JPS6150951B2 - - Google Patents

Info

Publication number
JPS6150951B2
JPS6150951B2 JP56051506A JP5150681A JPS6150951B2 JP S6150951 B2 JPS6150951 B2 JP S6150951B2 JP 56051506 A JP56051506 A JP 56051506A JP 5150681 A JP5150681 A JP 5150681A JP S6150951 B2 JPS6150951 B2 JP S6150951B2
Authority
JP
Japan
Prior art keywords
benzyl
trimethylsilyl
tetra
chloroform
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56051506A
Other languages
Japanese (ja)
Other versions
JPS57165388A (en
Inventor
Toshitsugu Yoshimura
Hironobu Hashimoto
Shigeomi Horito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56051506A priority Critical patent/JPS57165388A/en
Publication of JPS57165388A publication Critical patent/JPS57165388A/en
Publication of JPS6150951B2 publication Critical patent/JPS6150951B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Saccharide Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規なグリコシリデンアセタール類の
製造方法に関する。 オルトソマイシン系抗生物質には、エバニノミ
シンB、C、D、フランバマイシン、クラマイシ
ン、アビラマイシンなどのオリゴ糖抗生物と、デ
ストライシンA、B、C、ヒグロマイシンB、抗
生物質A−396−I、SS−56Cなどのアミノ配糖
体抗生物質とがある。これらには共通して、アル
ドン酸のラクトンが他の単糖の2個の水酸基とア
セタール結合(スピロ環状オルトエステル結合)
した、全く新しい結合様式が含まれている。例と
して、以下にエバニノミシンDとデストマイシン
Aについて示す。なおオルトエステル炭素は
The present invention relates to a novel method for producing glycosidene acetals. Ortosomycin antibiotics include oligosaccharide antibiotics such as evaninomycin B, C, and D, flambamycin, clamycin, and avilamycin, and destricin A, B, and C, hygromycin B, and antibiotic A-396-. There are aminoglycoside antibiotics such as I and SS-56C. Common to these is that the lactone of the aldonic acid connects with two hydroxyl groups of other monosaccharides through an acetal bond (spirocyclic orthoester bond).
It includes a completely new binding style. As examples, Evaninomicin D and Destomycin A are shown below. In addition, orthoester carbon is

【式】で囲んで示した。 (1) エバニノミシンD (2) デストマイシンA このグリコシリデンアセタールの合成法として
は、アルドン酸のラクトンとエポキシドとの付加
反応による合成法と、ラクトンとジオール類を硫
酸触媒の存在下に脱水縮合させる方法が知られて
いるが、これらの反応では簡単なジオールでは目
的物が得られるものの、アルドン酸ラクトンと他
の単糖の2級水酸基が関与するアセタールの形成
には良い結果が得られなかつた。 本発明は、アルドン酸ラクトンとジオール類の
トリメチルシリルエーテルとをトリフルオロメタ
ンスルホン酸のトリメチルシリルエステル(トリ
メチルシリルトリフレート)を触媒として縮合さ
せグリコシリデンアセタールを合成するものであ
る。本発明の方法によれば、ジクロロメタンのよ
うな不活性溶媒中で室温で反応し、従来よりも好
収率で目的物が得られるだけでなく、上記の方法
では得られなかつた、単糖の2個の水酸基が関与
するアセタールも好収率で得られる。これは、下
記の反応式で示されるように、トリメチルシリル
基がトリメチルシリルトリフレート
((CH33SiOSO2CF3)触媒によりシロキサン誘導
体((CH33Si−O−Si(CH33)となつて系外に
出るためすみやかに反応が進行するためであり、
本方法は種々の五員環および六員環状アルドン酸
ラクトンに適用できる。 (式中、TMSはトリメチルシリル基を示し、
TMS+O-Tfはトリメチルシリルフレートを示
す。また、ジオールのRは互いに結合して環を形
成してもよい。) 実施例 1 2・3・4・6−テトラ−O−ベンジル−D−
グルコン酸−1・5−ラクトン (以降、式中のBnはベンジル基を示す。) 561mg(104mmol)とジ−O−トリメチルシリル
エタンジオール208mg(3.35mmol)をジクロロメ
タン3mlに溶かした溶液に、窒素気流下、−10℃
で、トリメチルシリルトリフレート
(TMSOTf)22mg(0.1mmol)を触媒として加
え、室温で2時間撹拌した。 反応溶液に乾燥ピリジン0.2mlを加えて中和
し、ジクロロメタン30mlで稀釈した後、有機層を
飽和炭酸水素ナトリウムおよび水で洗浄し、乾燥
後濃縮すると、1・2−O−(2・3・4・6−
テトラ−O−ベンジル−D−グルコピラノシリデ
ン)エタンジオール が91.2%(553.7mg)の収率で得られた。 (1) 融点:51〜52℃ (2) 〔α〕D:+51゜(c1.0、クロロホルム) (3) 元素分析: 実測値 計算値(C36H38O7として) C 73.59% 74.20% H 6.52% 6.57% (4) オルトエステル炭素の13C−NMR(ppm)シ
フト:119.63 実施例 2 2・3・4・6−テトラ−O−ベンジル−D−
グルコン酸−1・5−ラクトン517.8mg(0.96m
mol)とシクロヘキサン−1・2−シス−ジオー
ル388mg(3.34mmol)のジ−O−トリメチルシリ
ル誘導体とのジクロロメタン(3ml)溶液に、窒
素気流下で、触媒(TMSOTf)120mgを加え、室
温で72時間撹拌した。 実施例1と同様に後処理し、生成物をフラツシ
ユカラム(ヘキサン−エ−テル5:2)にかけて
分離し、1・2−O−(2・3・4.6−テトラ−O
−ベンジル−D−グルコシリデン)シクロヘキサ
ン−1・2−シス−ジオ−ルの2種の異性体a
(194mg、30.5%)およびb(378mg、59.5%) を得た。 (イ) 異性体a (1) 融点:58〜60℃ (2) 〔α〕D:+45゜(c0.9、クロロホルム) (3) 13C−NHR:119.6ppm (4) 元素分析: 実測値 計算値(C40H44O7として) C 75.72% 75.45% H 7.03% 6.96% (ロ) 異性体b (1) 融点:98〜100℃ (2) 〔α〕D:+55゜(c1.1、クロロホルム) (3) 13C−NMR:118.5ppm (4) 元素分析: 実測値 計算値(C40H44O7として) C 75.80% 75.45% H 7.12% 6.96% 実施例 3 2・3・4・6−テトラ−O−ベンジル−D−
グルコン酸−1・5−ラクトン1.85g(1.85m
mol)とシクロヘキサン−1・2−トランスジオ
ール358mg(3.08mmol)のジ−O−トリメチルシ
リル誘導体のジクロロメタン(3ml)溶液に
TMSOTf80mgを加え、窒素気流下、室温で26時
間撹拌した。 実施例1と同様に後処理して、1・2−O−
(2・3・4・6−テトラ−O−ベンジル−D−
グルコシリデン)シクロヘキサン−1・2−トラ
ンス−ジオールの2種の誘導体aおよびb を、30.6%(308mg)および33.3%(335.4mg)の
収率で得た。 (イ) 異性体a (1) 融点:91〜93℃ (2) 〔α〕D:+65゜(c0.8、クロロホルム) (3) 13C−NMR:119.1ppm (4) 元素分析: 実測値 計算値(C40H44O7として) C 75.43% 75.45% H 7.02% 6.96% (ロ) 異性体b (1) シロツプ (2) 〔α〕D:+7.9゜(c0.5、クロロホルム) (3) 13C−NMR:119.2ppm (4) 元素分析: 実測値 計算値(C40H44O7として) C 75.00% 75.45% H 7.11% 6.96% 実施例 4 2・3・4・6−テトラ−O−ベンジル−D−
グルコン酸−1・5−ラクトン667.5mg(1.24m
mol)と の2・3−ジ−O−トリメチルシリルエーテル
570.7mg(1.10mmol)とを同様に反応させメチル
−4・6−ジ−O−ベンジル−2・3−O−
(2・3・4・6−テトラ−O−ベンジル−D−
グルコピラノシリデン)−α−D−マンノピラノ
シド の2種の異性体を、それぞれ44.8%(441mg)お
よび26.6%(262mg)の収率で得た。 (イ) 異性体a (1) 融点:61〜62℃ (2) 〔α〕D:+28.1゜(c0.6、クロロホルム) (3) 13C−NMR:119.0ppm (4) 元素分析: 実測値 計算値(C55H58O11として) C 74.01% 73.80% H 6.57% 6.53% (ロ) 異性体b (1) シロツプ (2) 〔α〕D:+10.3゜(c0.2、クロロホルム) (3) 13C−NMR:120.4ppm (4) 元素分析: 実測値 計算値(C55H58O11として) C 73.92% 73.80% H 6.51% 6.53% 実施例 5 δ−バレロラクトン1g(10.0mmol)と の2・3−ジ−O−トリメチルシリルエーテル
1.07g(2.06mmol)のジクロロメタン(2ml)
溶液に、窒素気流下、−10〜−20℃でTMSOTf20
mgを加え、室温で5時間反応させた後、実施例1
と同様に後処理し、ついで生成物をフラツシユカ
ラム(ヘキサン−エーテル5:2)で分離精製し
て主生成物のみを40.2%の収率で得た。もう1つ
の異性体は微量で、オルトエステル炭素
119.0ppmの存在が13C−NMRで検知できるだけ
であつた。 メチル−4・6−ジ−O−ベンジル−2・3−
O−(テトラヒドロピラン−2−イリデン)−α−
D−マンノピラノシド (1) 融点:40〜41.5℃ (2) 〔α〕D:+44゜(c0.35、クロロホルム) (3) 13C−NMR:118.5ppm (4) 元素分析: 実測値 計算値(C26H32O7として) C 68.19% 68.40% H 7.12% 7.07%
It is shown enclosed in [Formula]. (1) Evani Minicin D (2) Destomycin A Known methods for synthesizing this glycosylidene acetal include the addition reaction of aldonic acids with lactones and epoxides, and the dehydration condensation of lactones and diols in the presence of a sulfuric acid catalyst. Although the desired product could be obtained using a simple diol in the reaction, good results were not obtained in the formation of an acetal involving aldonic acid lactones and secondary hydroxyl groups of other monosaccharides. The present invention synthesizes a glycosylidene acetal by condensing an aldonic acid lactone and a trimethylsilyl ether of a diol using trimethylsilyl ester of trifluoromethanesulfonic acid (trimethylsilyl triflate) as a catalyst. According to the method of the present invention, the reaction is carried out at room temperature in an inert solvent such as dichloromethane, and not only can the desired product be obtained in a better yield than conventional methods, but also monosaccharides, which could not be obtained by the above methods, can be obtained. Acetals involving two hydroxyl groups are also obtained in good yields. As shown in the reaction formula below, the trimethylsilyl group is converted into a siloxane derivative (( CH3 ) 3Si - O-Si(CH3) 3 ) using a trimethylsilyl triflate (( CH3 ) 3SiOSO2CF3 ) catalyst . ), which causes the reaction to proceed quickly as it exits the system.
This method is applicable to a variety of five- and six-membered cyclic aldonic acid lactones. (In the formula, TMS represents a trimethylsilyl group,
TMS + O - Tf indicates trimethylsilylflate. Further, R of the diol may be bonded to each other to form a ring. ) Example 1 2,3,4,6-tetra-O-benzyl-D-
Gluconic acid-1,5-lactone (Hereinafter, Bn in the formula represents a benzyl group.) A solution of 561 mg (104 mmol) and 208 mg (3.35 mmol) of di-O-trimethylsilylethanediol dissolved in 3 ml of dichloromethane was added at -10°C under a nitrogen stream.
Then, 22 mg (0.1 mmol) of trimethylsilyl triflate (TMSOTf) was added as a catalyst, and the mixture was stirred at room temperature for 2 hours. The reaction solution was neutralized by adding 0.2 ml of dry pyridine and diluted with 30 ml of dichloromethane. The organic layer was washed with saturated sodium bicarbonate and water, dried and concentrated to give 1,2-O-(2,3, 4.6-
Tetra-O-benzyl-D-glucopyranosilidene) ethanediol was obtained with a yield of 91.2% (553.7 mg). (1) Melting point: 51-52℃ (2) [α] D : +51゜ (c1.0, chloroform) (3) Elemental analysis: Actual value Calculated value (as C 36 H 38 O 7 ) C 73.59% 74.20% H 6.52% 6.57% (4) 13 C-NMR (ppm) shift of orthoester carbon: 119.63 Example 2 2,3,4,6-tetra-O-benzyl-D-
Gluconic acid-1,5-lactone 517.8mg (0.96m
mol) and cyclohexane-1,2-cis-diol (388 mg (3.34 mmol)) of a di-O-trimethylsilyl derivative in dichloromethane (3 ml) under a nitrogen atmosphere, 120 mg of catalyst (TMSOTf) was added, and the mixture was heated at room temperature for 72 hours. Stirred. Work-up was carried out in the same manner as in Example 1, and the product was separated by applying a flash column (hexane-ether 5:2) to give 1,2-O-(2,3,4,6-tetra-O-
-benzyl-D-glucosylidene) cyclohexane-1,2-cis-diol two isomers a
(194 mg, 30.5%) and b (378 mg, 59.5%) I got it. (a) Isomer a (1) Melting point: 58-60℃ (2) [α] D : +45゜ (c0.9, chloroform) (3) 13 C-NHR: 119.6ppm (4) Elemental analysis: Actual value Calculated values (as C 40 H 44 O 7 ) C 75.72% 75.45% H 7.03% 6.96% (b) Isomer b (1) Melting point: 98-100℃ (2) [α] D : +55゜ (c1.1 , chloroform) (3) 13 C-NMR: 118.5 ppm (4) Elemental analysis: Actual value Calculated value (as C 40 H 44 O 7 ) C 75.80% 75.45% H 7.12% 6.96% Example 3 2.3.4・6-tetra-O-benzyl-D-
Gluconic acid-1,5-lactone 1.85g (1.85m
mol) and 358 mg (3.08 mmol) of cyclohexane-1,2-transdiol of di-O-trimethylsilyl derivative in dichloromethane (3 ml).
80 mg of TMSOTf was added, and the mixture was stirred at room temperature for 26 hours under a nitrogen stream. After treatment in the same manner as in Example 1, 1.2-O-
(2,3,4,6-tetra-O-benzyl-D-
Two derivatives a and b of cyclohexane-1,2-trans-diol (glucosylidene) were obtained in yields of 30.6% (308 mg) and 33.3% (335.4 mg). (a) Isomer a (1) Melting point: 91-93°C (2) [α] D : +65° (c0.8, chloroform) (3) 13 C-NMR: 119.1 ppm (4) Elemental analysis: Actual value Calculated value (as C 40 H 44 O 7 ) C 75.43% 75.45% H 7.02% 6.96% (b) Isomer b (1) Syrup (2) [α] D : +7.9° (c0.5, chloroform) (3) 13 C-NMR: 119.2 ppm (4) Elemental analysis: Actual value Calculated value (as C 40 H 44 O 7 ) C 75.00% 75.45% H 7.11% 6.96% Example 4 2.3.4.6- Tetra-O-benzyl-D-
Gluconic acid-1,5-lactone 667.5mg (1.24m
mol) and 2,3-di-O-trimethylsilyl ether of
570.7 mg (1.10 mmol) was reacted in the same manner to give methyl-4,6-di-O-benzyl-2,3-O-
(2,3,4,6-tetra-O-benzyl-D-
glucopyranosilidene)-α-D-mannopyranoside Two isomers of were obtained in yields of 44.8% (441 mg) and 26.6% (262 mg), respectively. (a) Isomer a (1) Melting point: 61-62℃ (2) [α] D : +28.1゜ (c0.6, chloroform) (3) 13 C-NMR: 119.0ppm (4) Elemental analysis: Actual value Calculated value (as C 55 H 58 O 11 ) C 74.01% 73.80% H 6.57% 6.53% (b) Isomer b (1) Syrup (2) [α] D : +10.3° (c0.2, Chloroform) (3) 13 C-NMR: 120.4 ppm (4) Elemental analysis: Actual value Calculated value (as C 55 H 58 O 11 ) C 73.92% 73.80% H 6.51% 6.53% Example 5 δ-valerolactone 1 g ( 10.0 mmol) 2,3-di-O-trimethylsilyl ether of
1.07g (2.06mmol) dichloromethane (2ml)
Add TMSOTf20 to the solution at −10 to −20°C under nitrogen flow.
Example 1
The product was worked up in the same manner as above, and the product was separated and purified using a flash column (hexane-ether 5:2) to obtain only the main product in a yield of 40.2%. The other isomer is present in trace amounts, orthoester carbon
The presence of 119.0 ppm was only detectable by 13 C-NMR. Methyl-4,6-di-O-benzyl-2,3-
O-(tetrahydropyran-2-ylidene)-α-
D-mannopyranoside (1) Melting point: 40-41.5℃ (2) [α] D : +44゜ (c0.35, chloroform) (3) 13 C−NMR: 118.5 ppm (4) Elemental analysis: Actual value Calculated value (C 26 H 32 O 7 ) C 68.19% 68.40% H 7.12% 7.07%

Claims (1)

【特許請求の範囲】[Claims] 1 水酸基を保護したアルドン酸ラクトンとトリ
メチルシリル化したジオール類とを、溶液中で、
トリメチルシリルトリフレートを触媒として縮合
させることを特徴とするグリコシリデンアセター
ル類の製造方法。
1. In a solution, an aldonic acid lactone with a protected hydroxyl group and a trimethylsilylated diol,
A method for producing glycosylidene acetals, which comprises condensing trimethylsilyl triflate as a catalyst.
JP56051506A 1981-04-06 1981-04-06 Preparation of glycosylidene acetal compound Granted JPS57165388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56051506A JPS57165388A (en) 1981-04-06 1981-04-06 Preparation of glycosylidene acetal compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56051506A JPS57165388A (en) 1981-04-06 1981-04-06 Preparation of glycosylidene acetal compound

Publications (2)

Publication Number Publication Date
JPS57165388A JPS57165388A (en) 1982-10-12
JPS6150951B2 true JPS6150951B2 (en) 1986-11-06

Family

ID=12888875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56051506A Granted JPS57165388A (en) 1981-04-06 1981-04-06 Preparation of glycosylidene acetal compound

Country Status (1)

Country Link
JP (1) JPS57165388A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174790A (en) * 1984-02-22 1985-09-09 Toshitsugu Yoshimura Novel spiro cyclic orthoester compound

Also Published As

Publication number Publication date
JPS57165388A (en) 1982-10-12

Similar Documents

Publication Publication Date Title
US6069238A (en) Spirocyclic C-glycosides
EP0642345B1 (en) Halichondrins and related compounds
Chow et al. Stereospecific Vorbrueggen-like reactions of 1, 2-anhydro sugars. An alternative route to the synthesis of nucleosides
EP0503630B1 (en) Cyclohexanetriol derivatives
EP0000092B1 (en) Method of preparing ascorbic acid and intermediates specially adapted for use therein
Evans et al. Addition of allylstannanes to glycal epoxides. A diastereoselective approach to β-C-glycosidation
JPS6345293A (en) Sialosylceramide compound and production thereof
van Hooft et al. Synthesis and elaboration of functionalised carbohydrate-derived spiroketals
Nakata et al. Synthetic studies of rifamycins. V. A chiral synthesis of an ansa-chain compound for the C-17-C-29 portion of rifamycin W.
Sasaki et al. Synthesis of (.+-.)-15-deoxybruceolide and conversion of (-)-15-deoxybruceolide into (-)-bruceantin: total synthesis of bruceantin
Card Synthesis of benzannelated pyranosides
JPS6150951B2 (en)
Ramza et al. New convenient synthesis of tunicamine
EP0202111B1 (en) Antibacterial mycaminosyl tylonolide derivatives and their production
Anzai et al. The synthesis of several octose derivatives related to octosyl acids A and B.
HU198505B (en) Process for producing antitumour anthracycline glycosides
US3585188A (en) Process for producing 2'-deoxyuridine
Kohn et al. Synthesis of Aldofuranosyl Nucleosides1
Matsuda et al. Synthesis of 14, 14-Difluoro-4-demethoxydaunorubicin.
NATsUME et al. Synthetic Study of Amino-sugars from Pyridines. V. Synthesis of 5-Amino-5-deoxypiperidinoses from the Singlet Oxygen Adduct of 1-Acyl-1, 2-dihydropyridines.(2)
Sharma et al. Radical reactions on furanoside acetals: A formal synthesis of (−)-canadensolide from D-mannose
Ami et al. Chiral synthesis of the BC-ring system of ciguatoxin from D-glucose
Bruns et al. Botrylactone synthesis and structure revision: a convergent approach from D-glucose
Baker et al. Synthetic Nucleosides. LVI. 1, 2 Facile Displacement Reactions in the D-Mannitol Series. III. Transformation of Tetrahydropyranyl Derivatives
Kinoshita et al. Branched-chain sugars. II. Synthesis of methyl 5-deoxy-3-C-hydroxymethyl-2, 3-O-isopropylidene-. BETA.-DL-lyxo-furanoside (dihydrostreptose) and ribofuranoside derivatives.