JPS6150648B2 - - Google Patents

Info

Publication number
JPS6150648B2
JPS6150648B2 JP53079116A JP7911678A JPS6150648B2 JP S6150648 B2 JPS6150648 B2 JP S6150648B2 JP 53079116 A JP53079116 A JP 53079116A JP 7911678 A JP7911678 A JP 7911678A JP S6150648 B2 JPS6150648 B2 JP S6150648B2
Authority
JP
Japan
Prior art keywords
ammonia
exhaust gas
denitrification
mixing
dispersion plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53079116A
Other languages
Japanese (ja)
Other versions
JPS555750A (en
Inventor
Hiroaki Ida
Sadao Sekida
Katsumi Myata
Yoshinobu Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP7911678A priority Critical patent/JPS555750A/en
Publication of JPS555750A publication Critical patent/JPS555750A/en
Publication of JPS6150648B2 publication Critical patent/JPS6150648B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】 本発明は触媒による乾式脱硝装置において、還
元剤である添加アンモニアを処理すべき排ガス中
へ拡散させる方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for diffusing added ammonia as a reducing agent into the exhaust gas to be treated in a catalytic dry denitrification apparatus.

排ガス中の窒素酸化物を除去するにあたつて、
アンモニア還元剤を使用し、各種脱硝用触媒と接
触させて浄化する乾式脱硝法は広く行なわれてい
る。ところで還元剤であるアンモニアは排ガス輸
送中に均一に混合してはじめて効果の良い脱硝反
応が進行するものであり、ここにおいて添加アン
モニアは通常の場合、排ガス流れの中へ十分混合
できず、したがつて一部のアンモニアは反応に関
与させえずに反応系より排出されることになつて
いた。このような過剰なアンモニアは新たな二次
公害を生む可能性がある。更に十分混合できない
場合、所定の脱硝率を達成するためにはアンモニ
アを所定量より多く必要とする欠点があつた。
When removing nitrogen oxides from exhaust gas,
Dry denitrification methods that use an ammonia reducing agent and bring it into contact with various denitrification catalysts are widely used. By the way, the effective denitrification reaction of ammonia, which is a reducing agent, must be uniformly mixed during exhaust gas transport, and in this case, the added ammonia is usually not mixed sufficiently into the exhaust gas flow. Therefore, some ammonia was supposed to be discharged from the reaction system without being able to participate in the reaction. Such excessive ammonia may cause new secondary pollution. Furthermore, if sufficient mixing is not possible, there is a drawback that more ammonia than a predetermined amount is required to achieve a predetermined denitrification rate.

本発明は添加アンモニアを排ガス中へ拡散さ
せ、十分に処理すべき排ガスと混和できるよう、
アンモニアの吹き込み口の前方に角材等の撹乱部
材を配列した組み格子を複数段設け、またその後
方の脱硝装置の入口コーン部に多孔性分散板を加
えることにより、かかる問題を解消したものであ
る。
The present invention diffuses the added ammonia into the exhaust gas so that it can be sufficiently mixed with the exhaust gas to be treated.
This problem was solved by installing multiple stages of grids in which disturbance members such as square timbers were arranged in front of the ammonia inlet, and by adding a porous dispersion plate to the inlet cone of the denitrification device behind it. .

例えば従来法では吹き込み口を複数に配置する
こと以外に、更に分散を良くするため、注入口を
噴射ノズルにすることも実施されている。しか
し、噴射ノズルにするにはノズルを小さくまたは
狭くするため、処理すべき排ガス中の付着性物質
またはアンモニアの化合物がノズル周辺に頑強に
固着し、噴霧状態を悪くするばかりかノズル閉塞
へと至る場合も考えられ、頻繁な該ノズル部の清
掃が要求されるという欠点があつた。しかし本発
明では注入径がパイプ状で口径が頗る大きく係る
問題を回避し、またノズルによる拡散効果を期待
しなくとも、アンモニア吹き込み口の前方に組み
格子、あるいは更にその前方の脱硝装置の入口コ
ーン部に設けた多孔性分散板により、効果的な微
量の添加アンモニアの拡散が行なわれるものであ
る。
For example, in the conventional method, in addition to arranging a plurality of injection ports, in order to further improve dispersion, the injection port is also used as an injection nozzle. However, because the nozzle is made small or narrow in order to be used as an injection nozzle, adhesive substances or ammonia compounds in the exhaust gas to be treated stubbornly stick to the area around the nozzle, which not only worsens the spray condition but also leads to nozzle blockage. This has the disadvantage that frequent cleaning of the nozzle portion is required. However, in the present invention, the injection diameter is pipe-shaped, which avoids the problem of large diameter, and also eliminates the need to expect a diffusion effect from the nozzle. A porous dispersion plate provided in the section allows effective diffusion of a small amount of added ammonia.

このようにして、本発明は乾式脱硝におけるア
ンモニア還元剤を排ガス中に拡散させるにあたつ
て、従来技術にみられる問題点を解消するために
提案されたものであるが、特に低負荷時において
も良好な拡散が行なわれ、排ガス量が多くまた装
置が大型化しても、アンモニアと排ガスの均一な
混合が可能である。
In this way, the present invention was proposed in order to solve the problems seen in the prior art when diffusing an ammonia reducing agent into exhaust gas in dry denitrification, but especially at low load. Good diffusion is also achieved, and even if the amount of exhaust gas is large or the equipment is large, uniform mixing of ammonia and exhaust gas is possible.

特に本発明に係る添加アンモニアの拡散は、従
来技術にみられる問題点を解消しただけでなく、
その構成にあたつて、脱硝装置の入口コーン部に
設けた多孔性分散板がアンモニアの排ガス中への
均一混和とともに、塔内での処理ガスの偏流を多
孔性分散板が抑制し、該分散板がない場合に比
べ、塔内での速度分布が平滑化され、装置に充填
された全域の触媒層に対し同一の線速度、空間速
度、反応温度を保ち、脱硝率をあげるうえで一層
効果的な役目を果たすものである。
In particular, the diffusion of added ammonia according to the present invention not only solves the problems seen in the conventional technology, but also
In its configuration, a porous dispersion plate installed at the inlet cone of the denitrification equipment not only uniformly mixes ammonia into the exhaust gas, but also suppresses the uneven flow of the treated gas within the column, and the porous dispersion plate suppresses the dispersion of ammonia. Compared to the case without plates, the velocity distribution inside the column is smoothed, and the same linear velocity, space velocity, and reaction temperature are maintained for the entire catalyst bed packed in the device, which is more effective in increasing the denitrification rate. It plays a role.

以下に添付図面を参照し、本発明なるアンモニ
ア拡散法について更に詳細に説明するが、本発明
は実施例のみに限定されるものではない。
The ammonia diffusion method of the present invention will be described in more detail below with reference to the accompanying drawings, but the present invention is not limited to the examples.

第1図、第2図において、アンモニア注入管1
は排ガス流路内に導入され、この流路断面を縦横
に等間隔に配置された複数個のアンモニアの吹き
込み口2を有する。アンモニアはこの吹き込み口
2から排ガスの流れ方向と同一方向に向けて吹き
込まれ、その吹き込み口2の前方には吹き込み口
2と同じ間隔で横の方向にアンモニアを撹乱する
角材3を配列した組格子30が、次いで縦の方向
にも同様に吹き込み口2と同じ間隔で角材3を配
列した組格子30が配置され、吹き込み口2は前
後の組格子30,30の交差部に対向している。
脱硝装置4の入口は排ガス流路が次第に広がるコ
ーン部5に形成され、このコーン部5には多孔性
の分散板6が設けられている。7は脱硝装置4内
の触媒層である。
In Figures 1 and 2, ammonia injection pipe 1
is introduced into the exhaust gas flow path, and has a plurality of ammonia inlet ports 2 arranged at equal intervals in the length and width of this flow path cross section. Ammonia is blown in the same direction as the flow direction of the exhaust gas from this blowing port 2, and in front of the blowing port 2, there is a grid with square bars 3 arranged horizontally at the same intervals as the blowing port 2. Next, a set lattice 30 in which square timbers 3 are arranged at the same intervals as the inlet 2 is arranged in the vertical direction as well, and the inlet 2 faces the intersection of the front and rear set lattices 30, 30.
The inlet of the denitrification device 4 is formed in a cone portion 5 in which the exhaust gas flow path gradually widens, and this cone portion 5 is provided with a porous dispersion plate 6. 7 is a catalyst layer within the denitrification device 4.

そこで添加剤であるアンモニアは気化状態でア
ンモニア注入管1より排ガス流路のダクト内には
いり、吹き込み口2から処理すべき排ガス中へ拡
散混和される。ここで排ガスとの接触点での吹き
込み口2は、ノズル周辺に排ガス中のダクトを付
着しても、閉塞現象を回避できる単なる中空円柱
状のパイプを用い、噴流を吹き込むことにより解
決できたものである。吹き込み口2の円柱状ノズ
ルは内径が5mmφ〜50mmφと従来のノズルに比べ
て大きく、容易に排ガス中に注入することができ
る。いつぽうかかる状態のみでは排ガス中への拡
散が円滑には行なわれ難いという欠点に対して
は、噴流を撹乱し乱流拡散を助長する角材3を配
列した組み格子30を複数段設け、そしてその前
方に脱硝装置4の入口コーン部5に多孔性分散板
6を設けることにより、アンモニアのガス中への
乱流拡散を効果的に行なう状況を生み、均質な混
合状態を形成するに至るものである。ここで配列
した組み格子30はアンモニア注入管1の吹き込
み口2の前方で、前後の組格子30,30の交差
部とV字型角材3の峰部を吹き込み口2に対向さ
せて設置し、アンモニア流体塊を主流である排ガ
ス中へ巨視的に四方に分配、分散させ、その付随
効果として組み格子30による渦流拡散でもつ
て、より一層添加アンモニアの拡散に優れた働き
をする。なお角材3は断面が半円形のもの、V字
形のもの等乱流を発生させるものであればよい。
Therefore, ammonia as an additive enters the duct of the exhaust gas flow path from the ammonia injection pipe 1 in a vaporized state, and is diffused and mixed into the exhaust gas to be treated through the blowing port 2. Here, the blowing port 2 at the point of contact with the exhaust gas is a simple hollow cylindrical pipe that can avoid clogging even if the duct in the exhaust gas adheres around the nozzle, and the problem was solved by blowing a jet stream. It is. The cylindrical nozzle of the blowing port 2 has an inner diameter of 5 mmφ to 50 mmφ, which is larger than conventional nozzles, and can be easily injected into the exhaust gas. To solve the problem that it is difficult to smoothly diffuse into the exhaust gas only under such conditions, we have installed multiple stages of assembled grids 30 in which square bars 3 are arranged to disturb the jet flow and promote turbulent diffusion. By providing a porous dispersion plate 6 in the inlet cone portion 5 of the denitrification device 4 at the front, a situation is created in which turbulent diffusion of ammonia into the gas is effectively performed, leading to the formation of a homogeneous mixing state. be. The assembled grids 30 arranged here are installed in front of the inlet 2 of the ammonia injection pipe 1, with the intersection of the front and rear assembled grids 30, 30 and the peak of the V-shaped square beam 3 facing the inlet 2, The ammonia fluid mass is macroscopically distributed and dispersed in all directions in the exhaust gas which is the main stream, and as an accompanying effect, the vortex diffusion by the assembled grid 30 works even more effectively to diffuse the added ammonia. Note that the square material 3 may have a semicircular cross section, a V-shape, or any other material that generates turbulent flow.

いつぽう本発明では組み格子30の前方にある
多孔性分散板6が、アンモニアと排ガスを均一化
するうえで更に優れた混合効果を与える。すなわ
ち組み格子30により流入流体であるアンモニア
ガスは、主流である排ガス中にはいると、組み格
子30の働きによつて小さい流体塊に分散する
が、まだ混和が十分に分子スケールまで均一化さ
れていない場合が多いと考えられる。そこで本発
明ではまず組み格子30が巨視的混合の役割をに
ない、その後多孔性分散板6が微視的混合の働き
を行なうという流体の混合現象を効果的に把えた
アンモニアの拡散法によつて、主流である排ガス
と添加アンモニアの交換速度をかかる相乗効果に
よつて促進するものである。
In the present invention, the porous dispersion plate 6 in front of the grid grid 30 provides a better mixing effect in homogenizing ammonia and exhaust gas. That is, when ammonia gas, which is an inflow fluid, enters the main stream of exhaust gas through the mesh grid 30, it is dispersed into small fluid masses by the action of the mesh grid 30, but the mixing is not yet sufficiently homogenized down to the molecular scale. It is thought that there are many cases where this is not the case. Therefore, the present invention uses an ammonia diffusion method that effectively grasps the fluid mixing phenomenon in which the grid grid 30 first plays a role of macroscopic mixing, and then the porous dispersion plate 6 plays the role of microscopic mixing. Therefore, the exchange rate between the mainstream exhaust gas and the added ammonia is promoted by this synergistic effect.

しかるに、組み格子30の構成は吹き込み口2
である点線からの添加アンモニアに際し、四方に
拡散するうえで巨視的な流体混合をはかるべく乱
流場において乱れの構造を与える角材3等の撹乱
材を配列したものがよく、更に好ましくは組格子
状にしたものである。また脱硝入口コーン部5に
設けた多孔性分散板6は、バツフル板として乱流
状態で流れと直角な方向の混合を促進するもので
あればいずれでもよいが、製作的にも価格的にも
安価で十分な効果を発揮する内装物としてパンチ
ングプレートが最も好ましい。
However, the structure of the braided lattice 30 is
When adding ammonia from the dotted line, it is preferable to arrange a disturbance material such as square timbers 3 that provide a turbulent structure in a turbulent flow field in order to diffuse in all directions and achieve macroscopic fluid mixing, and more preferably a grid grid. It is made into a shape. The porous dispersion plate 6 provided in the denitrification inlet cone portion 5 may be any type as long as it is a buff-full plate that promotes mixing in a direction perpendicular to the flow in a turbulent state, but it is difficult to manufacture and cost-effectively. A punching plate is most preferable as an inexpensive interior material that exhibits sufficient effects.

ここに内装置としての多孔性分散板6は、その
孔径の程度に応じて渦を作り、そして流れと直角
方向の混合を促進することにより、点源から発し
た添加アンモニアの非等性を解消し、触媒層に至
る前に処理ガス全域で均一化をはかるものであ
る。更に多孔性分散板6の後に発生する渦を含む
後流は、その流線が交差しやすく、その混合特性
は一層優れたものになつている。
Here, the porous dispersion plate 6 as an internal device creates a vortex according to the degree of the pore diameter and promotes mixing in the direction perpendicular to the flow, thereby eliminating the non-uniformity of the added ammonia emitted from the point source. However, the treatment gas is made uniform throughout the entire region before reaching the catalyst layer. Furthermore, the streamlines of the wake containing vortices generated after the porous dispersion plate 6 tend to intersect, making the mixing characteristics even more excellent.

いつぽう多孔性分散板6を脱硝装置4の入口コ
ーン部5に設けることにより、アンモニアの排ガ
ス中への拡散効果だけでなく脱硝装置4内でガス
流が触媒充填層7を通過するにあたつて、流体が
吹き抜ける部分を有するチヤンネリング現象を回
避することをもねらつたものである。このことは
装置が大型化すればする程問題となりやすく、チ
ヤンネリングは物理的、化学的操作にも悪影響を
与える現象で、特に乾式脱硝装置にあたつては著
しい脱硝率の低下を来たすものであり、このこと
からその工業的価値は極めて高いものである。加
えて、アンモニアと排ガスとの混和やガス流の触
媒充填層7でのチヤンネリング防止としてのかか
る多孔性分散板6での摩擦抵抗は、入口コーン部
5に設けることで、配管ダクトに設置する場合に
比べ流速が極端に軽減されており、流速の指数関
数的に増加する摩擦抵抗を鑑みれば、本発明は僅
かの摩擦抵抗で添加アンモニアの拡散効果を与え
るのみならず、脱硝装置4内でのガスの偏流を防
止する作用をも有するものである。
By providing the porous dispersion plate 6 at the inlet cone portion 5 of the denitrification device 4, not only the ammonia diffusion effect into the exhaust gas but also the gas flow passing through the catalyst packed bed 7 in the denitrification device 4 can be achieved. This also aims to avoid the channeling phenomenon in which there are parts where fluid blows through. This becomes more of a problem as the equipment becomes larger, and channeling is a phenomenon that has an adverse effect on physical and chemical operations, and particularly in dry-type denitrification equipment, it causes a significant drop in the denitrification rate. Therefore, its industrial value is extremely high. In addition, to prevent mixing of ammonia and exhaust gas and channeling of the gas flow in the catalyst-packed layer 7, the porous dispersion plate 6 can provide frictional resistance by providing it in the inlet cone portion 5, when installed in a piping duct. The flow velocity is extremely reduced compared to the above, and considering the frictional resistance that increases exponentially with the flow velocity, the present invention not only provides the diffusion effect of added ammonia with a small frictional resistance, but also provides a It also has the effect of preventing gas drift.

ところで、本発明において懸念されているアン
モニア噴出地点でのノズルにおけるバイジン等の
ダストやアンモニア化合物による閉塞に対して
は、その噴出口径を格段と大きくすることにより
解消しているが、更に好ましくは蒸気ラインまた
は圧縮空気ライン8から定期的に吹き込み口2を
洗浄することで、より完全にかかる問題を回避さ
すこともできるものである。これによりアンモニ
ア吹き込み口2のみならず、長期間にわたつて配
管径路内に堆積してくるスケールを除去し、添加
アンモニアの点源に相当する複数個の吹き込み口
2でのアンモニア流出量を一定にし、長期にわた
つて全体の流量バランスを保持することが可能と
なるものである。
By the way, in the present invention, the problem of clogging of the nozzle at the ammonia spouting point due to dust such as vizine and ammonia compounds is solved by significantly increasing the diameter of the spouting port. By periodically cleaning the inlet 2 from the line or compressed air line 8, such problems can be avoided more completely. This removes scale that has accumulated not only in the ammonia inlet 2 but also in the piping path over a long period of time, and makes the amount of ammonia flowing out constant at the multiple inlets 2, which correspond to point sources of added ammonia. , it becomes possible to maintain the overall flow balance over a long period of time.

以上のごとく本発明は、脱硝装置における微量
の添加アンモニアと主流である排ガスとを混合促
進する優れた拡散法を生み出すもので、その構成
において全く混合にあずからないよどみを廃し、
短かい混合距離でまた少ない摩擦抵抗で、アンモ
ニアと主流ガスの交換速度を高め、アンモニアを
用いる乾式脱硝で排出アンモニアを抑えながら、
所定の脱硝率を維持するアンモニア拡散法を提供
するもので、多大な効果を奏するものである。
As described above, the present invention creates an excellent diffusion method that promotes mixing of a trace amount of added ammonia and the mainstream exhaust gas in a denitrification device, and eliminates stagnation that does not contribute to mixing at all in its configuration.
With a short mixing distance and low frictional resistance, the exchange rate between ammonia and mainstream gas is increased, and dry denitrification using ammonia suppresses ammonia emissions.
This method provides an ammonia diffusion method that maintains a predetermined denitrification rate, and is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例装置の正面図、第2図
は第1図のA−A断面図である。 1……アンモニア注入管、2……吹き込み口、
3……角材、4……脱硝装置、5……コーン部、
6……多孔性分散板、7……触媒層。
FIG. 1 is a front view of a device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1...Ammonia injection pipe, 2...Blowing port,
3... Square timber, 4... Denitrification device, 5... Cone part,
6... Porous distribution plate, 7... Catalyst layer.

Claims (1)

【特許請求の範囲】[Claims] 1 アンモニア還元剤を用いて排ガス中の窒素酸
化物を触媒と接触させて処理する装置において、
排ガス中にアンモニアを吹き込んで均一に混合す
るにあたつて、アンモニアを排ガス流路中にある
多数の吹き込み口から排ガスの流れ方向と同一方
向に向けて吹き込み、更に吹き込み口の前方にお
いて横方向に配列した複数本の棒材とこの棒材に
対して若干間隔をあけ縦方向に配列した複数本の
棒材により構成された格子状の撹乱部材の交差部
に当て、次いで脱硝装置の入口コーン部にある多
孔性分散板に当てて均一に拡散させることを特徴
とする乾式脱硝装置における添加アンモニアの拡
散法。
1. In an apparatus that uses an ammonia reducing agent to treat nitrogen oxides in exhaust gas by bringing them into contact with a catalyst,
When blowing ammonia into the exhaust gas to mix it uniformly, ammonia is blown in the same direction as the flow direction of the exhaust gas from the many blowing holes in the flue gas flow path, and then laterally in front of the blowing holes. It is applied to the intersection of a lattice-shaped disturbance member made up of a plurality of arranged rods and a plurality of rods arranged vertically with a slight interval between them, and then applied to the inlet cone of the denitrification device. A method for diffusing added ammonia in a dry denitrification equipment, which is characterized by uniformly diffusing added ammonia by applying it to a porous dispersion plate.
JP7911678A 1978-06-28 1978-06-28 Diffusing method for added ammonia in dry denitration unit Granted JPS555750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7911678A JPS555750A (en) 1978-06-28 1978-06-28 Diffusing method for added ammonia in dry denitration unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7911678A JPS555750A (en) 1978-06-28 1978-06-28 Diffusing method for added ammonia in dry denitration unit

Publications (2)

Publication Number Publication Date
JPS555750A JPS555750A (en) 1980-01-16
JPS6150648B2 true JPS6150648B2 (en) 1986-11-05

Family

ID=13680935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7911678A Granted JPS555750A (en) 1978-06-28 1978-06-28 Diffusing method for added ammonia in dry denitration unit

Country Status (1)

Country Link
JP (1) JPS555750A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719020A (en) * 1980-07-07 1982-02-01 Mitsubishi Heavy Ind Ltd Feeding method of ammonia
JPH0465118U (en) * 1990-10-12 1992-06-05
JP4788392B2 (en) * 2006-02-24 2011-10-05 日立造船株式会社 Ammonia gas uniform mixing device in denitration reactor
EP3479893A1 (en) * 2017-11-06 2019-05-08 Sulzer Chemtech AG An improved mixer duct and a process of using it

Also Published As

Publication number Publication date
JPS555750A (en) 1980-01-16

Similar Documents

Publication Publication Date Title
KR100366679B1 (en) Static mixer
DE112010004962B4 (en) Exhaust system with an aftertreatment module
JP4859818B2 (en) Gas mixing equipment
US7665884B2 (en) Mixing system
DE4109305A1 (en) Reagent injection to process or flue gas stream - e.g. for ammonia addition in catalytic nitrogen oxide(s) redn. of stack gases
US10507427B2 (en) Flue ozone distributor applied in low-temperature oxidation denitrification technology and arrangement manner thereof
CN207385234U (en) It is a kind of to intersect static mixer for the reversed of flue gas denitrification system
JP6542568B2 (en) Fluid mixing device and denitration device provided with fluid mixing device
KR19990044992A (en) Pollutant decomposition device of exhaust gas by catalyst
CN206746285U (en) A kind of new ammonia-spraying grid for SCR denitration system
JPS6150648B2 (en)
JP2006181424A (en) Gas mixer
EP0751820A1 (en) Combined feed and mixing installation
CN207996567U (en) The equal mixing device of SCR denitration system flue gas and SCR denitration system
JP3858132B2 (en) Ammonia injection system for exhaust gas denitration system
JPH0975672A (en) Exhaust gas denitration apparatus
JPH1147538A (en) Absorption tower
JPH0975673A (en) Exhaust gas denitration apparatus
CN211988056U (en) Flue gas cyclone mixing device of SCR (Selective catalytic reduction) denitration system
CN220834988U (en) Ultralow specific gas-gas mixer for tail gas treatment
CN209679838U (en) A kind of flue gas denitrification equipment
CN210584502U (en) Ammonia spraying and mixing device
JPH0924246A (en) Ammonia injection device in denitration device
JP3354723B2 (en) Ammonia gas injection device
WO2020010851A1 (en) Combined flue ozone distribution system