JPS6151000A - Method for purifying human interferon beta - Google Patents

Method for purifying human interferon beta

Info

Publication number
JPS6151000A
JPS6151000A JP59170355A JP17035584A JPS6151000A JP S6151000 A JPS6151000 A JP S6151000A JP 59170355 A JP59170355 A JP 59170355A JP 17035584 A JP17035584 A JP 17035584A JP S6151000 A JPS6151000 A JP S6151000A
Authority
JP
Japan
Prior art keywords
ifn
antibody
adsorbed
human interferon
interferon beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59170355A
Other languages
Japanese (ja)
Inventor
Jun Uchiumi
潤 内海
Shiyoujirou Yamazaki
山崎 晶次郎
Hirohiko Shimizu
洋彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP59170355A priority Critical patent/JPS6151000A/en
Publication of JPS6151000A publication Critical patent/JPS6151000A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/565IFN-beta

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain industrially and advantageously the titled compound having antitumor activity, etc., by bringing a solution of human interferon beta into contact with a specific support for insolubilizing a specific antibody, eluting adsorbed substance, bringing the resultant eluate into contact with hydrophobic group-bonded high-speed chromatographic support, and eluting the adsorbed substance. CONSTITUTION:A solution of human interferon beta is brought into contact with a support containing insolubilized antihuman interferon beta antibody and adsorbed. The resultant adsorbed substance is then eluted with an eluent to give an eluate, which is then passed through a column filled with a hydrophobic group-bonded high-speed chromatographic support, brought into contact with the support and adsorbed thereon. The human interferon beta adsorbed on the high-speed liquid chromatographic support is then eluted with an eluent. The eluent for the substance adsorbed on the support insolubilizing the antihuman interferon beta antibody to be used is preferably acidic buffer solution having <=0.05 ionic strength and 1.5-3.0pH.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はヒト・インターフエ[1ンβ(以下、IFN−
βと略す)の精製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to human interferon [1β (hereinafter referred to as IFN-β)].
(abbreviated as β).

[従来の技術] IFN−βはヒト細胞がウィルスや合成核酸などに刺激
されることによって、細胞が産生ずる抗ウィルス活性や
抗S瘍活性をもつ糖タンパク質である。IFN−β、の
産生にはヒト培養細胞をポリI: zltすCなどのイ
ンターフェロンインデューサーで刺激して産生ずる方法
と、1FN−β遺伝子を大mB菌や酵母などの微生物や
動物細胞に組み込   □んで産生させる遺伝子組換え
による方法があり、現在どちらも開発が進んでいる。こ
のIFN−βを医薬品として利用するためには、細胞や
微生物によって産生された粗IFN−βを安全性が認め
   ゛・られた純度にまで精製純化しなければならな
い。
[Prior Art] IFN-β is a glycoprotein that is produced by human cells when stimulated by viruses, synthetic nucleic acids, etc. and has antiviral activity and anti-Scancer activity. IFN-β can be produced by stimulating cultured human cells with interferon inducers such as polyI:zltC, and by inserting the 1FN-β gene into microorganisms such as E. mB bacteria and yeast, or into animal cells. There is a genetically recombinant method for producing □ containing □, and both are currently under development. In order to use this IFN-β as a medicine, the crude IFN-β produced by cells and microorganisms must be purified to a purity that is recognized as safe.

したがって、IFN−βをいかに効率良く高純度   
−に精製分離するかがIFN−βを医薬品として間光す
る際の4℃貞めで重要な技術となる。特に遺伝子組換え
法ににす1qられたIFN−βを精製する場合には、微
生物由来タンパク質、551秤動物由来タンパク貿が7
1′i製対象液に多量に含まれているために、これらを
完全に取り除く必要があり、高度な精製法が要求される
Therefore, it is important to know how to efficiently produce IFN-β with high purity.
- Purification and separation at 4°C is an important technique when producing IFN-β as a pharmaceutical product. In particular, when purifying 1q of IFN-β using genetic recombination methods, microorganism-derived proteins, 551 weighed animal-derived proteins, and 7
Since they are contained in large amounts in the target liquid for 1'i production, it is necessary to completely remove them, which requires a sophisticated purification method.

IFN−一βを精製するためには各種のクロマトグラフ
ィーが開発され、特にIFN−βに親和性のある物質を
結合した担体を用いる、いわゆるアフィニティークロマ
トグラフィーが良い成績を納めている。これらのアフィ
ニティークロマトグラフィーはIFN−βの糖鎖や構成
アミノ酸残基への親和性を利用しており、二段あるいは
三段のクロマトグラフィーの組み合せによってIFN−
βの緒装が行われているが1.収率や純度の点でまだ改
良すべき余地が残っている。
Various chromatography methods have been developed to purify IFN-β, and particularly so-called affinity chromatography, which uses a carrier bound to a substance with affinity for IFN-β, has achieved good results. These affinity chromatographies utilize the affinity of IFN-β to sugar chains and constituent amino acid residues, and are able to detect IFN-β by combining two- or three-stage chromatography.
Although the beta outfit is being carried out, 1. There is still room for improvement in terms of yield and purity.

アフィニティークロマ1−グラフィーの中で最も特異性
が高いものは抗rFN−β抗体をリガンドどして用いる
抗体クロマトグラフィーであり、その試みもいくつか報
告されている( Okan+uraら、Biochcm
istry 、 1C,し、3831  (1980)
  、1−10Chkcpl)e I  ら、Natu
re  、  2 g1  、 500  (1981
)  、  Novick  ら 、 J  、 gc
n、V  1ro1.  、 6 4  。
The most specific type of affinity chromatography is antibody chromatography using an anti-rFN-β antibody as a ligand, and several attempts have been reported (Okan+ura et al., Biochcm
istry, 1C, 3831 (1980)
, 1-10Chkcpl) e I et al., Natu
re, 2 g1, 500 (1981
), Novick et al., J., g.c.
n, V 1ro1. , 6 4.

90.9(1983))。しかし、特異性が極めで高い
にもかかわらず、抗体クロマトグラフィー一段ではまだ
完全純化は難しく、実用的には次に何らかの精製手段を
つなげる必要がある。
90.9 (1983)). However, despite its extremely high specificity, it is still difficult to completely purify it with a single step of antibody chromatography, and practically it is necessary to connect it with some other purification method.

[発明が解決しようとする問題点] IFN−βの精製において、抗体クロマトグラフィーは
特異性が極めて高いにもかかわらず、いくつかの問題点
を残している。
[Problems to be Solved by the Invention] Although antibody chromatography has extremely high specificity in the purification of IFN-β, several problems remain.

まず、高特異性ではあるがこの方法たりてはIFN−β
の完全純化は難しいことである。原理的には抗IFN−
β抗体はIFN−βだけを吸着するが、実際には抗IF
N−β抗体を不溶化した担体にはIFN−β以外の夾f
lEタンパク賀も微岱であるが吸着され、溶出液にそれ
が混入することがある。またリガンドである抗IFN−
β抗体がわずかながらも溶出液中に離脱してくる恐れが
ある。
First, although highly specific, this method does not allow IFN-β
Complete purification of is difficult. In principle, anti-IFN-
β antibody only adsorbs IFN-β, but actually anti-IF
The carrier in which the N-β antibody is insolubilized contains other than IFN-β.
A small amount of lE protein is also adsorbed and may be mixed into the eluate. In addition, the ligand anti-IFN-
There is a possibility that a small amount of β-antibody may be released into the eluate.

IFN−βの完全純化の1こめには、これらの夾雑物を
除去しな番プればならず、抗体クロマトグラフィーの次
に何らかの精製手段をつなげる必要がある。
In order to completely purify IFN-β, it is necessary to remove these impurities, and it is necessary to connect some purification means after antibody chromatography.

次に、抗体クロマトグラフィーで用いられる■FN−β
の溶出条件は、多くはpH2,0〜3.0の酸性緩tI
Ii液であり、どきには高温度のカオトロピック塩や界
面活性剤を含む中性や一アルカリ性緩衝液である。これ
らの溶液系は、通常のイオン結合、水系結合を利用した
りOマドグラフィーではIFN−βの吸着を妨害してし
まう場合があり、他種のクロマ1−系につなげる場合に
は、l)H:!4整、希釈、透析、脱塩などの操作を必
要とず番場合が多い。このJ、うな操作はIFN−βの
。−うな生理活性タンパク質には活性の損゛失やタンパ
ク質の沈澱などの悪影響を及ぼすことがあり、かつ大患
処理の場合には技術的困り「さも伴うためてき′る′限
り避けることが好ましい。
Next, ■FN-β used in antibody chromatography
The elution conditions are mostly acidic mild tI with pH 2.0 to 3.0.
It is a neutral or monoalkaline buffer solution containing high-temperature chaotropic salts and surfactants. These solution systems may interfere with the adsorption of IFN-β when using normal ionic bonds, aqueous bonds, or O-madography, so when connecting to other types of chroma 1-systems, H:! In many cases, operations such as preparation, dilution, dialysis, and desalting are not required. This operation is for IFN-β. Physiologically active proteins such as - may have adverse effects such as loss of activity and protein precipitation, and in the case of treatment of major diseases, it is preferable to avoid them as much as possible due to technical difficulties.

本発明は上記の抗体クロマ1−″グラフィーの問題点を
解決し、IFN−βの精製法において抗体りOマドグラ
フィーの高特異性をlidうこと゛なく、IFN−βを
高純度かつ高収率で精製することを目的とする。
The present invention solves the above-mentioned problems of antibody chromatography, and produces IFN-β with high purity and high yield without limiting the high specificity of antibody chromatography in the IFN-β purification method. The purpose is to refine it.

[問題点を解決するための手段] 本発明は、IFN−β溶液を抗IFN−β抗体を不溶化
した担体に接触させる工程、該担体への吸着物を溶出剤
にて溶出させる工程、溶出物を疎水基を結合させた高速
液体クロマトグラフィー担体に接触させる工程、おにび
該高速液体クロマトグラフィー担体に吸着したIFN−
βを溶出剤にて溶出させる工程からなるIFN−βの精
製法である。
[Means for Solving the Problems] The present invention comprises a step of bringing an IFN-β solution into contact with a carrier in which an anti-IFN-β antibody has been insolubilized, a step of eluting the adsorbed substance to the carrier with an eluent, and a step of eluting the eluted material with an eluent. a step of contacting a high performance liquid chromatography carrier to which a hydrophobic group is bonded;
This is a method for purifying IFN-β, which consists of a step of eluting β with an eluent.

ここで言うIFN−βとは、ヒト培養細胞をウィルスや
合成核酸などで刺激させることにより産  □土される
IFN−β、および遺伝子組換え技術を用いてIFN−
β栴造遺伝子を組み込んだ大賜菌、酵母などの微生物や
、ハムスター、ラナルなどの動物細胞により産生される
IFN−βを指す。、精製初段のリガンドに用いられる
抗IFN−β抗体は、IFN−βを結合し得る抗体であ
れば特に限定されないが、常法により動物に免疫して1
り   □られる抗体あるいは細胞融合技術によるモノ
クローナル抗体を指す1.これらの抗体の不溶化には、
セルロース、77ガロース、架橋ゲキストラン、ポリア
クリルアミド、多孔性ガラスなどの担体が用いられ、不
溶化反応はいずれもペプチド中のアミノ基あるいはカル
ボキシル基と尋人された活装置j条8(との結合により
行われる。主な活性化置換基として、シアン化ブロム活
性基(たとえば、°“CN B l’ 21!i化ヒフ
アロース4B”:ファルマシア社)、N−ヒドロキシス
クシンイミドヱステル基(たとえば゛活性化Cl−1−
セファロース4B”:)iシルマシア社、゛°アフ、C
ゲルー10”;バイオラッド礼)、ヒドラジドKM ”
J体(たとえば゛オイパーキットC11,ローム・)?
−マ社)、アンビドリド!!(たとえば゛オイパーギッ
トA″;ローム・ファーム社)などが挙げられる。
IFN-β referred to here refers to IFN-β produced by stimulating cultured human cells with viruses or synthetic nucleic acids, and IFN-β produced using genetic recombination technology.
It refers to IFN-β produced by microorganisms such as Bacterium spp. and yeast, or animal cells such as hamsters and ranals, which have incorporated the β-seizogenic gene. The anti-IFN-β antibody used as the ligand in the first stage of purification is not particularly limited as long as it is an antibody capable of binding IFN-β.
Refers to monoclonal antibodies produced by □ cell fusion technology or monoclonal antibodies produced by cell fusion technology.1. Insolubilization of these antibodies requires
Carriers such as cellulose, 77-galose, cross-linked gextran, polyacrylamide, porous glass, etc. are used, and the insolubilization reaction is carried out by bonding the amino group or carboxyl group in the peptide with the active device (Article 8). The main activated substituents include a cyanide bromine active group (e.g., °“CN B l' 21! i-based hyphalose 4B”: Pharmacia), an N-hydroxysuccinimide ester group (e.g., “activated Cl- 1-
Sepharose 4B”:) iSylmacia, ゛°af, C
Gelu 10"; courtesy of BioRad), Hydrazide KM"
J body (for example, Euperkit C11, Rohm)?
- Masha), Ambidrid! ! (For example, "Eupergit A"; Rohm Farm Co., Ltd.).

抗IFN−β抗体を不溶化した担体(以下、抗[FN−
β抗体不溶化担体と略す)を用いた抗体クロマトグラフ
ィーの実際の操作は次のように行う。すなわら、まずヒ
ト■胞培養上清、遺伝子組換え大腸菌破砕遠心上清ある
いは迫伝子組換え動物細胞培養上清などの粗IFN−β
溶液を抗[FN−β抗体不溶化担体と接触吸着さヒる。
A carrier in which anti-IFN-β antibody is insolubilized (hereinafter referred to as anti-[FN-β antibody)
The actual operation of antibody chromatography using β antibody insolubilized carrier (abbreviated as β antibody insolubilized carrier) is performed as follows. That is, first, crude IFN-β such as human cell culture supernatant, genetically recombinant Escherichia coli disrupted centrifugation supernatant, or recombinant animal cell culture supernatant.
The solution is contacted with an anti-[FN-β antibody insolubilized carrier and adsorbed.

吸着法はバッチ法、カラム法どららでちり能であるが、
カラム法の方が吸着効率が高い。吸着条件はpH5〜9
、のぞましくはpH6〜8であり、1M程度の無機塩は
存在していても吸着に影響はない。
The adsorption method is a batch method or a column method, but it is dust-free.
Column method has higher adsorption efficiency. Adsorption conditions are pH 5-9
The pH is preferably 6 to 8, and the presence of about 1M inorganic salt does not affect adsorption.

吸着後、適当な中性緩衝液で十分に担体を洗って夾雑タ
ンパク質を除去した後、pl−12〜3の酸性緩衝液あ
るいはカオトロピック塩や界面活性剤を含む中性かアル
カリ性緩衝液で吸着したl FN−βを溶出させる。多
くの4g1合、酸性緩衝液が用いられ、その組成は、た
とえばO,1Mクエン酸、0.1〜0.2Mグリシン塩
酸などであり、適宜無改塩(たとえば0.5〜1M塩化
J塩化−リウム)や水溶性有機溶媒(たとえばグリセロ
ールやエチレングリコール)、界面活性剤(たとえば゛
°トリトンX−100”)などを加えることも鴇る。ど
のような組成の酸性緩衝液を選択づるかは、目的とする
[FN−βの溶出効果、その緩衝液中におけるIFN−
βの安定性、リガンドであ、る抗体への影響、そして次
につづ(クロマ]・系への適応性などを考flする必要
がある。これらの点を考慮すると、[FN−βの溶出に
はイオン強度が0.05以下で1)l−11,5〜3.
0の酸性m衝液が好ましく用いられる。このような酸性
!1衝液としては、たとえば塩酸、硫酸、ギ酸、クエン
酸などが挙げられる。これらの酸性緩衝液は、高疎水性
のIFN−βの溶出には効果的で収率は定量的であり、
安定性にも川れ、少なくとも4℃、1力月間同液中で活
性の損失は起こらなかった。また、水溶性有機溶媒や界
面活性剤を含まないためリガンドである抗体の変性作用
も少なく、かつイオン強度が低く!1衝作用が弱いため
、次につづくクロマト系への適応のために中和、透析、
脱塩などの操作が多くの場合不要となる。
After adsorption, the carrier was thoroughly washed with an appropriate neutral buffer to remove contaminant proteins, and then adsorbed with an acidic buffer of PL-12 to 3 or a neutral or alkaline buffer containing chaotropic salts or surfactants. l Elute FN-β. Many acidic buffers are used, and their compositions are, for example, O., 1M citric acid, 0.1-0.2M glycine hydrochloride, etc., and optionally unmodified salts (for example, 0.5-1M chloride, J chloride, etc.). It is also advisable to add a water-soluble organic solvent (e.g. glycerol or ethylene glycol), a surfactant (e.g. Triton X-100), etc. What composition of acidic buffer should be selected? , the desired elution effect of [FN-β, IFN-β in its buffer]
It is necessary to consider the stability of β, the effect on the antibody that is the ligand, and the adaptability to the next (chroma) system. Considering these points, [FN-β elution When the ionic strength is 0.05 or less, 1) l-11,5 to 3.
An acidic m solution of 0 is preferably used. Such acidity! Examples of the buffer include hydrochloric acid, sulfuric acid, formic acid, and citric acid. These acidic buffers are effective for elution of highly hydrophobic IFN-β, and the yield is quantitative;
The stability was also affected, with no loss of activity occurring in the same solution for at least 1 month at 4°C. In addition, since it does not contain water-soluble organic solvents or surfactants, it has little denaturing effect on the antibody, which is the ligand, and has low ionic strength! Due to its weak chromatographic effect, neutralization, dialysis, and
In many cases, operations such as desalting are unnecessary.

本発明者らは、上記の利点を活かしながら、かつわずか
に残っている夾雑タンパク質を効果的に取り除くことが
可能な二段目の精製ステップに導入1“べくクロマトグ
ラフィーを鋭意研究の結果、疎水基を結合させた高速液
体クロマ1〜グラフイーを用いたクロマトグラフィーが
これらの要求に適うことを見出した。
The present inventors have conducted extensive research into hydrophobic chromatography to incorporate it into the second purification step that can effectively remove the slightest remaining contaminant proteins while taking advantage of the above advantages. It has been found that chromatography using high performance liquid chroma 1 to Graphee with attached groups satisfies these requirements.

精製ステップ二段目に尋人されるべぎクロマ+’−系が
これらの条件を満たすためには、タンパク質の分離が高
く、かつ高収率であることが必要とされる。タンパク質
の精製には多くの場合用いられるイオン交換クロマトグ
ラフィー(たとえばスルホプロピル基ににるイオン交換
クロマトグラフィー)はIFN−βと夾雑タンパク71
の分^1【能が悲く、また収率も低く不適であった。ま
たI FN−βの精製法として報告されているアフイニ
テーr−クロマトグラフィーでも、フンカナバリンAを
リガンドしたクロマトグラフィーは糖鎖をもたない遺伝
子組換え型IFN−βには不適である。
In order for the Begichroma+'- system used in the second stage of the purification step to meet these conditions, it is necessary to have high protein separation and high yield. Ion-exchange chromatography (for example, ion-exchange chromatography based on sulfopropyl groups), which is often used for protein purification, can remove IFN-β and contaminant proteins71.
The performance was poor and the yield was low, making it unsuitable. Furthermore, even in Affinite r-chromatography, which has been reported as a purification method for IFN-β, chromatography using funcanavalin A as a ligand is not suitable for recombinant IFN-β, which does not have sugar chains.

本発明で適用したいわゆる高速液体クロマトグラフィー
(以下、HP L Cと略ず)はタンパク質やペプチド
の精製、分析に用いられている手法であり、ヒト培養細
胞で産生じたrFN−βに対しても5teinら(p 
roc 、 N aN 、 A (j+1+1 、SC
j 、。
The so-called high-performance liquid chromatography (hereinafter abbreviated as HPLC) applied in the present invention is a method used for the purification and analysis of proteins and peptides, and is a method used for the purification and analysis of proteins and peptides. Also5tein et al. (p
roc, N aN, A (j+1+1, SC
j.

USA、77.5’>716 (1980))が適用し
た例があるが、ブルークロマトグラフィーの後に適用し
r:おり、特異性の高い抗体クロマトグラフィーを用い
る本発明を予測させるものではない。
USA, 77.5'>716 (1980)), but it is applied after blue chromatography and does not predict the present invention, which uses highly specific antibody chromatography.

1−I P L Cは高圧下、高流速下で高性能なカラ
ム10体を用いて行う液体クロマトグラフィーで、担体
にはイオン交換基や疎水基を導入しである。本発明で用
いられるI−I P L C担体は疎水基が結合されて
いて1FN−β吸着口りを有すれば特に限定されないが
、好ましくはC6,01aなどのアルキル基、シアノプ
ロピル基、フェニル基などを導入した担体が挙げられる
。市販品では、μm5onda+)ack  018 
”、” μm Bondapack  CN ”、”μ
m3ondapack  Phenyl ” (J:/
%上、つA−ターズ社)、” Z orl)ax C8
”、” Z orl)ax Q N ”(以上、i′ユ
ポン社) 、” L i Chrosorb RP −
8” 、 ”l−i Chrosorb RP−18”
 (以上、メルク社)、”L月1isil C8”、”
IJnisil   C18°′ 、  ゛() 旧s
il   CN  ”  、  ”  Ll  n1s
il   p  Hu  、” (J n1sil C
P ” (以に、ガスクロ工業)などがある。
1-IPLC is a liquid chromatography that is performed under high pressure and high flow rate using 10 high-performance columns, and ion exchange groups and hydrophobic groups are introduced into the carrier. The I-I PLC carrier used in the present invention is not particularly limited as long as it has a hydrophobic group bonded to it and has a 1FN-β adsorption port, but preferably an alkyl group such as C6,01a, a cyanopropyl group, or a phenyl group. Examples include carriers into which groups or the like are introduced. Commercially available products are μm5onda+)ack 018
”,”μm Bondapack CN”,”μm
m3ondapack Phenyl” (J:/
% above, Zorl) ax C8
","Zorl)ax QN"(hereinafter referred to as i'Yupon Co., Ltd.),"Li Chrosorb RP-
8”, “li Chrosorb RP-18”
(Merck & Co., Ltd.), “L Month 1isil C8”,”
IJnisil C18°', ゛() old s
il CN ”, ” Ll n1s
il p Hu,” (Jn1sil C
P” (hereinafter referred to as Gascro Industries).

実際のl−I P L Clfi作は次のように行う。The actual l-IP L Clfi creation is performed as follows.

すなわち、抗体クロマトグラフ、C−で得られたWa 
製(FN−β溶液をそのまま疎水基をもっI−I P 
L Cカラムに流し入れる。つづいて緩褌i液を含む水
溶性有機溶媒で溶出を行う。用いる緩衝液としては、ト
リフルオロ酢酸、ギ酸−ビリジン、リン酸!1百液、酢
酸緩衝液、過塩素酸などがあり、溶出のための有機溶媒
としてはアセトニトリル、2−プロパツール、1−プロ
パツール、エタノール、メタノールなどがある。これら
の選択に際してはIFN−βの安定性、タンパク質の分
離能が良い溶媒系を選ぶべきであり、好ましくは0.1
%フルオロ酢酸−アセトニトリル系が用いられる。この
系は、pH2であってIFN−βの安定性が良く、また
分離能にも優れている。さらに紫外部吸収がないため、
280 nmや210nmにおける紫外部吸収でタンパ
ク質の溶出モニターが可能である。また、揮発性である
ために溶出された溶液をJJQ jW することなく濃
縮することが可能である。溶出はたとえば0→70%ア
ヒ1〜ニトリルの8度勾配(1%/1m1n)でjテう
が、タンパク質が十分に分離される条件であれば特に限
定されない。
That is, Wa obtained in antibody chromatography, C-
(FN-β solution with hydrophobic groups)
Pour into the LC column. Subsequently, elution is performed with a water-soluble organic solvent containing a mild solution. Buffers used include trifluoroacetic acid, formic acid-pyridine, and phosphoric acid! Examples of organic solvents for elution include acetonitrile, 2-propatol, 1-propatol, ethanol, and methanol. When selecting these, a solvent system with good stability of IFN-β and good protein separation ability should be selected, preferably 0.1
% fluoroacetic acid-acetonitrile system is used. This system has good stability of IFN-β at pH 2, and also has excellent separation ability. Furthermore, since there is no ultraviolet absorption,
Protein elution can be monitored by ultraviolet absorption at 280 nm or 210 nm. Moreover, since it is volatile, it is possible to concentrate the eluted solution without JJQ jW. Elution is carried out using, for example, an 8 degree gradient (1%/1ml) of 0→70% ahi-1 to nitrile, but there are no particular limitations as long as the conditions are sufficient to separate proteins.

[発明の効果I IFN−βは現在、抗l!fi瘍剤および抗ウィルス剤
としての期待からその臨床評価のために大量に供給され
ることが社会的にも22請されている。IFN−βの今
までの量的制約の原因は、細胞による産生山自体が少な
いこと、高収率、高精製度で行える精製法の開発が難し
がったことである。しかしながら、遺伝子操作技術によ
り、生産m的には大川に供給されることが可能となって
きた現在、高性能な精製法を開発することが大きな課題
であった。
[Effect of the invention I IFN-β is currently used as an anti-l! Due to its potential as an anti-inflammatory and antiviral agent, there is a social demand for large quantities of it to be supplied for clinical evaluation. The causes of the quantitative limitations of IFN-β to date are that the amount produced by cells itself is small and that it has been difficult to develop a purification method that can achieve high yield and high purity. However, now that genetic engineering technology has made it possible to supply Okawa in terms of production, developing a high-performance purification method has been a major challenge.

本発明方法で精製されたIFN−βは極めて高純度であ
り、夾雑タンパク質や免疫グロブリンの混入はbk割性
免疫測定払(RIA)や酵素免疫測定法(E fA)で
は認められなかった。すなわち、抗体りOマドグラフィ
ーで高度に精製し、さらにHPLCによりわずかに残存
している夾雑タンパク質を除去できることを見出した。
IFN-β purified by the method of the present invention has extremely high purity, and no contamination with contaminant proteins or immunoglobulins was observed by bk immunoassay (RIA) or enzyme immunoassay (E fA). That is, it has been found that it is possible to highly purify the product using antibody-based O mudography, and then remove the slight amount of remaining contaminant protein using HPLC.

しかもこのとき、抗[FN−β抗体不溶化担体から[F
N−βを低イオン強度の酸性mi液で溶出させることに
より、[FN−βを安定な条l!l−ぐ直接1−I P
 L Cに適用できることを見出した。本発明は、特異
性と分離能の高い二種類の7フイニテイークロマトグラ
フイーを何ら特殊操作を加えることなく直結し、簡便に
して高品位の精製IFN−βを得る方法である。
Moreover, at this time, the anti-[FN-β antibody insolubilized carrier was
By eluting N-β with an acidic solution of low ionic strength, [FN-β can be stabilized]. Log Direct 1-IP
It has been found that this method can be applied to LC. The present invention is a method for easily obtaining purified IFN-β of high quality by directly connecting two types of 7-infinity chromatography with high specificity and separation ability without any special operations.

これまで述べてぎたように、本発明はIF、N−βの精
1!j法において新技術を提供するものである。
As stated above, the present invention is the essence of IF, N-β! It provides new technology in the J method.

数あるアフィニティークロマトグラフィーのうち、抗体
クロマトグラフィーはその高い特異性のゆえに注目され
てはきたが、実用に際しては、粕vA度の不足、抗体の
リークのおそれ、低1)Hで高イオン強度溶出液の後処
理、などの問題が残っていた。
Among the many types of affinity chromatography, antibody chromatography has attracted attention due to its high specificity, but in practical use, there are problems such as insufficient lees vA, fear of antibody leakage, and high ionic strength elution with low 1)H. Problems such as post-treatment of the liquid remained.

本発明は抗体クロマトグラフィーとHPLCを組み合せ
、これらの問題を一挙に解決するものである。
The present invention combines antibody chromatography and HPLC to solve these problems all at once.

したがって、本発明による精製法では抗体クロマドグラ
フィーの高特異性が十分に活かされ、高精製度、高収率
でIFN−βの精製が可能であり、本発明方法により掲
られる精製IFN−β標品は高品位で安全性の高いしの
である。しかもクロマト操作も簡便で、再現性・し高く
大M処理にも適う精製法である。
Therefore, the purification method according to the present invention makes full use of the high specificity of antibody chromatography, and it is possible to purify IFN-β with a high degree of purification and high yield. The standard product is high quality and highly safe. Furthermore, the chromatographic operation is simple, the reproducibility is high, and the purification method is suitable for large M treatment.

以下、実施例を挙げて本発明をさらに具体的に説明プ゛
る。実施例中のIFN−β活性は、ヒ1−羊膜由米のF
L4[1胞と水胞性0炎ウィルス(VSV)を用いた@
胞変性効果(CPE)阻止法により測定し、標準IFN
−βにより国際単位(IU)にIIA算したものである
Hereinafter, the present invention will be explained in more detail with reference to Examples. The IFN-β activity in the examples was determined by human amniote F.
L4 [using 1 cell and vesicular inflammation virus (VSV) @
Measured by the Cytopathic Effect (CPE) inhibition method, using standard IFN
−β is calculated by IIA to international units (IU).

実施例1 1FN−β構造還伝子を組み込んだ大腸菌を十分培養増
殖させた後、高圧により菌体を破砕した。
Example 1 After sufficiently culturing and proliferating Escherichia coli into which the 1FN-β structural link gene had been incorporated, the bacterial cells were disrupted by high pressure.

さらに、ポリエヂレンイミンを加えて核酸を除去し/;
: 11.60%飽和硫安を加えてタンパク質を塩析し
、0.5M塩化ナトリウムを含むIOIIIMリンrA
緩衝! (1)87.4)で再懸濁したものを精製原液
とした。この菌体抽出液には5.0X108IU/++
zlのタンパク質が含まれていた。
Furthermore, polyethyleneimine is added to remove nucleic acids/;
: 11. Salt out the protein by adding 60% saturated ammonium sulfate and add IOIIIM phosphorA containing 0.5M sodium chloride.
Buffer! The resuspension in (1) 87.4) was used as the purified stock solution. This bacterial cell extract contains 5.0X108IU/++
It contained zl protein.

この菌体抽出液10mαを、IFN−βで感作したマウ
ス牌21111胞とマウスミ]ニローマ細胞との融合細
胞により産出された抗IFN−βのマウスモノクローナ
ル抗体(特願昭58−19337月)を不溶化させたア
ガロースカラム1mQ(10φX1311111)に4
℃、流速”lad/hrで流した。、素通り液には加え
たタンパク質最の99%が含まれていたが、IFN−β
活性は認められなかりICOつづいて抗体カラムを50
%エチレングリコールを含む1511M酢srim液(
1)l−14,0>20mmで洗浄した後、15mM塩
酸イオン強度0.015、EIH2,0) 10Ilα
でIFN−βを溶出した。■FN−β活性の回収率は9
5%、比活性は150倍上昇した。
10mα of this bacterial cell extract was mixed with an anti-IFN-β mouse monoclonal antibody (patent application, July 1982-1933) produced by a fusion cell of mouse tile 21111 cells sensitized with IFN-β and mouse milioma cells. Insolubilized agarose column 1mQ (10φX1311111)
℃, flow rate was ``lad/hr.'' The flow-through solution contained 99% of the added protein, but IFN-β
No activity was observed, so ICO was followed by 50% antibody column.
1511M vinegar slim solution containing % ethylene glycol (
1) After washing with l-14,0>20mm, 15mM hydrochloric acid ionic strength 0.015, EIH2,0) 10Ilα
IFN-β was eluted. ■ Recovery rate of FN-β activity is 9
5%, specific activity increased 150 times.

IFN−β活性を含む抗体カラムからの溶出液をざらに
8φx100mm”μm8ondapackC18”カ
ラム(ウォーターズ社)に室温下1mQ/mir+で流
した。つづいて0.1%トリフルオロ酢酸(p H2,
0)を含むアセトニトリルをO→70%(1%/m1n
)の濃度勾配で流し−1280ni+および21Onl
llの吸光度を観察しながら分画した。
The eluate from the antibody column containing IFN-β activity was roughly applied to an 8φ×100 mm “μm 8ondapack C18” column (Waters) at 1 mQ/mir+ at room temperature. Next, 0.1% trifluoroacetic acid (pH2,
0) containing acetonitrile from O → 70% (1%/m1n
) with a concentration gradient of -1280ni+ and 21Onl
Fractionation was carried out while observing the absorbance of 1 liter.

IFN−β活性のある両分を集めたところ、IFN−β
回収率は87%で、比活性はさらに4倍上昇した。この
結果、精製原液に対するIFN−βのl!liI収率は
83%で、比活性は約600倍上昇しlこ 。
When we collected both samples with IFN-β activity, we found that IFN-β
The recovery rate was 87% and the specific activity was further increased by 4 times. As a result, the l! of IFN-β relative to the purified stock solution! The yield of liI was 83%, and the specific activity was increased approximately 600 times.

この精製IFN−β試料は、ドデシル硫酸ナトリウム含
有ポリアクリルアミドゲル電気泳動では均一のタンパク
質バンドとして現れ、大腸菌由来夾雑タンパク質は放射
性免疫測定法(RfA)による分析で検出限界(含有率
0.001%)以下であった。また、リガンドであるマ
ウス免疫グロブリンも酵素免疫測定法(EIA)による
分析で検出されなかった。
This purified IFN-β sample appeared as a uniform protein band in sodium dodecyl sulfate-containing polyacrylamide gel electrophoresis, and contaminant proteins derived from E. coli were analyzed by radioimmunoassay (RfA) at the detection limit (content rate 0.001%). It was below. Furthermore, the ligand, mouse immunoglobulin, was not detected by enzyme-linked immunosorbent assay (EIA) analysis.

実施例2 IFN−β(I11造逍伝子を和み込んだハムスター細
胞を10%の胎児牛血清を含む°’alpha  (−
) ”(01800社)培養液で培養し、IFN−β活
性を含・む培養上滑を精製原液とした。この培養上滑に
は2.、2 xl 0 ’ I LJ/mlのIFN−
β活性と3.6mg/mlのタンパク質が含まれていた
Example 2 Hamster cells enriched with IFN-β (I11-producing gene) were incubated with α'alpha (-) containing 10% fetal bovine serum.
)" (Company 01800) culture medium, and the culture medium containing IFN-β activity was used as a purified stock solution. This culture medium contained 2.,2 x l 0 'I LJ/ml of IFN-β activity.
It contained β activity and 3.6 mg/ml protein.

この培養上滑1αを、実施例1で使用したマウスモノク
ローナル抗体を不溶化させたアガロースカラム1m1(
10φXb 0m1/hrで流した。素通り液には加えたタンパクI
R量の99%が含まれていたが、IFN−β活性は認め
られなかった。つづいて抗体カラムを50%エチレング
リコールを含む15mM酢酸緩WJ液(1)H4,0)
20mlt’洗浄シタ後洗浄シタ後塩酸(イオン強度0
.015、pH2,0) 10mlでtFN−βを溶出
した。IFN−β活性の回収率は98%、比活性は8.
300倍上界した。
This cultured slide 1α was applied to a 1 ml agarose column in which the mouse monoclonal antibody used in Example 1 was insolubilized (
It flowed at 10φXb 0m1/hr. Protein I added to the pass-through liquid
It contained 99% of the amount of R, but no IFN-β activity was observed. Next, apply the antibody column to a 15mM acetic acid mild WJ solution containing 50% ethylene glycol (1)H4,0)
20mlt' After washing, add hydrochloric acid (ionic strength 0)
.. 015, pH 2,0) tFN-β was eluted in 10 ml. The recovery rate of IFN-β activity was 98%, and the specific activity was 8.
The price has increased 300 times.

IFN−β活性を含む抗体カラムからの溶出液をさらに
8φx 100mm”μm8ondapackC18”
カラム(ウォーターズ社)に室温下、流速117′1n
で流した。つづいて0.1%トリフルオロ酢II (1
)82.0)を含むアセトニトリルをO→70%(1%
/1n)のm度勾配で流し、280nmおよび210n
mの吸光度を′#A察しながら分画した。
The eluate from the antibody column containing IFN-β activity was further divided into 8φ x 100mm “μm8ondapackC18”
A flow rate of 117'1n was applied to the column (Waters) at room temperature.
It was washed away. Next, 0.1% trifluoro vinegar II (1
) 82.0) containing acetonitrile from O → 70% (1%
/1n) with a m degree gradient of 280nm and 210n
Fractionation was carried out while observing the absorbance of m.

IFN−β活性のある両分を東めたところ、IFN−β
回収率は85%で、比活性はざらに6倍上がした。この
結果、精製原液に対するIFN−βの・回収率tよ81
%で、比活性は約50.000侶F ン7 し lこ 
When both parts with IFN-β activity were examined, IFN-β was detected.
The recovery rate was 85%, and the specific activity was roughly 6 times higher. As a result, the recovery rate of IFN-β relative to the purified stock solution was 81%.
%, and the specific activity is about 50,000 F.
.

このTt5i製IFN−β試料は、ドデシル硫酸ナトリ
ウム3右ポリアクリルアミドゲル電気泳動では均一のタ
ンパクf:1バンドとして現れ、マウス免疫グロブリン
は酵素免疫測定法(E IA)による分析で検出されな
かった。
This Tt5i IFN-β sample appeared as a uniform protein f:1 band in sodium dodecyl sulfate 3-right polyacrylamide gel electrophoresis, and no mouse immunoglobulin was detected in enzyme-linked immunosorbent assay (EIA) analysis.

比較例1 抗体カラムから溶出した実施例2の溶出液をさらに“ス
ルホプロピルセファデックスC25”(ファルマシア社
)2ml(10φX26+11111>に4°C1流速
2ml/11rで流した。つづいて5 mMリン酸、緩
衝液(1)l−l  7.4> 20m1で洗浄した後
、0.5〜1塩化ナトリウムを含む50mMリン酸緩衝
液(pl−1a、O)、40m1を流し、280 nm
の吸光度を観察しながら分画した。、IFN−β活性の
ある両分を集め1こところ、IFN−β回収率は20%
で、比活性はさらに1.6倍上芹した。この結果、精製
原液に対するIf−N−β回収率は19%で、比活性は
約13.000倍上昇した。
Comparative Example 1 The eluate of Example 2 eluted from the antibody column was further passed through 2 ml of "Sulfopropyl Sephadex C25" (Pharmacia) (10 φ After washing with buffer solution (1) l-l 7.4> 20ml, 40ml of 50mM phosphate buffer containing 0.5-1 sodium chloride (pl-1a, O) was flowed, and 280 nm
Fractionation was carried out while observing the absorbance of , both fractions with IFN-β activity were collected, and the IFN-β recovery rate was 20%.
The specific activity was further increased by 1.6 times. As a result, the If-N-β recovery rate with respect to the purified stock solution was 19%, and the specific activity was increased by about 13.000 times.

Claims (3)

【特許請求の範囲】[Claims] (1)ヒト・インターフェロンβ溶液を抗ヒト・インタ
ーフェロンβ抗体を不溶化した担体に接触させる工程、
該担体への吸着物を溶出剤にて溶出ざせる工程、溶出物
を疎水基を結合させた高速液体クロマトグラフィー担体
に接触させる工程、および該高速液体クロマトグラフィ
ー担体に吸着したヒト・インターフェロンβを溶出剤に
て溶出させる工程からなるヒト・インターフェロンβの
精製法。
(1) A step of bringing the human interferon β solution into contact with a carrier in which anti-human interferon β antibody has been insolubilized,
A step of eluting the adsorbed substance on the carrier with an eluent, a step of bringing the eluate into contact with a high performance liquid chromatography carrier to which a hydrophobic group is bonded, and a step of removing human interferon β adsorbed to the high performance liquid chromatography carrier. A method for purifying human interferon β, which comprises a step of elution with an eluent.
(2)ヒト・インターフェロンβが、遺伝子組換え技術
により作製されたヒト・インターフェロンβである特許
請求の範囲第(1)項記載の精製法。
(2) The purification method according to claim (1), wherein the human interferon β is human interferon β produced by genetic recombination technology.
(3)抗ヒト・インターフェロンβ抗体を不溶化した担
体への吸着物の溶出剤が、0.05以下のイオン強度で
かつpHが1.5〜3.0の酸性緩衝液である特許請求
の範囲第(1)項記載の精製法。
(3) Claims in which the eluent for the adsorbed substance on the carrier in which the anti-human interferon β antibody is insolubilized is an acidic buffer with an ionic strength of 0.05 or less and a pH of 1.5 to 3.0. The purification method described in paragraph (1).
JP59170355A 1984-08-17 1984-08-17 Method for purifying human interferon beta Pending JPS6151000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59170355A JPS6151000A (en) 1984-08-17 1984-08-17 Method for purifying human interferon beta

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59170355A JPS6151000A (en) 1984-08-17 1984-08-17 Method for purifying human interferon beta

Publications (1)

Publication Number Publication Date
JPS6151000A true JPS6151000A (en) 1986-03-13

Family

ID=15903393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59170355A Pending JPS6151000A (en) 1984-08-17 1984-08-17 Method for purifying human interferon beta

Country Status (1)

Country Link
JP (1) JPS6151000A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470954A (en) * 1987-03-31 1995-11-28 Baxter International Inc. Ultrapurification process for factor VIII

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5470954A (en) * 1987-03-31 1995-11-28 Baxter International Inc. Ultrapurification process for factor VIII

Similar Documents

Publication Publication Date Title
Vahlquist et al. Isolation of the human retinol binding protein by affinity chromatography
Duckworth et al. Purification of insulin-specific protease by affinity chromatography
US4289689A (en) Preparation of homogeneous human fibroblast interferon
JP3061200B2 (en) Process for the production of erythropoietin free of animal proteins
US6627737B1 (en) Factor IX purification methods
JPS62223197A (en) Purification of alpha-1-anti-protease
KR930003665B1 (en) Protein purification
SU1523046A3 (en) Method of purifying human beta-interferon
JPS63105694A (en) Purification of recombinant tumor necrosis factor
US5015730A (en) Preparation of homogeneous human fibroblast interferon
US5484887A (en) Homogeneous interleukin 1
JPH0794478B2 (en) Method for preparing pharmaceutical composition containing vitamin K-dependent protein and immunoadsorbent used therefor
Vician et al. Purification of human blood clotting factor X by blue dextran agarose affinity chromatography
JPS6151000A (en) Method for purifying human interferon beta
Bassett Large scale preparation of wheat germ agglutinin
Mizutani Adsorption chromatography of biopolymers on porous glass
JPS61242593A (en) Purification of human interferon-beta
JPS61129199A (en) Purification of human interferon beta
JPS6183200A (en) Purification of human interferon beta
AU685035B2 (en) A purification process of a human growth hormone
JPS61224996A (en) Method of purifying mouse interferon
KR100297927B1 (en) Method of Purifying Human Erythropoietin
KR890001128B1 (en) A process for purification of lympho blastoid interfenn-a
AU759379B2 (en) Novel factor IX purification methods
JP4154743B2 (en) Method for purifying interleukin-6 receptor