ヒータ24に導入される抽気蒸気は、
給水管25を通る給水を加熱し、凝縮したドレン
はドレン管26を介して排出されるが、抽気逆止
弁23の役割は、タービントリツプ時等に給水ヒ
ータ24内の飽和水がフラツシユバツクしてター
ビン21に逆流しないようにすることにある。
The details of the present invention will be explained below with reference to the embodiments shown in FIGS. 4 and 5. FIG. 4 shows the air extraction system of a thermal power plant, in which an air-operated swing type check valve 23 directs the air extraction from the turbine 21 to the water supply heater 24.
This figure shows an embodiment in which the present invention is applied to an air bleed pipe 22 that leads to. The bleed steam introduced into the feed water heater 24 through the bleed pipe 22 is
The water supply passing through the water supply pipe 25 is heated and the condensed condensate is discharged through the drain pipe 26. The purpose is to prevent the water from flowing back into the turbine 21.

27は前述した空気作動式の弁作動装置で、前
記空気圧シリング8内にばね9を収容したもので
ある。32はリレーダンプ弁31からの圧縮空気
を空気圧シリンダ8に供給する系統であり、該系
統には、空気圧シリンダ8への圧縮空気の給排を
制御する三方口電磁弁33が設置されていて、通
常時はリレーダンプ弁31からの圧縮空気を空気
圧シリンダ8内に供給して抽気逆止弁23を単に
スイング式逆止弁として働かせ、タービントリツ
プ時にはリレーダンプ弁が作動して空気を排出
し、ばね9の力によつて抽気逆止弁23には強制
閉止力が加えられる。また、給水ヒータ24の伝
熱管に漏洩事故等が発生してレベルスイルチ34
が作動した場合にはオア回路36を介してその信
号が三方口電磁弁33の駆動部に加えられて該弁
33が切換わり、空気圧シリンダ8内の圧縮空気
が排出流路37から排出され、これによつて前記
と同様に抽気逆止弁23に強制閉止力が加わり、
給水のタービン21への逆流を防止するようにな
つている。また、35は弁テスト用スイツチで、
該スイツチを操作すると、三方口電磁弁33が切
換わり、前記同様に抽気逆止弁23にばね9によ
る強制閉止力が加わるようになつている。
Reference numeral 27 denotes the above-mentioned pneumatic valve operating device, in which a spring 9 is housed within the pneumatic sill 8. 32 is a system that supplies compressed air from the relay dump valve 31 to the pneumatic cylinder 8, and this system is equipped with a three-way solenoid valve 33 that controls the supply and discharge of compressed air to the pneumatic cylinder 8. Under normal conditions, compressed air from the relay dump valve 31 is supplied into the pneumatic cylinder 8, causing the bleed air check valve 23 to function simply as a swing type check valve, and when the turbine trips, the relay dump valve operates to discharge air. , a forced closing force is applied to the bleed check valve 23 by the force of the spring 9. In addition, a leakage accident may occur in the heat exchanger tube of the water supply heater 24, causing the level switch 34 to
When activated, the signal is applied to the driving part of the three-way solenoid valve 33 via the OR circuit 36 to switch the valve 33, and the compressed air in the pneumatic cylinder 8 is discharged from the discharge passage 37. As a result, a forced closing force is applied to the bleed check valve 23 in the same manner as described above.
This prevents the supply water from flowing back into the turbine 21. Also, 35 is a valve test switch,
When the switch is operated, the three-way solenoid valve 33 is switched, and a forced closing force by the spring 9 is applied to the bleed check valve 23 in the same manner as described above.

38,39,40は本発明を実施するために設
けたもので、38は動圧検出器、39は弁開度検
出器、40はこれらの検出器出力をサンプリング
して異常診断を行う異常診断装置であつて、一般
にはデイジタル式の演算装置からなるものであ
る。
Reference numerals 38, 39, and 40 are provided for carrying out the present invention, and 38 is a dynamic pressure detector, 39 is a valve opening degree detector, and 40 is an abnormality diagnosis for sampling the outputs of these detectors to perform abnormality diagnosis. A device, typically a digital arithmetic unit.

抽気逆止弁23の作動テストを運転中に行う場
合は、弁テスト用スイツチ35を操作して三方口
電磁弁33を切換え、空気圧シリンダ8内の圧縮
空気を排気流路37から放出する。これにより、
ばね9の力で抽気逆止弁23の弁体に強制閉止力
が作用し、第5図の実線Aで示すように弁開度が
減少する。弁開度がほぼ一定値に飽和する時間に
てリセツトすると、弁は開度を増し、元の弁開度
付近に復帰するが、この時一般に弁が若干振れ、
弁開度が波打つ現象が見られる。
When performing an operation test of the bleed check valve 23 during operation, the valve test switch 35 is operated to switch the three-way solenoid valve 33 and the compressed air in the pneumatic cylinder 8 is discharged from the exhaust flow path 37. This results in
A forced closing force acts on the valve body of the bleed check valve 23 by the force of the spring 9, and the valve opening decreases as shown by the solid line A in FIG. If the valve is reset at a time when the valve opening saturates to an almost constant value, the valve will increase its opening and return to around the original valve opening, but at this time, the valve will generally swing slightly.
A phenomenon in which the valve opening degree is undulating can be seen.

一方、弁軸の回転摩擦抵抗が増加した場合に
は、点線Bの如く、強制閉止力が弱められるた
め、弁開度変化量が少なくなると共に、リセツト
後の弁の振れも少なくなるか又は振れなくなる。
On the other hand, when the rotational frictional resistance of the valve stem increases, as shown by dotted line B, the forced closing force is weakened, so the amount of change in the valve opening decreases, and the swing of the valve after reset is also reduced or It disappears.

従つて、弁が動作不良であるか否かは、作動テ
スト時の弁開度変化量を比較し、正常値a1と実測
値b1の比又は差が規定値より大きくなつた時には
異常と判断することができ、またリセツト後の弁
の動きを比較して、正常データが若干の減衰振動
を生じているのに対し、実測データでは点線Bで
示すように単調に弁開度が変化している(過減
衰)場合には、異常と判断できる。また、弁の動
きがスムーズでない場合には、弁開度が一点鎖線
Cの如く階段状に変化するので、強制閉止時、即
ち作動テスト開始よりリセツト迄の弁開度変化の
パターンの比較によつても逆止弁の異常を判断で
きるし、リセツト後のパターン比較によつても異
常を判断できる。弁体がアームから脱落した場合
の如く極端な場合には、運転中弁開度はゼロ即ち
全閉となるので、容易に異常を発見できる。
Therefore, to determine whether a valve is malfunctioning, compare the amount of change in the valve opening during an operation test, and if the ratio or difference between the normal value a1 and the measured value b1 is greater than the specified value, it is determined to be abnormal. In addition, by comparing the valve movement after reset, it is found that the normal data shows slight damped vibration, while the actual measured data shows that the valve opening changes monotonically as shown by dotted line B. (over-damped), it can be determined that there is an abnormality. In addition, if the valve movement is not smooth, the valve opening changes in a stepwise manner as shown by the dash-dotted line C. Therefore, a comparison of the pattern of changes in the valve opening during forced closing, that is, from the start of the operation test to the reset. It is possible to determine whether there is an abnormality in the check valve even when the check valve is turned off, and it can also be determined whether there is an abnormality by comparing the patterns after the reset. In an extreme case such as when the valve body falls off from the arm, the valve opening becomes zero during operation, that is, it is fully closed, so that the abnormality can be easily discovered.

従つて、異常診断装置40に作動テスト時の弁
開度検出器38の検出データを0.05〜1.0秒間隔
でサンプリングし、前述の弁開度変化量の比較や
パターン比較を行うことにより、弁の異常を検出
できる。検出データをサンプリングする期間は、
前述した正常時と異常時との弁開度パターン変化
の相違から、作動テスト開始時からリセツト時
迄、又はリセツト時から元の弁開度に復帰する迄
の間、あるいは作動テスト開始時から元の弁開度
に復帰する迄の期間とすればよい。このサンプリ
ング期間は、弁の大きさ、流体の運転条件、弁作
動装置の強さ等により変化するが、一般には10〜
60秒間である。
Therefore, by sampling the detection data of the valve opening detector 38 during the operation test in the abnormality diagnosis device 40 at intervals of 0.05 to 1.0 seconds and comparing the amount of change in the valve opening and the pattern comparison described above, the valve opening can be detected. Abnormalities can be detected. The period for sampling detection data is
Due to the difference in the valve opening pattern change between normal and abnormal conditions as described above, the valve opening pattern changes from the start of the operation test to the time of reset, from the time of reset to the time when the original valve opening degree is restored, or from the start of the operation test to the original valve opening. The period may be set as the period until the valve opening degree returns to . This sampling period varies depending on the size of the valve, operating conditions of the fluid, strength of the valve actuator, etc., but is generally 10 to 10 minutes.
It is 60 seconds.

異常診断装置40には、前述の理由から正常デ
ータを記憶しておく必要があるが、この正常デー
タとしては、プラント試運転時等、建設直後にお
ける作動テスト時の弁開度特性、または定期点検
時に逆止弁を分解点検した場合には、その直後の
弁開度変化特性を正常データとして記憶してお
く。勿論、プラント試運転時や分解点検直後にお
いても異常データを示す事はあり得るので、設計
データを試運転データで補正して正常データを作
成し、設計データと正常データとの差が大きすぎ
る場合には異常と判断する。
The abnormality diagnosis device 40 needs to store normal data for the above-mentioned reasons, but this normal data may include valve opening characteristics during operation tests immediately after construction, such as during plant trial runs, or during periodic inspections. When a check valve is disassembled and inspected, the valve opening change characteristics immediately after that are stored as normal data. Of course, it is possible that abnormal data may be shown during plant trial operation or immediately after overhaul, so correct the design data with trial operation data to create normal data, and if the difference between the design data and normal data is too large, It is judged as abnormal.

以上の説明は、説明の便宜上、単に弁開度検出
器38の検出データをそのまま正常データと比較
して弁の異常判断を行うこととしたが、抽気逆止
弁は定格運転点付近で全開となるように一般には
設計されているため、定格運転時の作動テストで
は十分な弁開度変化が得られない上に、リセツト
後に弁も速やかに全開状態に復帰し、異常診断に
適さない場合もあるので、作動テストを行う時点
について考慮する必要がある。一般的には、夜間
等プラント運転負荷が下がつて、運転中の弁開度
が全開より若干下まわつた時に作動テストを行う
ことが望ましい。
For convenience of explanation, in the above explanation, the detection data of the valve opening degree detector 38 is simply compared with normal data to determine the valve abnormality, but the bleed check valve is fully open near the rated operating point. Generally, the valve opening is not sufficiently changed in the operation test during rated operation, and the valve quickly returns to the fully open state after being reset, which may not be suitable for abnormality diagnosis. Therefore, it is necessary to consider the point in time when performing the operational test. Generally, it is desirable to perform an operation test when the plant operating load is reduced, such as at night, and the valve opening during operation is slightly less than fully open.

また、この作動テストを行うに適する負荷を仮
に50%と仮定した場合、実際にはこの最適負荷で
常に作動テストを実施するのは困難であり、作動
テスト時の負荷は一般にバラツキを生じる。負荷
が変われば弁開度とその作動テスト時の弁開度変
化量等も変るので、弁開度検出器38の検出デー
タをそのまま利用して弁の異常判断を行うことと
すれば、作動テストを行う負荷範囲について非常
に多くの正常データを準備しておかなければなら
ないので、好ましくない。
Furthermore, assuming that the load suitable for carrying out this operation test is 50%, it is actually difficult to always carry out the operation test at this optimum load, and the load during the operation test generally varies. If the load changes, the valve opening and the amount of change in the valve opening during the operation test will also change, so if the detection data of the valve opening detector 38 is used as is to determine the valve abnormality, the operation test This is undesirable because a large amount of normal data must be prepared for the load range in which the process is performed.

そこで、後述の如く、弁開度は動圧の関数とし
て表わされることを利用し、図示の動圧検出器3
9を設け、作動テスト時の弁開度をその時の動圧
により規定の動圧(一般には最適負荷時の動圧)
に対する弁開度に補正し、正常データとの比較を
行う。これにより、作動テスト時の負荷の如何に
拘らず、正常データとしてはある負荷におけるデ
ータを保存しておけばよく、比較が容易に行え
る。
Therefore, as will be described later, by utilizing the fact that the valve opening degree is expressed as a function of dynamic pressure, the dynamic pressure detector 3 shown in the figure
9, and the valve opening during the operation test is determined by the dynamic pressure at that time (generally the dynamic pressure at the optimum load).
Correct the valve opening to the specified value and compare it with normal data. Thereby, regardless of the load at the time of the operation test, it is sufficient to save data under a certain load as normal data, and comparison can be easily performed.

ここで、弁開度が動圧の関数として表わされる
ことを証明しておく。抽気逆止弁23における圧
力損失ΔPは、一般に(1)式で表わされる。
Here, we will prove that the valve opening degree is expressed as a function of dynamic pressure. The pressure loss ΔP in the bleed check valve 23 is generally expressed by equation (1).

ΔP=ζ・wr/2g ……………(1) ここで ζ:圧力損失係数 w:流速 r:比重量 g:重力の加速度 弁開度θは圧力損失ΔPの変化に応じて変わる
故、弁開度θは圧力損失ΔPの関数とみなせる。
また、抽気逆止弁の圧力損失係数ζは弁開度θに
よつて定まる係数であるので、弁開度θは流体の
動圧(w2r/2g)の関係として、(2)式の如く表わ
せる。
ΔP=ζ・w 2 r/2g ……………(1) Here, ζ: Pressure loss coefficient w: Flow rate r: Specific weight g: Acceleration of gravity The valve opening degree θ changes according to the change in pressure loss ΔP Therefore, the valve opening degree θ can be regarded as a function of the pressure loss ΔP.
In addition, the pressure loss coefficient ζ of the bleed check valve is a coefficient determined by the valve opening θ, so the valve opening θ is expressed in equation (2) as a relationship with the fluid dynamic pressure (w 2 r / 2g). It can be expressed as follows.

θ=F(wr/2g) ……………(2) 以上本発明を実施例により説明したが、本発明
に関し、下記のような種々の変更が可能である。
前の説明では、正常データを1種類だけ用意して
おくこととしたが、プラントによつては、作動テ
ストの負荷が大きく変化することがあり、大巾な
負荷変化があると、正常な弁の動きも変化し、第
5図の弁開度変化特性のパターンが変化する。こ
の場合には正常データを数個準備し、作動テスト
負荷に近い負荷での正常データと比較するのが良
い。勿論、作動テスト時の弁開度はこの正常デー
タの動圧に対し、動圧補正を加える。
θ=F(w 2 r/2g) (2) Although the present invention has been described above using examples, the following various changes can be made to the present invention.
In the previous explanation, only one type of normal data was prepared, but depending on the plant, the load of the operation test may change greatly, and if there is a large change in load, the valve may not function properly. The movement of the valve also changes, and the pattern of the valve opening change characteristics shown in FIG. 5 changes. In this case, it is best to prepare several pieces of normal data and compare it with normal data at a load close to the operating test load. Of course, dynamic pressure correction is applied to the valve opening degree during the operation test with respect to the dynamic pressure of this normal data.

また、弁開度検出器38は、第1図ないし第3
図で示した弁体2を取付けたアーム3をキー11
で固定した弁軸4に取付けられた直後回転角を検
出するものであるが、しかしスイング式逆止弁の
弁体の振れ角度(全閉に対する全開時の弁角度)
は40゜〜50゜程度と比較的狭いので、回転角度の
代りに弦に対するパーセンテージ、即ち直線動作
でこれを検出するようにしてもよい。
In addition, the valve opening degree detector 38 is
Move the arm 3 with the valve body 2 shown in the figure to the key 11.
It detects the rotation angle immediately after it is installed on the valve stem 4 fixed at , but the swing angle of the valve body of a swing type check valve (valve angle when fully open compared to fully closed)
is relatively narrow, about 40° to 50°, so instead of the rotation angle, it may be detected by a percentage of the string, that is, by linear movement.

また、動圧検出器39としては、流体の動圧を
直接検出するものの他に、オリフイスを設置して
その差圧ΔPを求め、これを動圧に代行させる場
合が多い。差圧ΔPは(1)式の如く、動圧(w2r/
2g)と圧力損失係数ζの積で表わされるため、
弁開度補正を動圧によらず、差圧で行うことも可
能である。また、実際上より簡便な方法として流
量やプラント負荷を用い、これによつて弁開度補
正する場合もあり、この場合も本発明の範ちゆう
に属する。
In addition to the dynamic pressure detector 39 that directly detects the dynamic pressure of the fluid, it is often the case that an orifice is installed to determine the differential pressure ΔP and substitute this for the dynamic pressure. The differential pressure ΔP is expressed as the dynamic pressure (w 2 r/
2g) and the pressure loss coefficient ζ,
It is also possible to correct the valve opening degree using differential pressure instead of using dynamic pressure. Further, as a method that is actually simpler, the flow rate or plant load may be used to correct the valve opening, and this case also falls within the scope of the present invention.

以上述べたように、本発明は、弁作動装置によ
る作動テスト時における弁開度とを記録し、検出
された弁開度をその時の動圧により規定の動圧に
対する弁開度に補正し、補正されたデータを時間
の関数としてデータ処理し、処理後のデータと正
常データとの偏差値により、その弁の動作の異常
を探知する方法であるから、弁作動装置の作動テ
ストを利用して弁のスムーズでない動作や弁体落
下等を検出でき、逆止弁の不作動による事故を未
然に防止できる。
As described above, the present invention records the valve opening degree during an operation test by the valve actuation device, corrects the detected valve opening degree to the valve opening degree for a specified dynamic pressure using the dynamic pressure at that time, and This method processes the corrected data as a function of time and detects abnormalities in the valve operation based on the deviation value between the processed data and normal data. Unsmooth operation of the valve, falling of the valve body, etc. can be detected, and accidents caused by non-operation of the check valve can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスイング式逆止弁の本体部の断面図、
第2図は第1図のX−X断面図、第3図は第2図
のY−Y断面図、第4図は本発明の一実施例をタ
ービンの空気作動式抽気逆止弁に適用した場合の
系統図、第5図は空気作動式抽気逆止弁の作動テ
スト時の弁開度変化特性の一例を示す説明図であ
る。 1……弁箱、2……弁体、3……アーム、4…
…弁軸、5……駆動軸、6……駆動アーム、8…
…空気圧シリンダ、9……ばね、23……抽気逆
止弁、38……弁開度検出器、39……動圧検出
器、40……異常診断装置。
Figure 1 is a sectional view of the main body of the swing type check valve.
Figure 2 is a cross-sectional view taken along line XX in Figure 1, Figure 3 is a cross-sectional view taken along line Y-Y in Figure 2, and Figure 4 shows an embodiment of the present invention applied to an air-operated bleed check valve for a turbine. FIG. 5 is an explanatory diagram showing an example of the valve opening change characteristic during an operation test of the air-operated bleed check valve. 1...Valve box, 2...Valve body, 3...Arm, 4...
...Valve stem, 5... Drive shaft, 6... Drive arm, 8...
... Pneumatic cylinder, 9 ... Spring, 23 ... Bleed air check valve, 38 ... Valve opening degree detector, 39 ... Dynamic pressure detector, 40 ... Abnormality diagnosis device.

Claims (1)

【特許請求の範囲】[Claims] 1 ばねと流体圧力との組合わせにより、スイン
グ式逆止弁の弁体を強制的に閉止できるようにし
た弁作動装置付逆止弁において、該弁作動装置に
よる作動テスト時における弁開度と動圧とを記録
し、検出された弁開度をその時の動圧により規定
の動圧に対する弁開度に補正し、補正されたデー
タを時間の関数としてデータ処理し、処理後のデ
ータと正常データとの偏差値により、その弁の動
作の異常を探知することを特徴とする弁作動装置
付逆止弁の異常診断方法。
1. In a check valve with a valve actuation device that can forcibly close the valve body of a swing type check valve by a combination of a spring and fluid pressure, the valve opening degree and the valve opening during an operation test with the valve actuation device Dynamic pressure is recorded, the detected valve opening is corrected to the valve opening for the specified dynamic pressure using the dynamic pressure at that time, the corrected data is processed as a function of time, and the processed data and normal A method for diagnosing an abnormality in a check valve with a valve operating device, characterized in that an abnormality in the operation of the valve is detected based on a deviation value from data.
JP4960080A 1980-04-17 1980-04-17 Diagnostics for accident of check valve with valve operating device Granted JPS56147978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4960080A JPS56147978A (en) 1980-04-17 1980-04-17 Diagnostics for accident of check valve with valve operating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4960080A JPS56147978A (en) 1980-04-17 1980-04-17 Diagnostics for accident of check valve with valve operating device

Publications (2)

Publication Number Publication Date
JPS56147978A JPS56147978A (en) 1981-11-17
JPS6151711B2 true JPS6151711B2 (en) 1986-11-10

Family

ID=12835718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4960080A Granted JPS56147978A (en) 1980-04-17 1980-04-17 Diagnostics for accident of check valve with valve operating device

Country Status (1)

Country Link
JP (1) JPS56147978A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419765Y2 (en) * 1986-07-04 1992-05-06
JPH06105644B2 (en) * 1986-07-29 1994-12-21 松下電器産業株式会社 Magnetic control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0288521A4 (en) * 1986-10-29 1991-09-11 Movats Incorporated Check valve testing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419765Y2 (en) * 1986-07-04 1992-05-06
JPH06105644B2 (en) * 1986-07-29 1994-12-21 松下電器産業株式会社 Magnetic control

Also Published As

Publication number Publication date
JPS56147978A (en) 1981-11-17

Similar Documents

Publication Publication Date Title
CN100543628C (en) The method and apparatus that utilizes the control loop operation control valve and this control loop execution is diagnosed
US4353390A (en) Swing check valve with internally balanced disc
CA1084475A (en) Control valves
KR101158618B1 (en) Wind turbine generator and soundness diagnosis method thereof
US9046185B2 (en) Method for determining an operating position of an open/closed-valve and field device
US8074512B2 (en) Partial stroke testing system coupled with fuel control valve
US20090090171A1 (en) Method for Verifying the Tightness of a Tank Bleeding System without Using a Pressure Sensor
CA1163167A (en) Apparatus for individual isolation of hydraulically actuated valves
JP3341511B2 (en) Stem-free test equipment for main steam stop valve
JPS6151711B2 (en)
JPH0771206A (en) Diagnostic system and method of evaluating performance of valve in steam turbine-system
US7234678B1 (en) Protection system for turbo machine and power generating equipment
US9650912B2 (en) System and device for over-speed protection of a turbo-machine
CA1153114A (en) Method of sensing malfunctions of check valve mounted in pipeline and apparatus therefor
KR100866352B1 (en) How to Diagnose Shut-off Valve of Hydraulic Actuator
JP3221960B2 (en) Heater drain discharge device
JPS60215182A (en) Diagnosis method of steam valve
JPS6146305Y2 (en)
KR100363229B1 (en) Safty-valve having multi-function
JPS6160961B2 (en)
JP3783492B2 (en) Control device for turbocharger with variable nozzle vane
JPS581605Y2 (en) Turbine safety device test lever holding device
JPH02112604A (en) Protective device for turbo machine
JPS6017997B2 (en) Heat exchanger protection device
Farrell et al. A Case Study: Balanced Globe Valve Load Sensitive Behavior Upon Opening