JPS6150079A - Coersive force measuring apparatus - Google Patents

Coersive force measuring apparatus

Info

Publication number
JPS6150079A
JPS6150079A JP17299184A JP17299184A JPS6150079A JP S6150079 A JPS6150079 A JP S6150079A JP 17299184 A JP17299184 A JP 17299184A JP 17299184 A JP17299184 A JP 17299184A JP S6150079 A JPS6150079 A JP S6150079A
Authority
JP
Japan
Prior art keywords
test piece
coil
sensor
magnetic field
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17299184A
Other languages
Japanese (ja)
Inventor
Takeshi Anpo
安保 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP17299184A priority Critical patent/JPS6150079A/en
Publication of JPS6150079A publication Critical patent/JPS6150079A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/14Measuring or plotting hysteresis curves

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To enable the measurement of coersive force of a ferromagnetic body simply and quickly with a small unit, by arranging a test piece and a sensor in a fine clearance between cores arranged in magnetizing the demagnetizing coils to rotate them relatively. CONSTITUTION:A test piece holder 42 is set in a fine clearance between cores 14 and DC excitation current is allowed to flow to a magnetizing coil 11 from a DC voltage varying circuit 21 to magnetically saturate a test piece 43 by magnetization. Then, a motor is made to run to turn the test piece holder 42 while excitation current from a DC voltage varying circuit 22 applied to a demagnetizing coil 12 is increased sequentially to generate a magnetic field in the direction opposite to that of a magnetic field of the magnetizing coil 11. Then, the difference in the electromotive forces between detection coil 52 and 53 is supplied to an X-Y recorder through the charging of a capacitor so that the residual magnetization of the test piece 43 is offset by the magnetic field of the demagnetization coil 12. Thus, the coersive force of the test piece 43 is calculated from the value of excitation current of the demagnetization coil 12 when the outputs of the detection coils 52 and 53 equal.

Description

【発明の詳細な説明】 し産業上の利用分野] 本発明は、強磁性体試験片の保磁力測定装置に関するも
ので、特に、小形化した保磁力測定装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a coercive force measuring device for a ferromagnetic test piece, and particularly to a compact coercive force measuring device.

[従来の技術] 強磁性体特性を示′1j鉄及びその他の金属素材等は、
工場出荷に先立ち磁性材料としてのTAi気的性的性質
査するために、前記金属累月の試験片をサンプル抽出し
て磁化特性を測定することが一般に行われている。この
磁化特性は、第5図に示すように磁性材料中の横軸に磁
界の強さ14をとり、縦軸に磁束密度Bをとった場合に
、磁界の強さがO→a−+b→Cの如く変化した後、0
点で磁気飽和する磁化曲線として示される。なお、磁気
飽和点Cから磁界を前者とは反対方向に強めていくと、
磁化の強さはc−+d−+e→fの径路をたどってf点
で再び飽和し、次いで、再び磁界を当初の方向に強めて
いくと、磁化はf−+q−1に→Cの径路をたどって環
状に変化し、所謂、ヒステリシスループを描く。このと
きO−dの大きさを残留v11東密度[3rといい、Q
−eの大ぎざを保磁力Hcという。
[Prior art] Iron and other metal materials exhibiting ferromagnetic properties are
In order to examine the magnetic properties of TAi as a magnetic material prior to factory shipment, it is common practice to extract a sample of the metal moon and measure its magnetic properties. As shown in Fig. 5, when the horizontal axis in the magnetic material represents the magnetic field strength 14, and the vertical axis represents the magnetic flux density B, the magnetic field strength is O→a-+b→ After changing like C, 0
It is shown as a magnetization curve that magnetically saturates at a point. In addition, when the magnetic field is strengthened in the opposite direction from the magnetic saturation point C,
The strength of magnetization follows the path c-+d-+e → f and becomes saturated again at point f. Then, when the magnetic field is strengthened again in the original direction, the magnetization changes to f-+q-1 → path C It changes in a circular pattern, creating a so-called hysteresis loop. At this time, the magnitude of O-d is called the residual v11 East density [3r, and Q
The large serration of -e is called coercive force Hc.

一般に、工場から出荷される金属素材の磁束密度、保磁
力等の磁化特性の測定は、従来環状試料を用いる膜状鉄
心法によって行われたり、自記磁束計、NS透磁率計を
用いて行われていた。これら各MA磁化特性の測定方法
のうち、特にNS透磁率計による棒状試験片の保磁)〕
測定は、作業手順が複雑で、熟練者でもその測定に長時
間を要する等の問題があった。また、試験片を磁気飽和
するまで磁化するものにおいては、空心コイルを用いて
、前記試験片を磁化しており、保磁力測定装置が大きく
ならざるを得ない等の問題があった。
Generally, the measurement of magnetization characteristics such as magnetic flux density and coercive force of metal materials shipped from factories has conventionally been carried out by the membrane core method using a ring-shaped sample, or by using a self-recording magnetometer or NS permeability meter. was. Among these methods for measuring MA magnetization characteristics, especially the coercivity of a bar-shaped specimen using an NS permeability meter)
The measurement procedure is complicated and requires a long time even for an experienced person. In addition, in those that magnetize a test piece until it reaches magnetic saturation, an air-core coil is used to magnetize the test piece, which has the problem of requiring a large coercive force measuring device.

そこで、本発明は、前記問題を解決づべく試験片を所定
の位置に装着するだ(プで、熟練者でなくとも、短時間
で測定できる強vil性体の保vit力を測定する小形
化された保磁力測定装置の提供をその課題とするもので
ある。
Therefore, in order to solve the above-mentioned problem, the present invention is a compact method for measuring the vitreous force of a strong vitreous body, which can be measured in a short time without the need of an expert. The object of the present invention is to provide a coercive force measuring device that can be used to measure coercive force.

[問題点を解決するための手段]  ゛本発明は磁化及
び減磁コイルと、前記コイル中に配設さた微小間隙を有
する鉄心を配設し、前記微小間隙中に試験片ホルダに挿
着した試験片とセンサとを配置し、それらを相対的に回
転することにより、前記センサに磁界の変化を出力させ
る構成を有するものである。
[Means for Solving the Problems] ゛The present invention includes a magnetizing and demagnetizing coil, an iron core disposed in the coil having a minute gap, and a test specimen holder inserted into the minute gap. The present invention has a configuration in which a test piece and a sensor are arranged, and by rotating them relative to each other, the sensor outputs a change in the magnetic field.

また、前記試験片ホルダとセンサとに相対的な回転を与
える回転軸を磁界に対して!I!直または平行に配設し
た構成を右するものである。
Also, the rotation axis that provides relative rotation between the test piece holder and the sensor is relative to the magnetic field! I! This refers to a straight or parallel configuration.

[作用] 上記構成手段によれば、磁化コイルに電流を流して前記
コイル中に磁界を発生させて、前記コイル中に配設され
た鉄心を介して、微小間隙に配置された試験片を磁化し
、磁気飽和させる。そして、前記着磁コイルの電流を断
った1す、減磁コイルに前記磁界の方向とは逆の磁界を
発生さぼる。この磁界は順次その強さを増加させ、試験
片を通過する磁界と鉄心間の微小間隙の磁界との間に磁
界の強さの差がなくなったときを、センサで検出し、そ
の時点を試験片の残留磁気の喪失時点として、微小間隙
の磁界を基に試験片の保磁力を停出することができる。
[Operation] According to the configuration means, a current is passed through the magnetizing coil to generate a magnetic field in the coil, and a test piece placed in a minute gap is magnetized via an iron core disposed in the coil. and magnetically saturate it. Then, when the current in the magnetizing coil is cut off, a magnetic field opposite to the direction of the magnetic field is generated in the demagnetizing coil. The strength of this magnetic field is increased sequentially, and a sensor detects when there is no longer a difference in magnetic field strength between the magnetic field passing through the test piece and the magnetic field in the minute gap between the iron cores, and the test is performed at that point. The coercive force of the test piece can be stopped based on the magnetic field of the microgap as the point at which the residual magnetism of the test piece is lost.

[実施例] 次に、本発明の保磁力測定装置の第一実施例について、
図を用いて説明する。
[Example] Next, regarding the first example of the coercive force measuring device of the present invention,
This will be explained using figures.

第1図は、本発明の保田力測定装置の全体の要部を示す
も一1成図である。図において、11は所定の径及び長
さに巻回された磁化コイルであり、12は所定の径及び
長さに巻回された減磁コイルである。これらの磁化コイ
ル11及び減磁コイル12は通當ボビンに銅線を所定回
数巻回して形成され、その巻線密度は一様でかつ密であ
るから、一般にソレノイドと呼称されるものと同一であ
る。
FIG. 1 is a schematic diagram showing the main parts of the entire Yasuda force measuring device of the present invention. In the figure, 11 is a magnetizing coil wound to a predetermined diameter and length, and 12 is a demagnetizing coil wound to a predetermined diameter and length. These magnetizing coils 11 and demagnetizing coils 12 are formed by winding copper wire around a bobbin a predetermined number of times, and the winding density is uniform and dense, so they are the same as what is generally called a solenoid. be.

前記巻線は一様にかつ密に巻回することを理想どするが
、必ずしもそのようにしなければならないことはないか
ら、以下上位概念のコイルと呼称する。しかし、前記両
コイルが形成する磁界は、電流がコイルの断面全体に略
一様に分布している状態にあり、その内部には平等磁界
或いは略平等磁界を形成する。そして、前記磁化コイル
11の外周には、強磁性体からなる磁気シールド筒(図
示せず)が密着配設されており、磁化コイル11及び減
磁コイル12が形成する磁界が、前記磁化コイル11及
び減磁コイル12外に形成されるのを防止している。
Ideally, the winding wire should be wound uniformly and densely, but since it is not always necessary to do so, it will be referred to as a general concept coil below. However, the magnetic fields formed by the two coils are such that the current is distributed substantially uniformly over the entire cross section of the coils, and an equal or substantially equal magnetic field is formed inside the coils. A magnetic shield tube (not shown) made of a ferromagnetic material is closely disposed around the outer periphery of the magnetizing coil 11, so that the magnetic field formed by the magnetizing coil 11 and the demagnetizing coil 12 is transmitted to the magnetizing coil 11. and is prevented from being formed outside the demagnetizing coil 12.

前記磁化コイル11及び減磁コイル12は、夫々直流電
圧可変回路21及び直流電圧可変回路22に接続されて
おり、前記直?A≧宙圧可変回路21は試験片を磁気飽
和されるに足る励磁電流供給用であるから、試験片材料
を磁気飽和させるに足る出ノ〕を供給する定電圧(定電
流)電源でしよいが、本実施例の如く、直流電圧可変回
路21を用いて、その出力電流を連続または数段に可変
して、試験片の磁気飽和を確認できるものがよい。減磁
コイル12に励!l電流を供給する直流電圧可変回路2
2は励磁電流を調整して試験片の残留磁気を打ち消すも
のであり、その出ノjは連続的に変化するものである。
The magnetizing coil 11 and the demagnetizing coil 12 are connected to a DC voltage variable circuit 21 and a DC voltage variable circuit 22, respectively, and are connected to the DC voltage variable circuit 21 and the DC voltage variable circuit 22, respectively. A≧ Since the variable air pressure circuit 21 is for supplying an excitation current sufficient to magnetically saturate the test piece, it may be a constant voltage (constant current) power supply that supplies an output sufficient to magnetically saturate the test piece material. However, as in this embodiment, it is preferable to use a variable DC voltage circuit 21 to vary the output current continuously or in several steps to check the magnetic saturation of the test piece. Excite the demagnetizing coil 12! DC voltage variable circuit 2 that supplies l current
2 is to adjust the excitation current to cancel the residual magnetism of the test piece, and its output j changes continuously.

なお、直流電圧可変回路21及び直流電圧可変    
゛回路22は、夫々磁化コイル11と′6AIaコイル
12に電源を供給しているが、それらを共用電源とし、
両者の励磁電流の方向を切替えスイッチによって反転さ
せる構成にしてもよい。
In addition, the DC voltage variable circuit 21 and the DC voltage variable
゛The circuit 22 supplies power to the magnetizing coil 11 and the '6AIa coil 12, respectively, but it uses them as a common power supply,
The direction of both excitation currents may be reversed by a changeover switch.

同様に、前記磁化コイル11及び減磁コイル12におい
ても、その供給電源回路の切替えによって、両コイルを
共用することができる。即ち、磁化コイル11及び減磁
コイル12を1つのコイルとし、励磁電流の方向によっ
て、試験片の磁化或いは減磁を行うようにすることがで
きる。両コイルを共用すると、装置が小形化でき、かつ
装置が廉価に!8!造できる。また、前記直流電圧可変
回路21及び直流電圧可変回路22の共用も同様の特徴
を有する。
Similarly, the magnetizing coil 11 and the demagnetizing coil 12 can be used in common by switching their power supply circuits. That is, the magnetizing coil 11 and the demagnetizing coil 12 can be made into one coil, and the test piece can be magnetized or demagnetized depending on the direction of the excitation current. By sharing both coils, the device can be made smaller and cheaper! 8! Can be built. Further, the common use of the DC voltage variable circuit 21 and the DC voltage variable circuit 22 has similar characteristics.

直流電圧可変回路22から出力される励磁電流は低抵抗
Rによって励トロ電流に比例する電圧として取り出され
、X−Yレコーダ30のX端子入力となる。
The excitation current output from the variable DC voltage circuit 22 is taken out as a voltage proportional to the excitation current by a low resistance R, and becomes the X terminal input of the XY recorder 30.

また、前記磁化コイル11及び減[…コイル12の中に
は微小間隙を右する鉄心14が配設される。
Further, an iron core 14 is disposed within the magnetizing coil 11 and the reducing coil 12 to form a minute gap.

前記微小間隙は、俊速するセンサ及び試験片ホルダ等が
配設できる最小の幅とすると共に、その間隙の磁界は均
一に分布されるべく溝底づる。本実施例では、更に、前
記磁界がセンサ及び試験片ホルダイ」近の磁束密度を高
くする様に、前記コイル内の鉄心の径よりも、センサ及
び試験片ホルダ付近の径を小さくしている。前記鉄心1
4の微小間隙端部には、非磁性体のセンサ取付板51に
固着し、センサ取付板51に固着されたセンサーを鉄心
端部に取り付けている。前記センサは図示した本実施例
では、検出コイル52及び53で形成されたものである
The minute gap has the minimum width that allows a fast-moving sensor, a test piece holder, etc. to be disposed therein, and the bottom of the gap is designed so that the magnetic field in the gap is uniformly distributed. In this embodiment, the diameter near the sensor and test strip holder is further made smaller than the diameter of the iron core in the coil so that the magnetic field increases the magnetic flux density near the sensor and test strip holder. Said iron core 1
A non-magnetic sensor mounting plate 51 is fixed to the end of the minute gap 4, and a sensor fixed to the sensor mounting plate 51 is mounted to the end of the iron core. In the illustrated embodiment, the sensor is formed by detection coils 52 and 53.

前記微小間隙に配設された試験片ボルダ42は、試験片
43を挿着するもので、試験片ホルダ42が回転したと
きに試験片43が移動しないように螺止等で固定する。
The test piece boulder 42 disposed in the minute gap is used to insert the test piece 43, and is fixed with screws or the like so that the test piece 43 does not move when the test piece holder 42 rotates.

前記試験片ホルダ42は接続11+ 48の一端に固着
されており、その他端には歯車45が取り付けられてお
り、前記試験片ボルダ42と歯車45との間の接vc軸
48は、それらを任意の位置に定置させ、支持部材44
に回動自在に取り付けられている。前記歯車45には、
電動別によって回動される磁界方向に対して垂直方向の
回転軸47の1車46と噛合っており、本実施例では歯
車45と歯車46は直角に回動を伝達する必要性から、
かさ歯車を用いているが、Cフオーム歯車或いはハイポ
イド歯車等の歯車が使用できる。これら、試験片ホルダ
42及び支持部材44、歯車45及び46、回転軸47
、接続軸48等は非磁性体材料を使用し、検出コイル5
2及び53と試験片43との[U力線の乱れがないよう
に構成する必要がある。
The test piece holder 42 is fixed to one end of the connection 11+ 48, and a gear 45 is attached to the other end, and the contact vc shaft 48 between the test piece holder 42 and the gear 45 allows them to be freely connected. the support member 44
It is rotatably attached to. The gear 45 includes
It meshes with one wheel 46 of a rotating shaft 47 that is perpendicular to the direction of the magnetic field rotated by the electric motor, and in this embodiment, the gear 45 and the gear 46 are required to transmit rotation at right angles.
Although bevel gears are used, gears such as C-form gears or hypoid gears can also be used. These, the test piece holder 42 and the support member 44, the gears 45 and 46, the rotating shaft 47
, the connection shaft 48 etc. are made of non-magnetic material, and the detection coil 5
2 and 53 and the test piece 43 so that there is no disturbance of the U force lines.

前記試験片43は、回転する試験片ホルダ42の軸心に
対して偏心的に装着される。前記偏心的に装着された試
験片43に対向づ゛る位置に、試験片磁界検出用検出コ
イル52を配設する。また、前記試験片43の磁界の影
響を受けない位置に、間隙磁界検出用検出コイル53を
配設する。したがって、試験片43が試験片ホルダ42
によって回転されても、検出コイル53側には何等その
影響はない。
The test piece 43 is mounted eccentrically with respect to the axis of the rotating test piece holder 42. A detection coil 52 for detecting a test piece magnetic field is disposed at a position opposite to the eccentrically mounted test piece 43. Further, a detection coil 53 for detecting the gap magnetic field is arranged at a position not affected by the magnetic field of the test piece 43. Therefore, the test piece 43 is attached to the test piece holder 42.
Even if it is rotated by , it has no effect on the detection coil 53 side.

前記試験片磁界検出用検出コイル52と間隙磁界検出用
検出コイル53との接続は第2図の検出信号処理回路の
如く行われる。
The detection coil 52 for detecting the test piece magnetic field and the detection coil 53 for detecting the gap magnetic field are connected as in the detection signal processing circuit shown in FIG. 2.

即ち、雨検出コイル52及び53は差動状態に接続され
、その出、力を差動増幅器0 ’Pに入力される。した
がって、試験片43が試験片ホルダ42に挿着されてい
ない状態では、雨検出コイル52及び53の出力は、間
隙の磁界の変化があったとしても、互いに打ち消されて
差動増幅器OPの出力は零となり、鉄心が作る磁界の工
費がl:((視できる。そこで、間隙に試験片43を挿
入して磁界を印加した場合には試験片43の磁化が試験
片磁界検出用検出コイル52に与えられると、差ωJ増
幅器OPの出力が高くなり、ダイオードDを介して、そ
れがコンデンサCに充電され、コンデンサCの電位が抵
抗R2を介してX−Yし]−ダのY端子入力に導かれる
。なお、このとき放電抵抗R1は試験片ホルダ42の回
転数及び減磁コイル12の励!i電流の変化速度によっ
て決定される時定数に設定するとよい。
That is, the rain detection coils 52 and 53 are connected in a differential state, and their output power is input to the differential amplifier 0'P. Therefore, when the test piece 43 is not inserted into the test piece holder 42, the outputs of the rain detection coils 52 and 53 are canceled by each other even if there is a change in the magnetic field in the gap, and the output of the differential amplifier OP is becomes zero, and the construction cost of the magnetic field created by the iron core is l:(((). Therefore, when the test piece 43 is inserted into the gap and a magnetic field is applied, the magnetization of the test piece 43 will change to the detection coil 52 for detecting the test piece magnetic field. , the output of the difference ωJ amplifier OP becomes high, which charges the capacitor C through the diode D, and the potential of the capacitor C changes through the resistor R2 to the Y terminal input of the At this time, the discharge resistance R1 is preferably set to a time constant determined by the rotation speed of the test piece holder 42 and the rate of change of the excitation current of the demagnetizing coil 12.

上記の如く構成された本実施例の保磁力測定装置は次の
様に動作し、試験片の保磁力を測定することができる。
The coercive force measuring device of this embodiment configured as described above operates as follows, and can measure the coercive force of a test piece.

まず、試験片ホルダー42に試験片43を装着し、螺子
等で固定し、試験片材l界検出用検出コイル52に対向
した任意の位置に設定づ゛る。
First, the test piece 43 is mounted on the test piece holder 42, fixed with screws, etc., and set at an arbitrary position facing the detection coil 52 for detecting the test piece material l field.

次に、磁化コイル11に直流電圧可変回路21から直流
励磁電流を流し、試験片43を磁化し磁気飽和さぼる。
Next, a DC excitation current is applied to the magnetization coil 11 from the DC voltage variable circuit 21 to magnetize the test piece 43 and reduce magnetic saturation.

その後、直流電圧可変回路21の出力を遮断する。直流
電圧可変回路21の出力を遮断することにより、試験片
43は磁化された状態を維持する。
Thereafter, the output of the DC voltage variable circuit 21 is cut off. By cutting off the output of the DC voltage variable circuit 21, the test piece 43 maintains its magnetized state.

次に、電動礪を回転させ、回転軸47、歯車46及び4
5、接続軸48を介して、試験片ホルダ42を回転させ
る。
Next, the electric kettle is rotated, and the rotating shaft 47, gears 46 and 4 are rotated.
5. Rotate the test piece holder 42 via the connecting shaft 48.

そして、減磁コイル12に直流電圧可変回路22から順
次励磁電流を増加させることにより、前記磁化コイル1
1の磁界の方向とは逆の方向の磁界を発生させる。この
ときの励磁電流は低抵抗Rの両端から電圧としてX−Y
レコーダに導かれる。
Then, by sequentially increasing the excitation current from the DC voltage variable circuit 22 to the demagnetizing coil 12, the magnetizing coil 1
A magnetic field is generated in a direction opposite to the direction of the magnetic field in step 1. At this time, the excitation current is expressed as a voltage from both ends of the low resistance R
guided by the recorder.

同時に、試験片磁界検出用検出コイル52と間隙磁界検
出用検出コイル53の出力は、例えば、減磁コイル12
の励磁電流の変化により、雨検出コイル52及び53に
磁束変化が生じた場合、雨検出コイル52及び53の起
電力は互いに打ち潤されて、lXj vii電流の急変
による雨検出コイル52及び53の出力は、差動増幅器
OPの出力とはならないようにしている。
At the same time, the outputs of the detection coil 52 for detecting the test piece magnetic field and the detection coil 53 for detecting the gap magnetic field are, for example,
When a change in magnetic flux occurs in the rain detection coils 52 and 53 due to a change in the excitation current of The output is made not to be the output of the differential amplifier OP.

しかし、試験片43の残rt!i磁化が減磁コイル12
の減磁界により打ち潤される前は、試験片43が検出コ
イル52付近を通過する毎に、検出コイル52の出力は
パルスとなる。前記パルスは差動増幅器OPでその極性
が反転されると共に増幅され、ダイオードDを介してコ
ンデンサCに充電される。コンデンサCの充電電圧はX
−YレコーダのYll大入力導かれる。
However, the remaining rt of test piece 43! i magnetization is demagnetized coil 12
Before being wetted by the demagnetizing field, the output of the detection coil 52 becomes a pulse every time the test piece 43 passes near the detection coil 52. The polarity of the pulse is inverted and amplified by the differential amplifier OP, and the capacitor C is charged via the diode D. The charging voltage of capacitor C is
- Yll large input of Y recorder is led.

試験片43の残留磁化が減磁コイル12の磁界によって
打ち消されると、検出コイル52及び53の出力は等し
くなり、差動増幅器OPの出力が零となる。このときの
減磁コイル12の励磁電流の値から、試験片43の保磁
力を→出することができる。なお、前記X−Yレコーダ
を用いず、゛電圧計でコンデンサCの充電電圧が零にな
った時の、減磁コイルの電流値を測定しても同様に、試
験片43の保磁力を算出することができる。
When the residual magnetization of the test piece 43 is canceled by the magnetic field of the demagnetizing coil 12, the outputs of the detection coils 52 and 53 become equal, and the output of the differential amplifier OP becomes zero. From the value of the excitation current of the demagnetizing coil 12 at this time, the coercive force of the test piece 43 can be calculated. Note that even if you do not use the X-Y recorder and measure the current value of the demagnetizing coil with a voltmeter when the charging voltage of capacitor C becomes zero, the coercive force of test piece 43 can be calculated in the same way. can do.

この種の第1図に示した本発明の保磁力J111定装置
の実施例では、鉄心14によって試験片43付近の磁界
の強さを空心に比較して増加させることができる。更に
、支持部材44をその支点(図示せず)を中心に回動自
在にすると、支持部材44を回動して、鉄心14の微小
間隙から試験片ボルダ42を外に取り出した状態で、試
験片43の挿着及びその取り外しを行うことができるか
ら、試験片43の挿着及び取り外しが容易となる。
In this type of embodiment of the coercive force J111 constant device of the present invention shown in FIG. 1, the strength of the magnetic field near the test piece 43 can be increased by the iron core 14 compared to an air core. Furthermore, by making the support member 44 rotatable around its fulcrum (not shown), the test specimen boulder 42 can be tested while being rotated and the test piece boulder 42 is taken out from the minute gap in the iron core 14. Since the test piece 43 can be inserted and removed, the test piece 43 can be easily inserted and removed.

第3図は本発明の保磁力測定装置の第二実施例である。FIG. 3 shows a second embodiment of the coercive force measuring device of the present invention.

特に第1図の本発明の第一実施例との相違点のみを述べ
る。
In particular, only the differences from the first embodiment of the present invention shown in FIG. 1 will be described.

第一実施例では、電動機の回転を鉄心の微小間隙の磁界
の方向と垂直の方向から、回転軸47によって試験片ホ
ルダ42に与えていたが、本実施例では鉄心14を貫通
して回転軸41を挿入し、その回転軸41の端部に試験
片ホルダ42を固着している。したがって、セ動いから
の回転は回転軸41に直接伝達され、回転’I’Jl 
41の回転は回転側141に固着した試験片ホルダ42
を、歯車等を介することなく、直接回転することになる
In the first embodiment, the rotation of the motor was applied to the test piece holder 42 by the rotating shaft 47 in a direction perpendicular to the direction of the magnetic field in the minute gap in the iron core, but in this embodiment, the rotating shaft 47 penetrates through the iron core 14. 41 is inserted, and a test piece holder 42 is fixed to the end of the rotating shaft 41. Therefore, the rotation from the movement is directly transmitted to the rotating shaft 41, and the rotation 'I'Jl
The rotation of 41 is caused by the test piece holder 42 fixed to the rotating side 141.
is rotated directly without using gears or the like.

第二実施例によれば、第一実施例で必要とした接続軸4
8、支持部材44、歯車45及び46が不用となり、鉄
心間の微小間隙を狭くすることができ、その分だけ磁気
抵抗が減少し、第一実施例と第二実施例の間隙の磁界を
同一と寸れば、第二実施例の励磁電流は少なくすること
ができる。逆に、励v11電流が一定であれば、第二実
施例の磁界は強くづ゛ることかできる。なお、試験片4
3は鉄心14間の微小間隙を狭くすると、その挿着及び
取り外しが困難となるから、回転軸41を左に移動する
ことにより、試験片ホルダ42が取り出せる構造、即ち
、回転@h41の右端に試験片ホルダ42を螺着等の手
段で取り付けるのがよい。
According to the second embodiment, the connecting shaft 4 required in the first embodiment
8. The support member 44 and gears 45 and 46 are no longer required, and the minute gap between the iron cores can be narrowed, and the magnetic resistance is reduced accordingly, making the magnetic field in the gap the same in the first and second embodiments. Therefore, the excitation current of the second embodiment can be reduced. Conversely, if the excitation v11 current is constant, the magnetic field of the second embodiment can be increased in strength. In addition, test piece 4
3 is a structure in which the test piece holder 42 can be taken out by moving the rotating shaft 41 to the left, because narrowing the minute gap between the iron cores 14 makes it difficult to insert and remove them, that is, at the right end of rotation @ h41. It is preferable to attach the test piece holder 42 by screwing or the like.

結果的に、第二実施例は保磁力測定装置全体を最も小形
化することができる。
As a result, the second embodiment allows the entire coercive force measuring device to be made most compact.

第−実施例及び第二実施例のセンサとして検出コイル5
2及び53を用いた例を説明したが、前記検出コイルを
ホール素子(ホールICを含む)とすることもできる。
Detection coil 5 as a sensor of the first embodiment and the second embodiment
2 and 53 have been described, but the detection coil can also be a Hall element (including a Hall IC).

この場合の信号処理回路60は、第4図の検出信号処理
回路の如く構成すればよい。なお、前記信号処理回路6
0は定電流電源回路と第4図の検出信号処理回路とから
構成される。
The signal processing circuit 60 in this case may be configured as the detection signal processing circuit shown in FIG. Note that the signal processing circuit 6
0 is composed of a constant current power supply circuit and a detection signal processing circuit shown in FIG.

まず、ホール素子65及び66に定電流源がら定電流1
1及び■2を供給しておく。試験片磁界検出用ホール素
子65と間隙内磁界検出用ホール索子66の出力は、夫
々のホール素子の磁界の強さに比例した出力となり、増
幅器A1及びA2を介して、オペアンプOP1及びOR
3の入力となる。減算回路OP3はオペアンプを減綿回
路として使用するもので、両オペアンプOPI及びOR
3の出力を得て、オペアンプOP1とオペアンプOP2
との差をその出力としている。即ち、減rAlコイル1
2の励磁電流を増加させているとぎ、試験片43の床置
1力以下の磁界では、その出力は正の出力となる。励磁
電流の増加に伴い、試験片43が保磁力の点で残留磁化
を無くずと、両ホール素子65及び66の出力は打ち消
されて減算回路OP3の出力は零となる。X−Yレコー
ダを監視することにより、1)1j記減算回路OP3の
出力が零になる点を求め、そのときの励磁電流から、試
験片43の保磁力を算出することができる。
First, a constant current 1 is applied to the Hall elements 65 and 66 from a constant current source.
1 and ■2 are supplied. The outputs of the Hall element 65 for detecting the magnetic field of the test piece and the Hall probe 66 for detecting the magnetic field in the gap are outputs proportional to the strength of the magnetic field of each Hall element, and are outputted to the operational amplifiers OP1 and OR via amplifiers A1 and A2.
3 inputs. Subtraction circuit OP3 uses an operational amplifier as a cotton reduction circuit, and both operational amplifiers OPI and OR
3 outputs, operational amplifier OP1 and operational amplifier OP2
The output is the difference between the two. That is, the reduced rAl coil 1
As long as the excitation current of 2 is increased, the output becomes a positive output in a magnetic field of less than 1 force when the test piece 43 is placed on the floor. As the excitation current increases, when the test piece 43 loses residual magnetization in terms of coercive force, the outputs of both Hall elements 65 and 66 are canceled and the output of the subtraction circuit OP3 becomes zero. By monitoring the X-Y recorder, 1) the point at which the output of the subtraction circuit OP3 described in 1j becomes zero can be determined, and the coercive force of the test piece 43 can be calculated from the excitation current at that time.

信号処理回路6oとして、第一実施例で使用した回路及
びホール素子を用いた例を説明したが、必ずしも、その
種の回路に限定されるものではなく、ピーク値検出回路
或いは波電圧計等で、ピークツウビーク(peak−t
o−peak)を測定し、(膜幅の最小値のときの減磁
コイルの励磁電流1直を測定づ。
Although an example has been described in which the circuit and Hall element used in the first embodiment are used as the signal processing circuit 6o, the circuit is not necessarily limited to that type of circuit, and a peak value detection circuit, a wave voltmeter, etc. , peak-t
o-peak), and (1 round of excitation current of the demagnetizing coil when the film width is at its minimum value).

れば、前者と同様に試験片の保磁力が算出できる。Then, the coercive force of the test piece can be calculated in the same way as the former.

特に、この場合には、高1llliなX−Yレコーダを
使用しなくてよいから、廉価な保磁カ側定装置となる。
Particularly in this case, since it is not necessary to use an X-Y recorder with a high capacity, it becomes an inexpensive coercive force determining device.

勿論、i! 4図の回路にdブいても、減葦回路。Of course, i! Even if the circuit in Figure 4 has d, it is a reduction circuit.

P3の出力を直流電圧計で測定し、その賄が零になった
ときの減磁コイルの励磁電流(1らを測定すれば、前記
励磁電流値から、試験片の保磁力が算出できる。
By measuring the output of P3 with a DC voltmeter and measuring the excitation current (1, etc.) of the demagnetizing coil when the voltage becomes zero, the coercive force of the test piece can be calculated from the excitation current value.

なお、第−実施例及び第二実施例においては、微小間隙
内の条件について、特記していないが、前記各実施例に
おいて、微小間隙内の雰囲気温度を温度制御装置(図示
せず)によって、特定の温度に設定すれば、特定温度の
保磁力の測定ができる。特に、このときは、その温度が
特定されておれば、ホール素子等の温度?i0償の設計
が容易となる。
Although the conditions within the microgap are not specifically mentioned in the first and second embodiments, in each of the above embodiments, the atmospheric temperature within the microgap is controlled by a temperature control device (not shown). By setting it to a specific temperature, you can measure the coercive force at that specific temperature. In particular, in this case, if the temperature is specified, what is the temperature of the Hall element, etc.? It becomes easy to design i0 compensation.

逆に、試験片43の温度を変化させてその温度特性を測
定する場合には、試験片43及び試験片ホルダ42のみ
を上界させて、温度特性を測定するのが望ましい。
Conversely, when changing the temperature of the test piece 43 and measuring its temperature characteristics, it is desirable to measure the temperature characteristics with only the test piece 43 and the test piece holder 42 at upper limits.

[発明の効果] 以上の様に、本発明の保磁力測定方法は、In化コイル
及び減磁コイルを同心配置すると共に、前記両コイル中
に所定の微少間隙を有する鉄心を配設し、その微小間隙
中に試験片及びセンサとを具婦するものであるから、試
験片を所定の位置に装着するだけで、作業手順が簡単で
熟練者でなくとも、短時間で測定できる強磁性体の保磁
力を測定することができ、しかも、磁化コイル及び減磁
コイル中に鉄心を有するものであるから、微少間隙の磁
界の強さを空心コイルの場合に比し強くすることができ
るから、空心コイルの場合に比し小形化された保磁力測
定装置とすることができる。
[Effects of the Invention] As described above, the coercive force measuring method of the present invention includes arranging an In-coated coil and a demagnetizing coil concentrically, disposing an iron core with a predetermined minute gap between the two coils, and Since the test piece and sensor are placed in a minute gap, the work procedure is simple and even non-skilled workers can measure the ferromagnetic material in a short time by simply attaching the test piece to the specified position. The coercive force can be measured, and since it has an iron core in the magnetizing coil and demagnetizing coil, the strength of the magnetic field in a minute gap can be made stronger than in the case of an air-core coil. The coercive force measuring device can be made smaller than that using a coil.

また、本発明の鉄心の作る磁界のに対して垂直方向に配
設した回転軸によって、前記試験片ホルダとセンサとを
相対的に回転させる保磁力測定装置においては、試験片
ホルダに試験片を容易に着脱できる。
Furthermore, in the coercive force measuring device of the present invention in which the test piece holder and the sensor are rotated relative to each other by a rotating shaft arranged perpendicular to the magnetic field generated by the iron core, the test piece is placed in the test piece holder. Easy to put on and take off.

更に、本発明の鉄心の作る磁界に対して平行方向に配設
した回転軸によって、前記試験片ホルダとセンサとを相
対的に回転させる保磁力測定装置においては、微小間隙
を最も狭くでき、かつ、その磁界の強さを増重ことがで
き、保磁力測定装置を小形化することができる。
Furthermore, in the coercive force measuring device of the present invention in which the test piece holder and the sensor are rotated relative to each other by a rotating shaft arranged in a direction parallel to the magnetic field generated by the iron core, the minute gap can be made the narrowest, and , the strength of the magnetic field can be increased, and the coercive force measuring device can be downsized.

【図面の簡単な説明】 第1図は本発明の第一実施例の保磁力測定装置の全体の
要部を示す構成図、第2図は検出コイルの検出信号を処
理する信号処理回路図、第3図は本発明の第二実施例の
保磁力測定装置の全体の要部を示す構成図、第4図はボ
ール素子の検出(IM ニー+を処理する検出信号処理
回路図、第5図は磁性体の磁化特性図である。 図において、 11・・・磁化コイル、 12・・・減磁コイル、 42・・・試験片ホルダ、 43・・・試験片、 52.53・・・検出コイル、 65.66・・・ホール素子、 である。 なお、図中、同−符号及び同一記号は、同一または相当
部分を示す。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a configuration diagram showing the overall main parts of a coercive force measuring device according to a first embodiment of the present invention, Fig. 2 is a signal processing circuit diagram for processing a detection signal of a detection coil, FIG. 3 is a configuration diagram showing the entire main part of the coercive force measuring device according to the second embodiment of the present invention, FIG. 4 is a detection signal processing circuit diagram for processing ball element detection (IM Knee+), and FIG. is a magnetization characteristic diagram of a magnetic material. In the figure, 11... Magnetizing coil, 12... Demagnetizing coil, 42... Test piece holder, 43... Test piece, 52. 53... Detection Coil, 65.66...Hall element. In the drawings, the same reference numerals and the same symbols indicate the same or equivalent parts.

Claims (9)

【特許請求の範囲】[Claims] (1)磁化コイル及び減磁コイルを同心配置すると共に
、前記両コイル中にコイル軸方向に所定の微少間隙を有
する鉄心を配設し、前記微小間隙中に配設した試験片を
挿着するための試験片ホルダと、前記試験片ホルダに所
定距離離間させて対向配置し、前記試験片ホルダに挿着
された試験片による磁界の変化を検出するセンサとを具
備し、前記試験片ホルダとセンサとを相対的に回転させ
ることを特徴とする保磁力測定装置。
(1) A magnetizing coil and a demagnetizing coil are arranged concentrically, and an iron core having a predetermined minute gap in the axial direction of the coil is placed in both coils, and a test piece placed in the minute gap is inserted. a sensor for detecting a change in a magnetic field due to a test piece inserted into the test piece holder, the sensor being arranged facing the test piece holder at a predetermined distance from the test piece holder; A coercive force measuring device characterized by rotating a sensor relative to the other.
(2)磁化コイル及び減磁コイルを同心配置すると共に
、前記両コイル中にコイル軸方向に所定の微小間隙を有
する鉄心を配設し、前記微小間隙中に配設した試験片を
挿着するための試験片ホルダと、前記試験片ホルダに所
定距離離間させて対向配置し、前記試験片ホルダに挿着
された試験片による磁界の変化を検出するセンサとを具
備し、前記鉄心の作る磁界に対して垂直方向に配設した
回転軸によつて、前記試験片ホルダとセンサとを相対的
に回転させることを特徴とする保磁力測定装置。
(2) A magnetizing coil and a demagnetizing coil are arranged concentrically, and an iron core having a predetermined minute gap in the axial direction of the coil is placed in both coils, and a test piece placed in the minute gap is inserted. a test piece holder, and a sensor arranged oppositely to the test piece holder at a predetermined distance to detect a change in the magnetic field due to the test piece inserted into the test piece holder, A coercive force measuring device characterized in that the test piece holder and the sensor are relatively rotated by a rotating shaft disposed perpendicularly to the test piece holder.
(3)磁化コイル及び減磁コイルを同心配置すると共に
、前記両コイル中にコイル軸方向に所定の微小間隙を有
する鉄心を配設し、前記微小間隙中に配設した試験片を
挿着するための試験片ホルダと、前記試験片ホルダに所
定距離離間させて対向配置し、前記試験片ホルダに挿着
された試験片による磁界の変化を検出するセンサとを具
備し、前記鉄心の作る磁界に対して平行方向に配設した
回転軸によつて、前記試験片ホルダとセンサとを相対的
に回転させることを特徴とする保磁力測定装置。
(3) A magnetizing coil and a demagnetizing coil are arranged concentrically, and an iron core having a predetermined minute gap in the axial direction of the coil is placed in both coils, and a test piece placed in the minute gap is inserted. a test piece holder, and a sensor arranged oppositely to the test piece holder at a predetermined distance to detect a change in the magnetic field due to the test piece inserted into the test piece holder, A coercive force measuring device characterized in that the test piece holder and the sensor are relatively rotated by a rotating shaft arranged parallel to the test piece holder.
(4)前記センサを、検出コイルとしたことを特徴とす
る特許請求の範囲第1項ないし第3項のいずれかに記載
の保磁力測定装置。
(4) The coercive force measuring device according to any one of claims 1 to 3, wherein the sensor is a detection coil.
(5)前記センサを、ホール素子としたことを特徴とす
る特許請求の範囲第1項ないし第3項のいずれかに記載
の保磁力測定装置。
(5) The coercive force measuring device according to any one of claims 1 to 3, wherein the sensor is a Hall element.
(6)前記センサを、検出コイルを差動状態に接続した
ことを特徴とする特許請求の範囲第1項ないし第3項の
いずれかに記載の保磁力測定装置。
(6) The coercive force measuring device according to any one of claims 1 to 3, wherein the sensor has a detection coil connected in a differential state.
(7)前記センサを、ホール素子を差動状態に接続した
ことを特徴とする特許請求の範囲第1項ないし第3項の
いずれかに記載の保磁力測定装置。
(7) The coercive force measuring device according to any one of claims 1 to 3, wherein the sensor has a Hall element connected in a differential state.
(8)前記磁化コイルと減磁コイルを、一コイルで共用
することを特徴とする、特許請求の範囲第1項ないし第
3項のいずれかに記載の保磁力測定装置。
(8) The coercive force measuring device according to any one of claims 1 to 3, wherein the magnetizing coil and the demagnetizing coil are shared by one coil.
(9)前記試験片ホルダとセンサとの相対的な回転を試
験片の回転によつて行つたことを特徴とする特許請求の
範囲第1項ないし第8項のいずれかに記載の保磁力測定
装置。
(9) Coercive force measurement according to any one of claims 1 to 8, wherein the relative rotation between the test piece holder and the sensor is performed by rotating the test piece. Device.
JP17299184A 1984-08-20 1984-08-20 Coersive force measuring apparatus Pending JPS6150079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17299184A JPS6150079A (en) 1984-08-20 1984-08-20 Coersive force measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17299184A JPS6150079A (en) 1984-08-20 1984-08-20 Coersive force measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6150079A true JPS6150079A (en) 1986-03-12

Family

ID=15952150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17299184A Pending JPS6150079A (en) 1984-08-20 1984-08-20 Coersive force measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6150079A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146432A (en) * 1974-10-18 1976-04-20 Matsushita Electric Ind Co Ltd NENSHO SOCHI
JPS538274B1 (en) * 1964-09-26 1978-03-27
JPS5653472A (en) * 1979-10-08 1981-05-13 Tdk Corp Continuously-measuring device for magnetic prpperty of belt-conveyor type
JPS5813339U (en) * 1981-07-20 1983-01-27 東日本鉄工株式会社 Structure of temporary passage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538274B1 (en) * 1964-09-26 1978-03-27
JPS5146432A (en) * 1974-10-18 1976-04-20 Matsushita Electric Ind Co Ltd NENSHO SOCHI
JPS5653472A (en) * 1979-10-08 1981-05-13 Tdk Corp Continuously-measuring device for magnetic prpperty of belt-conveyor type
JPS5813339U (en) * 1981-07-20 1983-01-27 東日本鉄工株式会社 Structure of temporary passage

Similar Documents

Publication Publication Date Title
US4059798A (en) Method and apparatus for measuring the current flowing in a workpiece
US4093917A (en) Velocity measurement system
CN112782624B (en) Device and method for measuring coercivity of soft magnetic material
US6201386B1 (en) Method for demagnetizing and measuring remanence and coercivity characteristics of a magnetic sample
JP2841153B2 (en) Weak magnetism measurement method and device, and nondestructive inspection method using the same
JPH0572180A (en) Method and device for magnetic-field inspection
JPS6352345B2 (en)
US3349323A (en) Apparatus and methods employing magnetic reed switches and static and varying bias fields for detecting magnetic phenomena
Son A new type of fluxgate magnetometer using apparent coercive field strength measurement
JP2001116773A (en) Current sensor and current detector
EP0658764A1 (en) Method and apparatus for measurement of a saturation magnetic flux density
JP6097906B2 (en) Inspection device for minute magnetic metal foreign matter
US5122743A (en) Apparatus and method of non-destructively testing ferromagnetic materials including flux density measurement and ambient field cancellation
JPS6150079A (en) Coersive force measuring apparatus
US5574363A (en) Stability method and apparatus for nondestructive measure of magnetic saturation flux density in magnetic materials
JPH0784021A (en) Very weak magnetism measuring apparatus and non-destructive inspection method
JP2013015351A (en) Magnetic field detecting device, and ambient magnetic field cancelling method
JP2617605B2 (en) Magnetic measuring device and diagnostic method for magnetic flaw detector
JPS6150078A (en) Method and apparatus for measuring coersive force
SU838622A1 (en) Method of measuring ferromagnetic material parameters
SU930179A1 (en) Device for checking magnetic properties of ferromagnetic materials
SU920591A1 (en) Method of measuring residual moments in open loop-shaped ferromagnetic specimens (its versions)
EP0595915B1 (en) Method and device for measuring the distance between two mutually opposing surfaces by means of the reluctance method
Moilanen et al. A microcomputer-controlled rotating-sample magnetometer
JPS6173076A (en) Method and device for measuring magnetic characteristic