JPS6150246B2 - - Google Patents

Info

Publication number
JPS6150246B2
JPS6150246B2 JP12021378A JP12021378A JPS6150246B2 JP S6150246 B2 JPS6150246 B2 JP S6150246B2 JP 12021378 A JP12021378 A JP 12021378A JP 12021378 A JP12021378 A JP 12021378A JP S6150246 B2 JPS6150246 B2 JP S6150246B2
Authority
JP
Japan
Prior art keywords
color difference
optical
optical output
optical semiconductor
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12021378A
Other languages
Japanese (ja)
Other versions
JPS5546177A (en
Inventor
Toshibumi Yoshikawa
Yoshihei Tani
Akira Aso
Hitoshi Kawanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP12021378A priority Critical patent/JPS5546177A/en
Priority to US06/060,189 priority patent/US4309604A/en
Publication of JPS5546177A publication Critical patent/JPS5546177A/en
Publication of JPS6150246B2 publication Critical patent/JPS6150246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J3/427Dual wavelengths spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers or surface barriers, e.g. bipolar phototransistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J2003/466Coded colour; Recognition of predetermined colour; Determining proximity to predetermined colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors

Description

【発明の詳細な説明】 本発明は広い波長幅をもつ色情報に対応し得る
色差測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a color difference measuring device that can handle color information having a wide wavelength range.

従来から色差を測定するために光電変換素子が
用いられているが、従来の光電変換素子における
分光感度特性は半導体材料、不純物及び不純物の
注入条件等によつて多少可変し得る程度で、各種
の光源に対応した分光感度を得ることができなか
つた。従つて光電変換素子の受光面に投射光の波
長を考慮したフイルタが取付けられて色センサと
して利用されていた。そのためフイルタの色特性
に拘束されて広い範囲の色情報に応じた色センサ
出力を得ることができなかつた。
Photoelectric conversion elements have traditionally been used to measure color differences, but the spectral sensitivity characteristics of conventional photoelectric conversion elements can vary to some extent depending on the semiconductor material, impurities, impurity injection conditions, etc. It was not possible to obtain spectral sensitivity corresponding to the light source. Therefore, a filter that takes into account the wavelength of the projected light is attached to the light receiving surface of the photoelectric conversion element and used as a color sensor. For this reason, it has been impossible to obtain a color sensor output that corresponds to a wide range of color information because it is restricted by the color characteristics of the filter.

これに対して本発明は、新しい構造の光半導体
素子を用いることによつて簡単な構成で広い範囲
の色情報に応答し得る色差測定装置を提供するも
のである。次に図面を用いて本発明を詳細に説明
する。
In contrast, the present invention provides a color difference measuring device that can respond to a wide range of color information with a simple configuration by using an optical semiconductor element with a new structure. Next, the present invention will be explained in detail using the drawings.

まず第1図を用いて光半導体素子1を説明す
る。図に於て2はP型シリコン半導体基板で、該
基板2の受光面となる一方の主表面側には、N型
不純物及びP型不純物が順次拡散或いはイオン注
入等によつて導入され、主表面から深い位置に第
1PN接合3及び表面に近接した位置に第2PN接合
4が、互いに重なる状態に層をなして形成されて
いる。尚上記P及びN型導電性は逆の場合も実施
することができ、主表面側の最上層がN+層であ
る場合、基板表面を覆う酸化被膜による反転層を
利用することができる。上記第1及び第2PN接合
3及び4を備えた光半導体素子1は、第2図の等
価回路図に示す如く、第1PN接合3で第1ホトダ
イオードPD1を形成し、第2PN接合4で第2ホト
トランジスタPD2を形成していると見ることがで
きる。上記第1及び第2PN接合が形成された半導
体基板の主表面に光が照射された状態で、基板表
面から浅い第2PN接合4は光成分の内の短波長成
分を吸収して光出力電流IPD2を出力し、深い第
1PN接合3は長波長成分を吸収して光出力電流I
PD1を出力する。
First, the optical semiconductor device 1 will be explained using FIG. In the figure, reference numeral 2 denotes a P-type silicon semiconductor substrate, and N-type impurities and P-type impurities are successively introduced into one main surface side of the substrate 2, which becomes the light-receiving surface, by diffusion or ion implantation. deep from the surface
A 1PN junction 3 and a second PN junction 4 are formed in layers so as to overlap each other at a position close to the surface. Note that the above-mentioned P and N-type conductivities can be reversed, and when the uppermost layer on the main surface side is an N + layer, an inversion layer formed by an oxide film covering the substrate surface can be used. In the optical semiconductor device 1 including the first and second PN junctions 3 and 4 , as shown in the equivalent circuit diagram of FIG. It can be seen that two phototransistors PD 2 are formed. When the main surface of the semiconductor substrate on which the first and second PN junctions are formed is irradiated with light, the second PN junction 4, which is shallow from the substrate surface, absorbs the short wavelength component of the light component and generates an optical output current I. Output PD2 and deep
1PN junction 3 absorbs long wavelength components and outputs optical current I
Output PD1 .

第1図に於て5,6及び7は上記各PN接合で
生じた光出力電流を夫々取り出すため各領域に設
けられた電極端子である。
In FIG. 1, reference numerals 5, 6, and 7 are electrode terminals provided in each region for extracting the optical output current generated in each of the above-mentioned PN junctions.

上記光半導体素子1における分光感度特性を第
3図の実線に示す。長波長側にピークを示す曲線
は第1ホトダイオードPD1の、短波長側にピーク
を示す曲線は第2ホトダイオードPD2の分光感度
特性を示し、各特性は不純物の拡散条件、PN接
合深さ等によつて変化し得るが、素子個有の特性
として得られる。
The spectral sensitivity characteristics of the optical semiconductor element 1 are shown by the solid line in FIG. The curve with a peak on the long wavelength side shows the spectral sensitivity characteristics of the first photodiode PD 1 , and the curve with a peak on the short wavelength side shows the spectral sensitivity characteristics of the second photodiode PD 2. Each characteristic depends on the impurity diffusion conditions, PN junction depth, etc. Although it may vary depending on the characteristics, it is obtained as a characteristic unique to the element.

次に上記光半導体素子1を用いた色差測定装置
を説明する。上記第3図に示した分光感度特性図
から明らかなように、照射光に対して光半導体素
子1における第1ホトダイオードPD1の感度及び
第2ホトダイオードPD2の感度が一致する点は波
長λであり、第1ホトダイオードPD1の感度>
第2ホトダイオードの感度であれば、照射光の波
長λは上記λより大きい状態にあり、感度が逆
であれば波長λは上記λより小さい状態である
ことが判る。
Next, a color difference measuring device using the above optical semiconductor element 1 will be explained. As is clear from the spectral sensitivity characteristic diagram shown in FIG. 3 above, the point where the sensitivity of the first photodiode PD 1 and the sensitivity of the second photodiode PD 2 in the optical semiconductor element 1 match with respect to the irradiation light is at the wavelength λ 0 and the sensitivity of the first photodiode PD 1 >
It can be seen that if the sensitivity of the second photodiode is the same, the wavelength λ of the irradiated light is greater than the above λ 0 , and if the sensitivity is reversed, the wavelength λ is smaller than the above λ 0 .

第4図は上記光半導体素子1における感度特性
を利用して色差を測定するもので、上記光半導体
素子1の第1ホトダイオードPD1及び第2ホトダ
イオードPD2から夫々導出された光出力電流は増
幅度が可変抵抗R1,R2等によつて可変し得る増
幅回路A1及びA2に入力され、該増幅回路A1及び
A2に依つて光出力電流は予め設定された増幅度
に増幅されて出力される。ここで増幅回路A1
びA2における増幅度は、両光出力電流共に同じ
割合であれば前述の如く第3図の波長λで両ホ
トダイオードの感度は一致する。しかし両増幅回
路の増幅度を変えることによつて感度が一致する
点の波長は変化する。例えば第1ホトダイオード
PD1に接続された増幅回路A1の増幅度を、増幅回
路A2の増幅度に対して1.5倍に設定した第1ホト
ダイオードPD1の分光感度特性を第3図の破線
で、また同増幅度を0.5倍に設定した同分光感度
特性を第3図の一点鎖線で示す。増幅度1.5の状
態では感度が一致する波長λ′は短波長側に、
増幅度0.5の状態では感度が一致する波長λ″
長波長側に寄つて現われる。即ち一方の出力の増
幅度に対して他方の出力の増幅度を変えることに
よつて照射光の波長検知領域を拡張することがで
きる。
FIG. 4 shows a method for measuring color difference using the sensitivity characteristics of the optical semiconductor element 1, in which the optical output currents respectively derived from the first photodiode PD 1 and the second photodiode PD 2 of the optical semiconductor element 1 are amplified. The temperature is input to amplifier circuits A 1 and A 2 which can be varied by variable resistors R 1 , R 2 , etc., and the amplifier circuits A 1 and A 2
The optical output current is amplified to a preset amplification degree by A 2 and output. Here, if the amplification degrees in the amplifier circuits A 1 and A 2 are the same for both optical output currents, the sensitivities of both photodiodes will match at the wavelength λ 0 in FIG. 3 as described above. However, by changing the amplification degree of both amplifier circuits, the wavelength at the point where the sensitivities match changes. For example, the first photodiode
The broken line in Figure 3 shows the spectral sensitivity characteristics of the first photodiode PD 1 , in which the amplification degree of the amplifier circuit A 1 connected to PD 1 is set to 1.5 times the amplification degree of the amplifier circuit A 2. The same spectral sensitivity characteristics with the intensity set to 0.5 times are shown by the dashed-dotted line in Figure 3. When the amplification is 1.5, the wavelength λ′ 0 at which the sensitivity matches is on the short wavelength side,
When the amplification degree is 0.5, the wavelength λ″ 0 at which the sensitivity matches appears closer to the long wavelength side.In other words, the wavelength of the irradiated light can be detected by changing the amplification degree of one output to that of the other output. The area can be expanded.

第4図に於てBは比較回路で、上記予め設定さ
れた増幅度で増幅された両増幅回路の出力を入力
して両入力信号の関係を比較し、比較結果を色差
出力信号として出力する。上記光出力電流の増幅
回路は、また第5図に示す如く対数圧縮ダイオー
ドlogD1,logD2を接続した演算増幅器OA1,OA2
を接続し、ホトダイオード出力を対数圧縮処理し
て比較結果を得ることもできる。
In FIG. 4, B is a comparison circuit which inputs the outputs of both amplifier circuits amplified by the preset amplification degree, compares the relationship between both input signals, and outputs the comparison result as a color difference output signal. . The above optical output current amplification circuit also includes operational amplifiers OA 1 and OA 2 to which logarithmic compression diodes logD 1 and logD 2 are connected, as shown in FIG.
It is also possible to logarithmically compress the photodiode output to obtain comparison results.

尚色差信号を形成する際、上記1個の光半導体
素子を用いた色差測定装置で出力信号を得ること
ができるが、更に測定精度を高めるために、増幅
度が互いに異なる、即ち感度の一致する波長がズ
レている複数組の色差測定回路を用いることによ
つて実施することができ、各色差測定回路の出力
信号によつてより細分化された色差信号を得るこ
とができる。
When forming a color difference signal, the output signal can be obtained by a color difference measuring device using one of the above-mentioned optical semiconductor elements, but in order to further improve measurement accuracy, the amplification degree is different from each other, that is, the sensitivity is matched. This can be carried out by using a plurality of sets of color difference measurement circuits whose wavelengths are shifted, and it is possible to obtain more subdivided color difference signals by the output signals of each color difference measurement circuit.

以上本発明によれば、新規な光半導体素子を用
いて該光半導体素子の分光感度特性を可変させる
ことにより、フイルタ等を要することなく容易に
広い範囲の波長域に亘つて色差信号を得ることが
でき、簡単な構成で色情報に応答し得る色差測定
装置を得ることができる。
As described above, according to the present invention, by using a novel optical semiconductor element and varying the spectral sensitivity characteristics of the optical semiconductor element, it is possible to easily obtain a color difference signal over a wide wavelength range without requiring a filter or the like. Therefore, it is possible to obtain a color difference measuring device that can respond to color information with a simple configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に適用する光半導体素子の断面
図、第2図は同光半導体素子の等価回路図、第3
図は本発明の説明に供する分光感度特性図、第4
図は本発明による一実施例を示す回路図、第5図
は本発明による他の実施例を示す回路図である。 1:光半導体素子、3:第1PN接合、4:第
2PN接合、A1A2:増幅回路、R1R2:可変抵抗。
FIG. 1 is a cross-sectional view of an optical semiconductor device applied to the present invention, FIG. 2 is an equivalent circuit diagram of the optical semiconductor device, and FIG.
The figure is a spectral sensitivity characteristic diagram used to explain the present invention.
The figure is a circuit diagram showing one embodiment of the invention, and FIG. 5 is a circuit diagram showing another embodiment of the invention. 1: Optical semiconductor element, 3: 1st PN junction, 4: 1st
2PN junction, A 1 A 2 : Amplifier circuit, R 1 R 2 : Variable resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 光の受光面に対して深さを相違させて少なく
とも2層のPN接合を形成し、各PN接合における
光出力電流をそれぞれ個別に取り出す電極が設け
られた光半導体素子と、該光半導体素子の各PN
接合における光出力電流が同時に夫々入力され、
且つ一方の光出力電流に対して他方の光出力電流
の増幅度を変化させる可変増幅器と、該増幅器か
ら出力された両光出力電流の大小関係を比較して
色差信号を出力する比較回路とを備えてなること
を特徴とする色差測定装置。
1. An optical semiconductor element that forms at least two layers of PN junctions at different depths with respect to a light receiving surface, and is provided with electrodes that individually take out the optical output current in each PN junction, and the optical semiconductor element Each PN of
The optical output currents at the junctions are input simultaneously, respectively,
A variable amplifier that changes the amplification degree of one optical output current with respect to the other optical output current, and a comparison circuit that compares the magnitude relationship between the two optical output currents output from the amplifier and outputs a color difference signal. A color difference measuring device comprising:
JP12021378A 1978-07-24 1978-09-28 Measuring unit for color difference Granted JPS5546177A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12021378A JPS5546177A (en) 1978-09-28 1978-09-28 Measuring unit for color difference
US06/060,189 US4309604A (en) 1978-07-24 1979-07-24 Apparatus for sensing the wavelength and intensity of light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12021378A JPS5546177A (en) 1978-09-28 1978-09-28 Measuring unit for color difference

Publications (2)

Publication Number Publication Date
JPS5546177A JPS5546177A (en) 1980-03-31
JPS6150246B2 true JPS6150246B2 (en) 1986-11-04

Family

ID=14780687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12021378A Granted JPS5546177A (en) 1978-07-24 1978-09-28 Measuring unit for color difference

Country Status (1)

Country Link
JP (1) JPS5546177A (en)

Also Published As

Publication number Publication date
JPS5546177A (en) 1980-03-31

Similar Documents

Publication Publication Date Title
US4309604A (en) Apparatus for sensing the wavelength and intensity of light
US4011016A (en) Semiconductor radiation wavelength detector
US3808435A (en) Infra-red quantum differential detector system
US6297488B1 (en) Position sensitive light spot detector
US5883421A (en) Photodetector based on buried junctions and a corresponding method of manufacture
JP2006245264A (en) Integrated circuit equipped with semiconductor light receiving element
US3987298A (en) Photodetector system for determination of the wavelength of incident radiation
US4520381A (en) Polychromatic image sensor
US4146904A (en) Radiation detector
JPH0738136A (en) Photodetector
US4692025A (en) Semiconductor color sensor detection circuit
Chouikha et al. Colour detection using buried triple pn junction structure implemented in BiCMOS process
JPS6150246B2 (en)
JPS60241277A (en) Semiconductor device
JP3445407B2 (en) Solid-state imaging device
JPS6116580A (en) Optical detection semiconductor device
JPH0517492B2 (en)
JPS626170B2 (en)
JP2933870B2 (en) Photodetector and method of manufacturing the same
JP2019102748A (en) Semiconductor photodetector
JP2596023B2 (en) Evaluation method of semiconductor photo detector
JPS6365325A (en) Light quantity detecting circuit
JPS6269568A (en) Semiconductor color sensor
JPS6365326A (en) Light quantity detecting circuit
JPS6219725A (en) Detecting circuit for semiconductor color sensor