JPS6150528B2 - - Google Patents

Info

Publication number
JPS6150528B2
JPS6150528B2 JP12352979A JP12352979A JPS6150528B2 JP S6150528 B2 JPS6150528 B2 JP S6150528B2 JP 12352979 A JP12352979 A JP 12352979A JP 12352979 A JP12352979 A JP 12352979A JP S6150528 B2 JPS6150528 B2 JP S6150528B2
Authority
JP
Japan
Prior art keywords
antenna
primary radiator
shaped beam
gain
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12352979A
Other languages
Japanese (ja)
Other versions
JPS5647106A (en
Inventor
Kenji Ueno
Hiroyuki Kumazawa
Takashi Sugai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP12352979A priority Critical patent/JPS5647106A/en
Publication of JPS5647106A publication Critical patent/JPS5647106A/en
Publication of JPS6150528B2 publication Critical patent/JPS6150528B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements

Description

【発明の詳細な説明】 本発明は、通信対象とする領域内に分散配置さ
れた複数の無線局と同時に通信することができる
成形ビームアンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shaped beam antenna that can simultaneously communicate with a plurality of radio stations distributed in a communication target area.

従来、反射鏡またはレンズを用いた開口面アン
テナにおいて、ポアサイトの無線局と1対1の通
信を行なう場合には、アンテナの中心方向の利得
を高めるため、その一次放射器をそのアンテナの
焦点位置に設定するものと考えられてきた。この
ため、地理的に離れた複数の無線局と通信を行な
うために複数の一次放射器を使用したアンテナに
おいても、これらの一次反射器がアンテナの焦点
を含みかつ焦点から反射鏡の中心へ向う線に垂直
な面上に設置されていた。
Conventionally, when performing one-to-one communication with a pore site radio station using an aperture antenna using a reflector or lens, the primary radiator is moved to the focal point of the antenna in order to increase the gain toward the center of the antenna. It has been thought that it should be set to For this reason, even in antennas that use multiple primary radiators to communicate with multiple geographically distant radio stations, these primary reflectors include the focal point of the antenna and are directed from the focal point to the center of the reflector. It was placed on a plane perpendicular to the line.

この従来のマルチホーン成形ビームアンテナの
一例としてオフセツトパラボラ形アンテナを取上
げ第1図に示す。ここで、1はオフセツトパラボ
ラ反射鏡、2は焦点、3は一次放射器、4は焦点
2から反射鏡1の周縁を見込んでできる円錐の中
心軸、5は焦点2を含みかつ中心軸4に垂直な面
である。本アンテナの動作を送信アンテナとして
説明すると、各一次放射器3,3′,3″………か
ら放射された電波は反射鏡1で反射され、それぞ
れ異なる方向に放射される。この複数の放射ビー
ムを合成すると成形ビームが得られる。受信アン
テナとしては送信アンテナの逆を考えれば全く同
様に説明できる。
An offset parabolic antenna is shown in FIG. 1 as an example of the conventional multi-horn shaped beam antenna. Here, 1 is an offset parabolic reflector, 2 is a focal point, 3 is a primary radiator, 4 is a central axis of a cone formed from the focal point 2 looking into the periphery of the reflective mirror 1, and 5 is a cone that includes the focal point 2 and has a central axis 4. is a plane perpendicular to . To explain the operation of this antenna as a transmitting antenna, the radio waves radiated from each primary radiator 3, 3', 3'', etc. are reflected by the reflector 1 and radiated in different directions. When the beams are combined, a shaped beam is obtained.The receiving antenna can be explained in exactly the same way by considering the opposite of the transmitting antenna.

第1図に示した従来のアンテナで、4個の一次
放射器を上記面5内に配置して、たとえば日本を
対象とする静止通信衛星用成形ビームアンテナを
設計した場合、アンテナの放射パターンは第2図
のようになる。ただし周波数は29GHzである。
ここで、6はアンテナの照射領域で日本の形に人
工衛星の姿勢変動分を加えたものである。9,
9′,9″はアンテナの等利得線である。第2図か
ら明らかなように、照射領域の一部で局所的にア
ンテナの利得が20dB以下と極めて低い値を示す
地域がある。従つて、従来のように、焦点を含む
面5内に一次放射器を配置したマルチホーン成形
ビームアンテナでは、日本のすべての地域にわた
り充分な高利得を得ることができないという欠点
があつた。
In the conventional antenna shown in Fig. 1, if four primary radiators are arranged in the plane 5 and a shaped beam antenna for a geostationary communication satellite targeted at Japan is designed, for example, the radiation pattern of the antenna is It will look like Figure 2. However, the frequency is 29GHz.
Here, 6 is the irradiation area of the antenna, which is the shape of Japan plus the attitude fluctuation of the artificial satellite. 9,
9' and 9'' are the equal gain lines of the antenna.As is clear from Fig. 2, there are some areas in the irradiation area where the antenna gain locally shows an extremely low value of 20 dB or less. However, the conventional multi-horn shaped beam antenna in which the primary radiator is disposed within the plane 5 including the focal point has the disadvantage that it is not possible to obtain a sufficiently high gain over all regions of Japan.

本発明は、この欠点を解決するため、複数の一
次放射器を中心線に沿つてパラボラ反射鏡側もし
くはパラボラ反射鏡から離れる方向に移動したこ
とを特徴とするマルチホーン成形ビームアンテナ
を提供するものである。
In order to solve this drawback, the present invention provides a multi-horn shaped beam antenna characterized in that a plurality of primary radiators are moved along the center line toward the parabolic reflector or away from the parabolic reflector. It is.

以下図面により本発明を詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.

第3図は本発明の一実施例で、1,2,3,
4,5は第1図の従来のアンテナと同一のもので
あつて、7は本発明のアンテナにおける一次放射
器の配列面である。
FIG. 3 shows an embodiment of the present invention, 1, 2, 3,
4 and 5 are the same as the conventional antenna shown in FIG. 1, and 7 is the arrangement surface of the primary radiators in the antenna of the present invention.

本アンテナでは、一次放射器3,3′,3″が従
来の配列面5から7に移動しているため、各一次
放射器に対応するアンテナからの放射ビームが広
がる。今従来の方法で設計したアンテナにおいて
一次放射器を反射鏡オフセツトパラボラ側へ1波
長だけ移動してアンテナの放射パターンを求める
と第4図のようになる。ここで周波数29GHz
で、6,9,9′,9″は第2図と同様である。こ
の結果、第2図に示した放射パターンに見られる
局所的な利得低下領域がなくなつた。照射領域内
での利得の最小値は約30dBであり、第1図、第
2図に示す従来のアンテナに比べ10dB以上の改
善が図られている。
In this antenna, the primary radiators 3, 3', 3'' are moved from the conventional array plane 5 to 7, so that the radiation beam from the antenna corresponding to each primary radiator is expanded. Figure 4 shows the radiation pattern of the antenna when the primary radiator is moved by one wavelength toward the reflector offset parabola side.
6, 9, 9', 9'' are the same as in Fig. 2. As a result, the local gain reduction region seen in the radiation pattern shown in Fig. 2 has disappeared. The minimum value of the gain is approximately 30 dB, which is an improvement of more than 10 dB compared to the conventional antenna shown in FIGS. 1 and 2.

第5図は一次放射器の移動量δに対する照射領
域内での最小利得Geを計算した1例を示したも
のである。一次放射器の移動量δは波長で表わ
し、正は反射鏡側への移動を示す。第5図がら、
移動量δが反射鏡側には半波長以上、それと反対
方向には1波長以上であれば最小利得Geが20dB
程度以上であり照射領域内の局所的な利得の低下
をなくし、領域内の最小利得を向上させることが
できる。
FIG. 5 shows an example of calculating the minimum gain Ge within the irradiation area with respect to the movement amount δ of the primary radiator. The amount of movement δ of the primary radiator is expressed in terms of wavelength, and a positive value indicates movement toward the reflecting mirror. From Figure 5,
If the amount of movement δ is more than half a wavelength toward the reflecting mirror and more than one wavelength in the opposite direction, the minimum gain Ge is 20 dB.
It is possible to eliminate local decrease in gain within the irradiation region and improve the minimum gain within the region.

以上説明したように、本発明のアンテナは人工
衛星搭載用として使用した場合には、照射領域の
周辺部の利得を従来のものに比べ上昇させること
ができるため、周辺部の地球局アンテナの利得を
小さくすることができる。すなわち、地球局アン
テナの大きさおよび価格を低く抑えることができ
る。また、同様の理由により、周辺部の地球局と
の通信回線においても充分なマージンを確保でき
るため、降雨・降雪等による電波減衰の外に、人
工衛星の姿勢変動に対しても余裕のある回線設計
が可能となる利点がある。
As explained above, when the antenna of the present invention is used onboard an artificial satellite, it is possible to increase the gain in the peripheral part of the irradiation area compared to the conventional antenna, so that the gain of the earth station antenna in the peripheral part can be increased. can be made smaller. That is, the size and cost of the earth station antenna can be kept low. In addition, for the same reason, sufficient margin can be secured for communication lines with surrounding earth stations, so the lines can withstand not only radio wave attenuation due to rain, snowfall, etc., but also the attitude fluctuations of the satellite. This has the advantage of being possible to design.

なお、本発明ではアンテナの反射鏡の数を1枚
として説明してきたが、もちろん2枚以上でも同
様の特徴を有し、また反射鏡を用いないレンズア
ンテナの場合でも同様に説明できることは言うま
でもない。
Although the present invention has been explained assuming that the number of reflectors in the antenna is one, it goes without saying that the same characteristics can be obtained even if there are two or more reflectors, and the same explanation can be applied to the case of a lens antenna that does not use a reflector. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマルチホーン成形ビームアンテ
ナの側面図、第2図は従来のマルチホーン成形ビ
ームアンテナの放射パターン図、第3図は本発明
のマルチホーン成形ビームアンテナの側面図、第
4図は本発明のマルチホーン成形ビームアンテナ
の放射パターン図、第5図は一次放射器の移動量
に対する照射領域内の最小利得を示す図である。 1……反射鏡、2……焦点、3,3′,3″……
一次放射器、4……焦点から反射鏡の中心に向う
線、5……従来の一次放射器の配列面、6……照
射領域の外形、7……本発明の一次放射器の配列
面、8……アンテナの開口面、9,9′,9″……
等利得線。
FIG. 1 is a side view of a conventional multi-horn shaped beam antenna, FIG. 2 is a radiation pattern diagram of a conventional multi-horn shaped beam antenna, FIG. 3 is a side view of a multi-horn shaped beam antenna of the present invention, and FIG. 4 5 is a radiation pattern diagram of the multi-horn shaped beam antenna of the present invention, and FIG. 5 is a diagram showing the minimum gain within the irradiation area with respect to the amount of movement of the primary radiator. 1... Reflector, 2... Focal point, 3, 3', 3''...
Primary radiator, 4... A line from the focal point to the center of the reflecting mirror, 5... Arrangement surface of the conventional primary radiator, 6... External shape of the irradiation area, 7... Arrangement surface of the primary radiator of the present invention, 8...Aperture surface of antenna, 9, 9', 9''...
Equal gain line.

Claims (1)

【特許請求の範囲】[Claims] 1 1枚以上のパラボラ反射鏡またはレンズと2
個以上の一次放射器を有し各一次放射器に対応し
てアンテナから放射または受信されるビームを合
成して成形ビームを得るアンテナにおいて、各一
次放射器を該アンテナの焦点位置から前記反射鏡
またはレンズ側に半波長以上変位させるか、もし
くは前記反射鏡またはレンズから離れる方向に1
波長以上変位させて配置したことを特徴とするマ
ルチホーン成形ビームアンテナ。
1. One or more parabolic reflectors or lenses and 2.
In an antenna that has more than one primary radiator and obtains a shaped beam by combining beams radiated or received from the antenna corresponding to each primary radiator, each primary radiator is connected from the focal position of the antenna to the reflecting mirror. or by displacing it by half a wavelength or more toward the lens side, or by one step away from the reflecting mirror or lens.
A multi-horn shaped beam antenna characterized by being arranged with a displacement of more than a wavelength.
JP12352979A 1979-09-26 1979-09-26 Multihorn shaped-beam antenna Granted JPS5647106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12352979A JPS5647106A (en) 1979-09-26 1979-09-26 Multihorn shaped-beam antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12352979A JPS5647106A (en) 1979-09-26 1979-09-26 Multihorn shaped-beam antenna

Publications (2)

Publication Number Publication Date
JPS5647106A JPS5647106A (en) 1981-04-28
JPS6150528B2 true JPS6150528B2 (en) 1986-11-05

Family

ID=14862861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12352979A Granted JPS5647106A (en) 1979-09-26 1979-09-26 Multihorn shaped-beam antenna

Country Status (1)

Country Link
JP (1) JPS5647106A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680972B2 (en) * 1986-08-12 1994-10-12 三菱電機株式会社 Reflector antenna
JPH0630408B2 (en) * 1986-08-12 1994-04-20 三菱電機株式会社 Reflector antenna
JP2596119B2 (en) * 1989-03-14 1997-04-02 国際電信電話株式会社 Shaped beam reflector antenna device
JP3322897B2 (en) * 1991-11-29 2002-09-09 株式会社東芝 Mirror modified antenna

Also Published As

Publication number Publication date
JPS5647106A (en) 1981-04-28

Similar Documents

Publication Publication Date Title
US4342036A (en) Multiple frequency band, multiple beam microwave antenna system
US4145695A (en) Launcher reflectors for correcting for astigmatism in off-axis fed reflector antennas
CA2101141C (en) Equalized offset fed shaped reflector antenna system and technique for equalizing same
JPS6150528B2 (en)
JPS603210A (en) Antenna in common use for multi-frequency band
EP1184939B1 (en) Gridded reflector antenna
GB1495298A (en) Antenna
JP2643560B2 (en) Multi-beam antenna
JPS6013322B2 (en) multibeam antenna
JP2539104B2 (en) Antenna device
JPH0467364B2 (en)
JP3034262B2 (en) Aperture antenna device
JP2605939B2 (en) Multi-beam antenna
US6172649B1 (en) Antenna with high scanning capacity
JPS5892106A (en) Multibeam antenna
JP3149432B2 (en) Multi-beam antenna
JPH04355522A (en) Satellite communication system
JPS6028443B2 (en) offset antenna device
JPH02209003A (en) Antenna system
JPH07101813B2 (en) Antenna device
JPH053762B2 (en)
JPS6347061Y2 (en)
JP2712922B2 (en) Double reflector antenna
JP2014165790A (en) Reception antenna device, and manufacturing method of mirror surface-corrected reflector
JP2689537B2 (en) Antenna device