JPS6151699B2 - - Google Patents

Info

Publication number
JPS6151699B2
JPS6151699B2 JP56160875A JP16087581A JPS6151699B2 JP S6151699 B2 JPS6151699 B2 JP S6151699B2 JP 56160875 A JP56160875 A JP 56160875A JP 16087581 A JP16087581 A JP 16087581A JP S6151699 B2 JPS6151699 B2 JP S6151699B2
Authority
JP
Japan
Prior art keywords
engine
control circuit
input
pulse width
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56160875A
Other languages
Japanese (ja)
Other versions
JPS57107457A (en
Inventor
Fukashi Sugasawa
Nagayuki Marumo
Haruhiko Iizuka
Junichiro Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP56160875A priority Critical patent/JPS57107457A/en
Publication of JPS57107457A publication Critical patent/JPS57107457A/en
Publication of JPS6151699B2 publication Critical patent/JPS6151699B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)

Description

【発明の詳細な説明】 本発明は主に自動車において使用している自動
変速機の制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device for an automatic transmission mainly used in automobiles.

従来のトルクコンバータ式自動変速機の1つの
制御装置としては、第1図に示すようなものが使
用されている。すなわちこれはエンジンの負荷を
検出するためにエンジンの吸気管負圧を利用する
ものである。第1図によりこれを具体的に説明す
ると、エンジンのインテークマニホールドMに接
続したパイプPにより吸気管負圧をダイヤフラム
Dに導き、この負圧の値に応じて作動するダイヤ
フラムDによりバキユームスロツトルバルブVを
制御して、スロツトル圧を制御するものである。
As one control device for a conventional torque converter type automatic transmission, one shown in FIG. 1 is used. That is, this uses the engine's intake pipe negative pressure to detect the engine load. To explain this in detail with reference to Fig. 1, negative pressure in the intake pipe is guided to the diaphragm D by a pipe P connected to the intake manifold M of the engine, and the vacuum throttle is controlled by the diaphragm D which operates according to the value of this negative pressure. The throttle pressure is controlled by controlling the valve V.

しかしながら従来のこの種制御装置は、気筒数
制御を行うエンジンには不適当であり、仮りにこ
れらのエンジンに使用したとすると、変速パター
ンが大きくみだされ、要求外にシフトダウンした
りする結果となる。
However, conventional control devices of this kind are unsuitable for engines that control the number of cylinders, and if used for these engines, the shift pattern would be greatly distorted, resulting in undesired downshifts. becomes.

その理由は、エンジンに気筒数制御方式を採用
すると、この吸気管負圧が従来のようにエンジン
負荷を代表しなくなるためである。
The reason for this is that when a cylinder number control method is adopted for an engine, this intake pipe negative pressure no longer represents the engine load as in the past.

本発明は上述の理由から、気筒数制御を行うエ
ンジンに適応する自動変速機の制御装置を提案す
るもので、気筒数制御を行う場合もそれに使用す
る電子制御燃料噴射装置(EGI)のパルス巾がエ
ンジン負荷に対応することに着目し、これらエン
ジンの電子制御燃料噴射装置のパルス巾を電気信
号として検出し、この電気信号によつて油圧制御
バルブを制御することを特徴とするもので、エン
ジン負荷に応じて自動変速機を適確に制御するこ
とを目的とするものである。
For the reasons mentioned above, the present invention proposes a control device for an automatic transmission that is adapted to an engine that controls the number of cylinders. This system is characterized by detecting the pulse width of the electronically controlled fuel injection device of these engines as an electrical signal, and controlling the hydraulic control valve using this electrical signal. The purpose is to accurately control the automatic transmission according to the load.

以下図により本発明の実施の態様を説明する。
図中5は電流制御回路、6はスロツトル圧を制御
するリニアソレノイドバルブで、6aはそのスロ
ツトルバルブ、6bはライン圧の油路、6cはス
ロツトル圧の油路、6dはスロツトルバルブ6a
を操作する電動式アクチユエイターであるソレノ
イドである。EGI制御回路は吸入空気量を検知し
てパルスを発生しており、このパルス巾はエンジ
ン負荷に対応している。したがつて第2図に示す
実施例においては、EGI制御回路9が発生するパ
ルスをパルス巾−直流電圧変換回路10に入力と
して導入し、この出力を電流制御回路5に入れて
電流に変換し、リニアソレノイドバルブ6を介し
て自動変速機のスロツトル圧を制御する。
Embodiments of the present invention will be explained below with reference to the drawings.
In the figure, 5 is a current control circuit, 6 is a linear solenoid valve that controls the throttle pressure, 6a is the throttle valve, 6b is a line pressure oil path, 6c is a throttle pressure oil path, and 6d is the throttle valve 6a.
This is a solenoid, which is an electric actuator that operates the The EGI control circuit detects the amount of intake air and generates a pulse, and the width of this pulse corresponds to the engine load. Therefore, in the embodiment shown in FIG. 2, the pulses generated by the EGI control circuit 9 are introduced as input into the pulse width-to-DC voltage conversion circuit 10, and the output thereof is input into the current control circuit 5 and converted into a current. , controls the throttle pressure of the automatic transmission via the linear solenoid valve 6.

次に電子制御燃料噴射式エンジンと気筒数制御
装置とを組み合せた場合における本発明制御装置
の実施例を第3図について説明する。
Next, an embodiment of the control device of the present invention in a case where an electronically controlled fuel injection type engine and a cylinder number control device are combined will be described with reference to FIG.

すなわちEGI制御回路9および気筒数制御回路
7の出力をそれぞれパルス巾−直流電圧変換回路
10に導入し、さらにその出力を電流制御回路5
に入れて電流に変換し、リニアソレノイドバルブ
6を介して自動変速機のスロツトル圧を制御す
る。
That is, the outputs of the EGI control circuit 9 and the cylinder number control circuit 7 are respectively introduced into the pulse width-DC voltage conversion circuit 10, and the outputs are further introduced into the current control circuit 5.
It is converted into an electric current and used to control the throttle pressure of the automatic transmission via the linear solenoid valve 6.

例えば6気筒エンジンの気筒数を制御して3気
筒の燃料噴射をやめた場合、残りの3気筒で同じ
出力を発生させるために必要なエンジンの吸入空
気量は6気筒運転の場合のほぼ2倍となる。正確
には充填効率が上るためにエンジンの熱効率も良
くなるため2倍より若干少ない量でよい。したが
つてこの場合におけるエンジンの吸入空気量の検
出値には修正が必要であり、この修正は次のよう
に行えばよい。
For example, if you control the number of cylinders in a 6-cylinder engine and stop fuel injection in 3 cylinders, the amount of intake air required for the engine to generate the same output in the remaining 3 cylinders will be approximately twice that of a 6-cylinder operation. Become. To be more precise, the amount may be slightly less than twice that, since the thermal efficiency of the engine also improves due to the increased charging efficiency. Therefore, the detected value of the intake air amount of the engine in this case needs to be corrected, and this correction can be performed as follows.

すなわちm気筒エンジンでn気筒運転する場合
は、燃料噴射パルス巾をWpとし、補正パルス巾
をWp′とすると、Wp′=n/mWpとなる。
That is, when an m-cylinder engine is operated with n cylinders, when the fuel injection pulse width is Wp and the correction pulse width is Wp', Wp'=n/mWp.

第4図は第3図の点線で囲んだ部分の具体的な
回路例、第5図はタイムチヤートを示すものであ
る。この回路につき説明すると、入力端子Aから
燃料噴射信号(パルス)が入つてくると、トラン
ジスタT1のコレクタ電圧は該入力パルスの反転
した電圧となり、さらに反転器I1の出力は反転し
た値となり該入力パルスと同じ波形のパルスとな
る。
FIG. 4 shows a specific circuit example of the portion surrounded by the dotted line in FIG. 3, and FIG. 5 shows a time chart. To explain this circuit, when a fuel injection signal (pulse) is input from the input terminal A, the collector voltage of the transistor T1 becomes the inverted voltage of the input pulse, and the output of the inverter I1 becomes the inverted value. The pulse has the same waveform as the input pulse.

反転器I1の出力が1となると、電子スイツチ
ES1は今まで断であつたのが接の状態になる。S1
〜S4は気筒数制御回路からの気筒数制御信号で6
気筒運転時はS1が1で、S2〜S4が0となり、5気
筒、4気筒、3気筒運転時はそれぞれS2,S3,S4
が1で、他が0となる。
When the output of the inverter I1 becomes 1, the electronic switch
ES 1 is now in a connected state, whereas it was previously in a disconnected state. S 1
~S 4 is the cylinder number control signal from the cylinder number control circuit.
During cylinder operation, S 1 is 1 and S 2 to S 4 are 0, and when operating with 5 cylinders, 4 cylinders, and 3 cylinders, S 2 , S 3 , and S 4 respectively.
is 1 and the others are 0.

今例えば6気筒エンジンで6気筒運転の時、気
筒数制御信号S1が1のため電子スイツチES3が接
となり、定電圧電源V+から抵抗R4,R8、電子ス
イツチES1を通つて接地され、抵抗R4とR8で分圧
された値が抵抗R9、オペアンプOP3、トランジス
タT3、抵抗R12で構成される定電流回路への入力
電圧となる。該定電流回路は入力電圧に応じて定
電圧電源V+から抵抗R12を通つてコンデンサC1
流れ込む定流値を制御する。
For example, when a 6-cylinder engine is operated with 6 cylinders, the cylinder number control signal S 1 is 1, so the electronic switch ES 3 is connected, and the constant voltage power supply V + passes through the resistors R 4 , R 8 and the electronic switch ES 1 . It is grounded, and the voltage divided by resistors R 4 and R 8 becomes the input voltage to the constant current circuit composed of resistor R 9 , operational amplifier OP 3 , transistor T 3 , and resistor R 12 . The constant current circuit controls the constant current value flowing from the constant voltage power supply V + into the capacitor C 1 through the resistor R 12 according to the input voltage.

したがつて今入力端子Aからパルス入力がある
と、コンデンサC1は一定の速度で充電してい
く。
Therefore, when a pulse is input from input terminal A, capacitor C1 charges at a constant rate.

オペアンプOP1は入力インピーダンスが非常に
高いものでコンデンサC1の電荷がオペアンプOP1
を通して放電する割合は非常に少なく無視できる
ものである。オペアンプOP1の出力はコンデンサ
C1と同じ電圧であり、この値は電子スイツチES2
が接となると瞬時にコンデンサC2に記憶され
る。オペアンプOP2もオペアンプOP1と同様のも
のでコンデンサC2と同じ電圧の出力を発生す
る。これがパルス巾に比例した直流電圧となる。
Op-amp OP 1 has a very high input impedance, and the charge on capacitor C 1 is transferred to op-amp OP 1.
The rate of discharge through is very small and can be ignored. The output of op amp OP 1 is a capacitor
C 1 is the same voltage and this value is the electronic switch ES 2
When it becomes connected, it is instantly stored in capacitor C2 . Op amp OP 2 is also similar to op amp OP 1 and generates an output of the same voltage as capacitor C 2 . This becomes a DC voltage proportional to the pulse width.

すなわちコンデンサC1は入力端子Aから入る
パルスが1の時のみ充電を続けるため、コンデン
サC1の電圧はパルス巾に比例した値となる。入
力端子Aから入るパルスが1から0となると電子
スイツチES1は断となり、トランジスタT3はオフ
となり充電は止まる。これと同様にモノマルチ
M1は一定パルス巾の出力を発し、この時に極め
て短い間1だけ電子スイツチES2を接としてコン
デンサC1の値をコンデンサC2に記憶させる。ま
たモノマルチM1の出力が立ち下ると、モノマル
チM2は一定パルス巾の出力を発生し、この時に
極めて短い間1だけトランジスタT2をオンとし
コンデンサC1が放電する。
That is, since the capacitor C 1 continues charging only when the pulse input from the input terminal A is 1, the voltage of the capacitor C 1 becomes a value proportional to the pulse width. When the pulse input from input terminal A changes from 1 to 0, electronic switch ES 1 is turned off, transistor T 3 is turned off, and charging stops. Similarly to this, monomulti
M 1 emits an output with a constant pulse width, and at this time the electronic switch ES 2 is connected for a very short period of time to store the value of the capacitor C 1 in the capacitor C 2 . Furthermore, when the output of the monomulti M 1 falls, the mono multi M 2 generates an output with a constant pulse width, and at this time, the transistor T 2 is turned on for an extremely short period of time, and the capacitor C 1 is discharged.

抵抗R4,R5,R6,R7,R8の各抵抗値の関係
は、6気筒エンジンの場合下記のように定めれば
よい。
The relationship between the resistance values of resistances R 4 , R 5 , R 6 , R 7 , and R 8 may be determined as follows in the case of a 6-cylinder engine.

1−R/R+R=6/5(1−R/R+R
) =6/4(1−R/R+R) =6/3(1−R/R+R) すなわち例えば3気筒運転時は先に説明したよ
うに、6気筒運転時に換算するとパルス巾は半分
になるため、コンデンサC1を充電する速度を半
分にすればよい。
1- R8 / R4 + R8 =6/5(1- R8 / R5 + R8
) = 6/4 (1-R 8 /R 6 +R 8 ) = 6/3 (1-R 8 /R 7 +R 8 ) That is, for example, when operating with 3 cylinders, as explained earlier, when operating with 6 cylinders, convert Then, the pulse width is halved, so the rate at which capacitor C1 is charged can be halved.

第6図a,bは第2図および第3図における電
流制御回路5の詳細を示すもので、VINには先の
第4図のVOUTが入るものとする。図中6dは前
記リニアソレノイドバルブ6のソレノイドであ
る。
FIGS. 6a and 6b show details of the current control circuit 5 in FIGS. 2 and 3, and it is assumed that V IN is equal to V OUT in FIG. 4. In the figure, 6d is a solenoid of the linear solenoid valve 6.

第6図aは簡易タイプでVINへの入力電圧にほ
ぼ比例してソレノイド電流が変化する。なおこれ
は温度によつて多少変動する。
Figure 6a shows a simple type in which the solenoid current changes approximately in proportion to the input voltage to VIN . Note that this varies somewhat depending on the temperature.

第6図bはVINへの入力電圧に正確に比例した
ソレノイド電流を得るものである。
FIG. 6b provides a solenoid current that is exactly proportional to the input voltage to V IN .

以上述べた実施例は、自動変速機の油圧制御回
路中のスロツトル圧を制御するものについて説明
したが、本発明はスロツトル圧の制御のみに限定
されるものではない。
Although the embodiments described above have been described for controlling the throttle pressure in the hydraulic control circuit of an automatic transmission, the present invention is not limited to only controlling the throttle pressure.

上述のように本発明によれば気筒数制御を行う
エンジンに対しても、エンジンの負荷状態を正確
に検出できるから、本発明はこの種エンジンの自
動変速機の制御を適確に行うことができるという
すぐれた効果がある。
As described above, according to the present invention, the load condition of the engine can be accurately detected even for an engine that controls the number of cylinders, so the present invention can accurately control the automatic transmission of this type of engine. It has an excellent effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はエンジンの吸気管負圧を検出して油圧
制御を行う従来の自動変速機の制御装置の要部を
示す断面図、第2図は本発明装置の一実施例を示
す系統図、第3図は他の実施例を示す系統図、第
4図は第3図の点線で囲んだ部分の具体的な電気
回路図、第5図はそのタイムチヤート、第6図
a,bは電流制御回路の詳細図である。 5……電流制御回路、6……リニアソレノイド
バルブ、6a……スロツトルバルブ、6d……ソ
レノイド、7……気筒数制御回路、8……演算
器、9……EGI制御回路、10……パルス巾−直
流電圧変換回路。
FIG. 1 is a sectional view showing the main parts of a conventional automatic transmission control device that detects negative pressure in the engine intake pipe and performs hydraulic control; FIG. 2 is a system diagram showing an embodiment of the device of the present invention; Fig. 3 is a system diagram showing another embodiment, Fig. 4 is a specific electric circuit diagram of the part surrounded by the dotted line in Fig. 3, Fig. 5 is its time chart, and Fig. 6 a and b are current diagrams. FIG. 3 is a detailed diagram of the control circuit. 5... Current control circuit, 6... Linear solenoid valve, 6a... Throttle valve, 6d... Solenoid, 7... Number of cylinders control circuit, 8... Arithmetic unit, 9... EGI control circuit, 10... Pulse width-DC voltage conversion circuit.

Claims (1)

【特許請求の範囲】 1 エンジンのEGI制御回路9が発生するパルス
をパルス巾−直流電圧変換回路10に入力として
導入し、この出力を電流制御回路5に入れて電流
に変換し、この出力を油圧制御バルブ6に導入し
てエンジン負荷に対応した油圧を発生させるよう
にした事を特徴とする自動変速機の制御装置。 2 エンジンのEGI制御回路9および気筒数制御
回路7の出力をそれぞれパルス巾−直流電圧変換
回路10に導入するようにした特許請求の範囲第
1項記載の自動変速機の制御装置。
[Claims] 1. Pulses generated by the EGI control circuit 9 of the engine are introduced as input into a pulse width-to-DC voltage conversion circuit 10, and this output is input into a current control circuit 5 to be converted into a current. A control device for an automatic transmission characterized in that the hydraulic pressure is introduced into a hydraulic control valve 6 to generate hydraulic pressure corresponding to the engine load. 2. The automatic transmission control device according to claim 1, wherein the outputs of the EGI control circuit 9 and the cylinder number control circuit 7 of the engine are respectively introduced into the pulse width-DC voltage conversion circuit 10.
JP56160875A 1981-10-12 1981-10-12 Control device of automatic speed change gear Granted JPS57107457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160875A JPS57107457A (en) 1981-10-12 1981-10-12 Control device of automatic speed change gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160875A JPS57107457A (en) 1981-10-12 1981-10-12 Control device of automatic speed change gear

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP53077A Division JPS5385263A (en) 1977-01-06 1977-01-06 Automatia transimssion control apparatus

Publications (2)

Publication Number Publication Date
JPS57107457A JPS57107457A (en) 1982-07-03
JPS6151699B2 true JPS6151699B2 (en) 1986-11-10

Family

ID=15724253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160875A Granted JPS57107457A (en) 1981-10-12 1981-10-12 Control device of automatic speed change gear

Country Status (1)

Country Link
JP (1) JPS57107457A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60168944A (en) * 1984-02-09 1985-09-02 Honda Motor Co Ltd Creep prevention device for car provided with automatic speed changer

Also Published As

Publication number Publication date
JPS57107457A (en) 1982-07-03

Similar Documents

Publication Publication Date Title
US4978865A (en) Circuit for regulating a pulsating current
US4109174A (en) Drive circuits for a piezoelectric stack
US3745768A (en) Apparatus to control the proportion of air and fuel in the air fuel mixture of internal combustion engines
US4198936A (en) System to control the on-off time of a pulse train of variable frequency, particularly the dwell time of ignition signals for an internal combustion engine
US3734067A (en) Fuel injection system for internal combustion engine
GB2107495A (en) Control circuit for an electromagnetically operable device
US4075835A (en) Additional air control device
US3960120A (en) Electronic fuel injection control circuit for an internal combustion engine
JPS58195028U (en) Fuel injection device for internal combustion engines having an air amount measuring device installed in or on the suction pipe
GB1588434A (en) Apparatus for regulating the fuel/air mixture fed to internal combustion engines
US3720191A (en) Acceleration enrichment circuitry for electronic fuel system
US4316155A (en) Voltage controlled oscillator having ratiometric and temperature compensation
US4266522A (en) Fuel injection systems
US4257034A (en) Feedback-compensated ramp-type analog to digital converter
US4060714A (en) Input sensor circuit for a digital engine controller
US4112880A (en) Method of and mixture control system for varying the mixture control point relative to a fixed reference
US3429302A (en) Arrangement for controlling the injection of fuel in engines
US4307691A (en) Ignition timing control system for internal combustion engine
US4121547A (en) Closed loop air-fuel ratio control system for use with internal combustion engine
GB1559905A (en) Fuel control systems for internal combustion engines
JPS6151699B2 (en)
US4158347A (en) Fuel supply system for use in internal combustion engine
US4501247A (en) Electronically controllable and regulatable fuel metering system of an internal combustion engine
US4217795A (en) Engine load detection system for automatic power transmission
GB1596504A (en) Electronic fuel injection control for an internal combustion engine