JPS6151609A - Manufacture of magnetic head - Google Patents

Manufacture of magnetic head

Info

Publication number
JPS6151609A
JPS6151609A JP17364184A JP17364184A JPS6151609A JP S6151609 A JPS6151609 A JP S6151609A JP 17364184 A JP17364184 A JP 17364184A JP 17364184 A JP17364184 A JP 17364184A JP S6151609 A JPS6151609 A JP S6151609A
Authority
JP
Japan
Prior art keywords
head
gap
magnetic
notch
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17364184A
Other languages
Japanese (ja)
Inventor
Mitsuo Satomi
三男 里見
Osamu Miyazaki
修 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17364184A priority Critical patent/JPS6151609A/en
Publication of JPS6151609A publication Critical patent/JPS6151609A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/21Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features the pole pieces being of ferrous sheet metal or other magnetic layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To manufacture a magnetic head having excellent touch with a tape and stable output and long life by forming a notch to a base near the head gap in the direction of gap depth to reduce partially the tickness of a chip. CONSTITUTION:An amorphous alloy 11 is formed by sputtering on a photosensitive glass substrate 10, a laser beam is irradiated on the substrator 10 near a gap 12 of a magnetic head in the direction of gap depth to form a notch A. In this case, the nearest distance to the amorphous alloy 11 is processed in 10mum at the apex of the notched triangle form. Similarly, a head processed with notches of shapes B, C is formed. The head output having a wider notch area than that of the shape A is made stable and the head with the shape B has excellent wear resistance. Thus, the head provided with the notches near the gap to decrease the head chip width, with long service life and stable output and excellent touch with a tape is manufactured in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気記録再生装置の磁気ヘッドに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic head for a magnetic recording/reproducing device.

従来例の構成とその問題点 一般に、磁気ヘッドのヘッドコア材料としてはパーマロ
イ、センダストなどの合金材料や、フェライトなどが使
用されている。これらの材′$−+を特にビデオテープ
レコーダ(以下VTRと称す。)用ヘッドとして考えた
場合、耐摩耗性を考慮した時フェライトが最も優れてい
るため、現在はその主流を占めている。
Conventional Structures and Problems Generally, alloy materials such as permalloy and sendust, ferrite, and the like are used as head core materials for magnetic heads. When considering these materials especially for heads for video tape recorders (hereinafter referred to as VTR), ferrite is currently the most popular material because it has the best wear resistance.

ところでVTR用ヘッドの場合、そのトラック巾が30
μm程度と非常に小さいのでトラック巾と同一のチップ
を作る事は機械加工上ないしはチップ自身の強度あるい
は取扱上問題があるので実際にはチップ厚みは大きくし
てギャップ付近のみにトラック巾を規定するための切欠
き、いわゆるノツチ加工を施して、トランク巾を小さく
している。
By the way, in the case of a VTR head, the track width is 30 mm.
Since the track width is extremely small, on the order of μm, making a chip with the same width as the track width may cause problems in machining, strength of the chip itself, or handling, so in reality, the chip thickness is increased and the track width is specified only in the vicinity of the gap. A so-called notch process has been applied to reduce the trunk width.

この状態を第1図に示す。第1図aにおいて、1はフェ
ライトからなる磁性材料、2は巻線窓、3はヘッドギャ
ップ、4はノツチ部を示す。すなわち、ギャップ形成前
にあらかじめノツチ加工しておき、ノツチ部4をガラス
などで充てんした後ギャップ形成して、ギャップ形成棒
を得る。
This state is shown in FIG. In FIG. 1a, 1 is a magnetic material made of ferrite, 2 is a winding window, 3 is a head gap, and 4 is a notch portion. That is, before forming the gap, a notch is formed in advance, and the notch portion 4 is filled with glass or the like and then the gap is formed to obtain a gap-formed rod.

このギャップ形成棒をX−Xで示される面で切断して、
第1図すの様なヘッドチップを得る。これによりチップ
厚よシlJXさいトラック幅tを得る。
This gap forming rod is cut along the plane indicated by X-X,
A head chip as shown in Figure 1 is obtained. As a result, a track width t smaller than the chip thickness is obtained.

一方、記録媒体もさまざまなものが使用されているが、
最近では高抗磁力の高密度記録媒体が出現している。こ
れを使用する場合には、磁気へラドコアが磁気飽和を生
じないように、その材料に飽和磁束密度の高いものが要
求される。このため、上記の高密度記録媒体に対応させ
るだめの磁気ヘッドのコア材料としては、フェライトは
不適当で、合金材料が適している・ この様な観点よシ近年注目されている材料として非晶質
合金がある。非晶質合金材料はその製造上の特徴よシ、
20〜5Qμm程度のむしろ薄いものを作るのが特徴で
あるので、その材料自身がトラック巾に等しい磁気ヘッ
ドが各社よシ発表されている。一般には上記非晶質合金
をヘッドコアとして、耐摩耗性の良好な基板で挾んだ積
層構造を有している。
On the other hand, various recording media are used,
Recently, high-density recording media with high coercive force have appeared. When using this, the material must have a high saturation magnetic flux density so that the magnetic helad core does not undergo magnetic saturation. For this reason, ferrite is inappropriate as the core material for magnetic heads that are compatible with the above-mentioned high-density recording media, and alloy materials are suitable.From this perspective, amorphous materials have been attracting attention in recent years. There is a quality alloy. Amorphous alloy materials have different manufacturing characteristics,
Since it is characterized by making a rather thin material of about 20 to 5 Q .mu.m, various companies have announced magnetic heads whose material itself is equal to the track width. Generally, it has a laminated structure in which the head core is made of the above amorphous alloy and is sandwiched between substrates having good wear resistance.

製造方法の一例を第2図により説明する。An example of the manufacturing method will be explained with reference to FIG.

第2図aはギャップ形成したギヤング形成棒を示すもの
であり5は非晶質合金、6は非磁性の基板材料、7は磁
気ギャップ、8は巻線窓、9は接着用ガラスを示す。こ
の様なギャップ形成棒を希望するチップ巾に応じてY、
−Yl、Y2−Y2のように切断し、第2図すの様なバ
ーを得る。第2図すにおけるZ−Zのようにさらに切断
して、Cの様な各チップを切シ出し、磁気ヘッドを完成
する。
FIG. 2a shows a Guyang-formed rod with a gap formed therein, where 5 is an amorphous alloy, 6 is a non-magnetic substrate material, 7 is a magnetic gap, 8 is a winding window, and 9 is an adhesive glass. Y, depending on the desired chip width for such a gap forming rod.
-Yl, Y2-Y2 to obtain a bar as shown in Figure 2. It is further cut as indicated by Z--Z in Figure 2, and each chip as indicated by C is cut out to complete the magnetic head.

以上のような従来のヘッドを実際にテープを走行して、
ヘッド特性の評価をしてみると、先ず、フェライトヘッ
ドは耐摩耗性が非常に良く、ノツチ部のガラスはフェラ
イトにくらべ耐摩耗性が劣るので、フェライトコアーの
みがオングストロームオーダーで突出した形となってい
るので、ヘッド前面とテープのタッチが良く出力が安定
して得られる。
By actually running the tape with the conventional head described above,
When evaluating the characteristics of the head, first of all, the ferrite head has very good wear resistance, but since the glass in the notch has inferior wear resistance compared to ferrite, only the ferrite core has a protruding shape on the order of angstroms. This allows for good contact between the front of the head and the tape, resulting in stable output.

一方非晶質合金は、フェライトにくらべ耐摩耗性が劣る
ので、前述の様に耐摩耗性の良好なガラスないしは非磁
性のフェライト基板などで挟持した、いわゆるサンドイ
ンチ構造とする事で、はyフェライト並みの耐摩耗性を
有する磁気ヘッドが得られている。
On the other hand, amorphous alloys have inferior wear resistance compared to ferrite, so as mentioned above, they are sandwiched between glass or non-magnetic ferrite substrates with good wear resistance, creating a so-called sand inch structure. A magnetic head with wear resistance comparable to that of ferrite has been obtained.

しかしながら、このような積層構造を有する磁気ヘッド
では、基板材料がヘッドコアである、非晶質合金よシも
耐摩耗性が良いために磁気テープを長時間走行させると
、磁気テープと接触するテープ摺動面において、ヘッド
コアが基板よシも落ち込んで偏摩耗が発生する。この偏
摩耗が発生すると磁気テープとヘッドコアとの接触が悪
くなシ、そのスペーシングロスのために特にMHzオー
ダーの出力が著しく低下し、磁気ヘッドと磁気テープの
相対速度にもよるが、前記偏摩耗が500Å以上になる
と、例えばビデオ信号の録画、再生が困難となる。
However, in magnetic heads with such a laminated structure, the substrate material used as the head core is an amorphous alloy, which also has good wear resistance, so if the magnetic tape is run for a long time, the tape slider that comes into contact with the magnetic tape will wear out. On the moving surface, the head core also sinks into the substrate, causing uneven wear. When this uneven wear occurs, the contact between the magnetic tape and the head core becomes poor, and the resulting spacing loss significantly reduces the output, especially in the MHz order. If the wear exceeds 500 Å, it becomes difficult to record and play back video signals, for example.

この様な観点よシ、非晶質合金ヘッドもフェライトヘッ
ドと同様な構造すなわちノツチタイプのヘッドにすれば
偏摩耗が少なくなる事は容易に考えられるが、前述した
様に、ヘッド製造プロセス上非晶質合金ヘッドはあらか
じめノツチ加工する事は不可能である。
From this point of view, it is easy to think that uneven wear would be reduced if the amorphous alloy head had the same structure as the ferrite head, that is, a notch type head, but as mentioned above, the amorphous It is impossible to notch a quality alloy head in advance.

それ箇ではヘッドチップにした後にギャップ付近の基板
材料にノツチ加工すれば良いが、VTRヘッドとなると
、例えばテップ全厚130μm。
In that case, it is sufficient to process a notch in the substrate material near the gap after forming the head chip, but in the case of a VTR head, for example, the total tip thickness is 130 μm.

ギャップ0.3μm 、チップ巾2aJI程度であり、
ギャップを維持して切欠きを設ける皇は現在の加工技術
では不可能である。
The gap is 0.3μm, the chip width is about 2aJI,
Creating a notch while maintaining the gap is impossible with current processing technology.

わずかに可能な方法として、第3図に示す様K、ヘッド
先端部7のみをラッピングによシテーパ加工する方法が
あるが、この方法であるとテープ走行初期はヘッドとテ
ープの当りは良いが、ヘッド摩耗が進むにつれて、ヘッ
ドギャップ付近のテープと接触するコアー巾が広がって
くるので、前述の偏摩耗が発生し、ヘッド出力の低下を
招来する。
A slightly possible method is to taper only the head tip 7 by lapping as shown in Fig. 3, but with this method, the contact between the head and the tape is good at the beginning of the tape run, but As head wear progresses, the core width that comes into contact with the tape near the head gap increases, causing the aforementioned uneven wear and resulting in a decrease in head output.

一方、レーザビーム、電子ビーム加工機等釦より、非晶
質合金の一部に前記ビームを照射し、部公的に加熱する
事によって結晶化させ、非磁性とする事によってヘッド
トラック巾のトリミングを行ったり、疑似的なギャップ
を形成する事が、実用化されてはいないが、アイデアと
して提案されている。これらはいずれも加熱→結晶化→
非磁性化というプロセスを利用して考案されたものであ
る。この様にアモルファス合金近傍に前記ビームを照射
する事は非磁性化するためというのが常識的な技術であ
った。
On the other hand, a part of the amorphous alloy is irradiated with the beam from a laser beam or an electron beam processing machine, and is locally heated to crystallize it and make it non-magnetic, thereby trimming the head track width. Although it has not been put into practical use, it has been proposed as an idea to do this or create a pseudo gap. All of these are heated → crystallized →
It was devised using a process called demagnetization. It was common knowledge that irradiating the vicinity of the amorphous alloy with the beam in this way was to make it non-magnetic.

発明の目的 本発明は、ヘッドとテープのタッチが良好で、ヘッド出
力の安定した、寿命が長い実用的な磁気ヘッドを提供す
るものである。
OBJECTS OF THE INVENTION The present invention provides a practical magnetic head that has good contact between the head and tape, stable head output, and has a long life.

発明の構成 磁性体コアを耐摩耗性の高い基板で挾んだ積層構造の磁
気ヘッドにおいて、基板のギャップ付近の部分もレーザ
ビームもしくは電子ビームによってギャップ深さ方向に
加工し、切欠きを設ける事によシ、ギャップ近傍のチッ
プ巾を小さくすることを特徴とする。
In a magnetic head with a laminated structure in which a magnetic core is sandwiched between highly wear-resistant substrates, the portion of the substrate near the gap is also processed in the direction of the gap depth using a laser beam or an electron beam to provide a notch. Another feature is that the chip width near the gap is reduced.

レーザビームもしくは電子ビームを用いることばよシ、
微結な切欠き加工を容易に行うことができ、磁性合金層
を損うこともない。
Words using laser beams or electron beams,
Fine notches can be easily processed without damaging the magnetic alloy layer.

実施例の説明 以下、図面を用いて本発明の実施例を詳細に説明する。Description of examples Embodiments of the present invention will be described in detail below with reference to the drawings.

第4図は完成したアモルファスヘッドのテープ摺動部の
図面であり2X0.14 allの寸法である、10は
市販の光感光性ガラスからなる基板である。11は非晶
質合金であり、Co−Nb−Zr系のいわゆるメタル−
メタル系の材料をスパッターにより基板10上に形成し
て構成した。12はギャップを示す。
FIG. 4 is a drawing of the tape sliding part of the completed amorphous head, which has dimensions of 2×0.14 all, and 10 is a substrate made of commercially available photosensitive glass. 11 is an amorphous alloy, which is a so-called metal of Co-Nb-Zr system.
A metal material was formed on the substrate 10 by sputtering. 12 indicates a gap.

このように構成された磁気ヘッドのギヤング12の近傍
の基板10をYAGレーザビームをギャップ深さ方向に
照射して加工することにより第4図に(イ)で示した形
状に切欠きを形成した。この時の切欠き形状の三角形の
頂点、すなわち非晶質合金11に対する最近接距離を検
討した所10μm迄は、磁気ヘッドの特性を全く損う事
なく加工出来る事が分かった。以降に記載の加工も最近
接距離を10μmとして加工した。上記と同様に口、ノ
1の形状の切欠きをそれぞれ加工したヘッドもそれぞれ
作成した。
A notch was formed in the shape shown in FIG. 4 (a) by processing the substrate 10 in the vicinity of the gigantic head 12 of the magnetic head constructed in this manner by irradiating the YAG laser beam in the direction of the gap depth. . Examining the apex of the triangle of the notch shape, that is, the closest distance to the amorphous alloy 11, it was found that the distance up to 10 μm could be processed without any loss in the characteristics of the magnetic head. The processing described below was also performed with the closest distance being 10 μm. In the same way as above, heads with mouth and no-1 shaped notches were also created.

なおこの時の照射レーザビーム径は約10μmであシ、
加工はほぼ垂直方向性行われた。加工深さは、実用性を
考慮すればギャップ深さ程度あれば良い・また、Co 
−Nb−Zr系非晶質合金の結晶化温度は、580″C
であった。
Note that the diameter of the irradiated laser beam at this time was approximately 10 μm.
Machining was performed almost vertically. Considering practicality, the machining depth should be about the gap depth.
-The crystallization temperature of the Nb-Zr amorphous alloy is 580″C
Met.

この様にして加工した種々のへラドテープ走行時間に対
するヘッド出力の変化およびヘッド摩耗量を各々第5,
6図に示す。図中(イ)、(ロ)、?−iは第4図の切
シ欠き形状(イ)、(ロ)、(ハ)に対応してお9、図
中に)は従来の切欠きなしのヘッドを参考として示した
。図より明らかな様にヘッド出力に関しては(イ)。
Changes in head output and amount of head wear with respect to the running time of various tapes processed in this way were measured in the fifth and
It is shown in Figure 6. In the diagram (a), (b), ? -i corresponds to the notch shapes (A), (B), and (C) in FIG. 4, and 9) in the figure shows a conventional head without a notch for reference. As is clear from the figure, regarding the head output (A).

(ロ)、(ハ)と切シ欠き部分の面積を広げるほど、ヘ
ッド出力が安定して得られる事が分かった。
(B) and (C) It was found that the wider the area of the notch, the more stable the head output could be obtained.

(ロ)、(ハ)については初期値自身が切シ欠きなしの
に)にくらべて向上しているが、これはヘッド前面を研
磨して仕上げる時に、既に非晶質合金と基板ガラス間に
偏摩耗が発生している事を意味している。
Regarding (b) and (c), the initial values themselves are improved compared to (without notches), but this is due to the fact that when the front surface of the head is polished and finished, there is already a gap between the amorphous alloy and the substrate glass. This means that uneven wear has occurred.

またヘッド摩耗については第6図より明らかな様に、(
イ)、(ロ)の形状では従来とはソ同じで全く問題なく
、(ハ)の形状では従来ヘッドにくらべてヘッド摩耗か
や\多い。以上の結果より(ロ)の形状がヘッド出力、
摩耗とも良好な結果をもたらすことがわかる。
As for head wear, as is clear from Figure 6, (
Shapes A) and (B) are the same as conventional heads, so there is no problem at all, and shape (C) has slightly more head wear than the conventional head. From the above results, the shape (b) has a head output,
It can be seen that good results are obtained with respect to wear.

以上本実施例中切欠き形状として三角形1円弧の形状に
ついて述べたが、四角形、正方形、半円形台形などであ
っても一向に支障はないものであるが、切欠き部分への
テープカスの付着などを考慮すれば、実施例中に述べた
(0)、(ハ)のような形状が望ましい。
The shape of the notch in this embodiment has been described above as a triangular one-arc shape, but there is no problem with rectangular, square, semicircular trapezoid, etc., but tape residue may adhere to the notch. Taking this into consideration, the shapes (0) and (c) described in the embodiment are desirable.

また非晶質合金はF e−Co −3i−B系に代表き
れるいわゆるメタル−メタロイド系の非晶質合金でも良
く、製造法もスパリターでなく、通常のロール法による
超急冷薄帯でも良い、たソしビーム照射による熱による
影響を考慮すれば、結晶化温度の高い材料が好ましい。
Further, the amorphous alloy may be a so-called metal-metalloid amorphous alloy represented by the Fe-Co-3i-B system, and the manufacturing method may not be a sparter, but an ultra-quenched ribbon using a normal roll method. Considering the influence of heat caused by the irradiation of the irradiation beam, it is preferable to use a material with a high crystallization temperature.

   ′ 基板材料についてはレーザ、電子ビームによる加工が可
能な材料であれば良く、非磁性フエライト、S s 0
2を主成分とするガラス材料などいずれも使用可能であ
る。
' The substrate material may be any material that can be processed by laser or electron beam, such as non-magnetic ferrite, S s 0
Any glass material containing 2 as a main component can be used.

本実施例はYAGレーザについて述べたが、炭eガスレ
ーザ、ルビーレーザ、ガラスレーザなどでも可能である
が、ビームの絞り込みの点でや\難点があシ現在の所Y
AGレーザが最良である。
Although this embodiment describes a YAG laser, it is also possible to use a carbon e gas laser, a ruby laser, a glass laser, etc., but there are difficulties in narrowing down the beam.
AG laser is the best.

また電子ビーム照射による加工も可能であるが、真空中
で加工しなければいけないので、作業性という点では劣
る。
Processing by electron beam irradiation is also possible, but it is inferior in terms of workability because the process must be performed in a vacuum.

発明の効果 本発明は、積層構造を有する非晶質合金磁気ヘッドの、
ヘッドギャップ近傍の基板を、レーザビームもしくは電
子ビーム等によって、部分的に切欠きギャップ近傍のみ
ヘッドテップ巾を小さくした構造とすることにより、ヘ
ッドとテープのタッチが良好で、ヘッド出力の安定した
、寿命の長い実用的な磁気ヘッドを提供することができ
る。
Effects of the Invention The present invention provides an amorphous alloy magnetic head having a laminated structure.
The substrate near the head gap is partially cut out using laser beams or electron beams, etc., and the head step width is reduced only near the gap, resulting in good contact between the head and tape and stable head output. A practical magnetic head with a long life can be provided.

ヘッドの製造工程を説明するだめの斜視図、第3図a、
b及びCは従来の非晶質合金ヘッドの先端部を示す、各
々、正面図、平面図及び側面図、第4図a、bは各々、
本発明の一実施例における非晶質合金ヘッドの平面図及
び正面図、第5図は本発明のヘッドと従来ヘッドのテー
プ走行時間に対するヘッド相対出力を示すグラフ、第6
図は同様に、テープ走行時間に対するヘッド摩耗を示す
グラフである。
A perspective view illustrating the manufacturing process of the head, FIG. 3a,
b and C show the front end of a conventional amorphous alloy head, respectively, a front view, a top view, and a side view; FIGS.
FIG. 5 is a plan view and a front view of an amorphous alloy head according to an embodiment of the present invention. FIG.
The figure is also a graph showing head wear versus tape running time.

1o・・・・・・基板、11・・・・・・非晶質合金、
12・・・・・・ギャップ、(イ)、←)、l/つ・・
・・・・切欠き部。
1o...Substrate, 11...Amorphous alloy,
12...gap, (a), ←), l/tsu...
...notch part.

代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 第3図 第4図
Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)磁気テープと接触するヘッドチップのテープ摺動
面近傍が磁性体からなるヘッドコアを耐摩耗性の良好な
基板で挾んだ積層構造を有する磁気ヘッドチップを構成
し、前記ヘッドチップのテープ摺動面を含む磁気ヘッド
ギャップ近傍の前記基板を、レーザビームもしくは電子
ビーム等によってギャップ深さ方向に加工して切欠きを
形成し、前記ヘッドチップの厚みを部分的に小さくする
事を特徴とする磁気ヘッドの製造方法。
(1) A magnetic head chip has a laminated structure in which a head core made of a magnetic material is sandwiched between substrates having good wear resistance in the vicinity of the tape sliding surface of the head chip that contacts the magnetic tape, and The substrate near the magnetic head gap, including the sliding surface, is processed in the gap depth direction using a laser beam, an electron beam, etc. to form a notch, thereby partially reducing the thickness of the head chip. A method of manufacturing a magnetic head.
(2)ヘッドチップの厚みを部分的に小さくする加工を
、ヘッドギャップ形成後に行うことを特徴とする特許請
求の範囲第1項記載の磁気ヘッドの製造方法。
(2) The method of manufacturing a magnetic head according to claim 1, wherein the process of partially reducing the thickness of the head chip is performed after the head gap is formed.
(3)ヘッドコアを構成する磁性体が非晶質軟磁性合金
であることを特徴とする特許請求の範囲第1項記載の磁
気ヘッドの製造方法。
(3) The method of manufacturing a magnetic head according to claim 1, wherein the magnetic material constituting the head core is an amorphous soft magnetic alloy.
JP17364184A 1984-08-21 1984-08-21 Manufacture of magnetic head Pending JPS6151609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17364184A JPS6151609A (en) 1984-08-21 1984-08-21 Manufacture of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17364184A JPS6151609A (en) 1984-08-21 1984-08-21 Manufacture of magnetic head

Publications (1)

Publication Number Publication Date
JPS6151609A true JPS6151609A (en) 1986-03-14

Family

ID=15964373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17364184A Pending JPS6151609A (en) 1984-08-21 1984-08-21 Manufacture of magnetic head

Country Status (1)

Country Link
JP (1) JPS6151609A (en)

Similar Documents

Publication Publication Date Title
JPH0719347B2 (en) Manufacturing method of core slider for fixed magnetic disk drive
JPH0785289B2 (en) Method of manufacturing magnetic head
JPH0345446B2 (en)
JPS6151609A (en) Manufacture of magnetic head
JP2567725B2 (en) Floating magnetic head manufacturing method
JPH07220218A (en) Magnetic head and its production and magnetic recording and reproducing device
JPS62200508A (en) Magnetic head
JPH0690776B2 (en) Magnetic head
JPS5870416A (en) Manufacture of magnetic head
JPH0244324Y2 (en)
JP3104185B2 (en) Magnetic head
JPS61280009A (en) Magnetic head
JPH0648527B2 (en) Magnetic head manufacturing method
JPH0770018B2 (en) Magnetic erase head
JPH0156445B2 (en)
JPH01208711A (en) Manufacture of magnetic head
JPH0561681B2 (en)
JPH0572005B2 (en)
JPH0822602A (en) Magnetic head and its production
JPH0770023B2 (en) Magnetic head
JPH10222811A (en) Magnetic head and its production
JPH01138603A (en) Magnetic head
JPH06187609A (en) Magnetic head and its production
JPS61250806A (en) Magnetic head and its manufacture
JPH02130706A (en) Magnetic head