JPS6150036A - Light splitting circuit - Google Patents

Light splitting circuit

Info

Publication number
JPS6150036A
JPS6150036A JP17289184A JP17289184A JPS6150036A JP S6150036 A JPS6150036 A JP S6150036A JP 17289184 A JP17289184 A JP 17289184A JP 17289184 A JP17289184 A JP 17289184A JP S6150036 A JPS6150036 A JP S6150036A
Authority
JP
Japan
Prior art keywords
light
optical fiber
optical
lens
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17289184A
Other languages
Japanese (ja)
Inventor
Masataka Nakazawa
正隆 中沢
Fumio Tanaka
文雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Panasonic Holdings Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp, Matsushita Electric Industrial Co Ltd filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17289184A priority Critical patent/JPS6150036A/en
Publication of JPS6150036A publication Critical patent/JPS6150036A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers

Abstract

PURPOSE:To obtain a light splitting circuit, which can be used both for a single mode optical fiber to be measured and a multimode optical fiber to be measured, by utilizing the band width of the deflected frequency of an acoustooptic deflector. CONSTITUTION:Light from a light sending optical fiber 1 is made to be an approximately parallel light beam by a lens 4 and inputted to an acoustooptic deflector 7. When a signal from a driving circuit 8 is applied to the light beam, the light beam is diffracted in the direction of theta obtained by the expression in the Figure. Namely, when f=f1, theta=theta1 is obtained. When f=f2, theta=theta2 is obtained. The light beam is guided to an optical fiber to be measured through a lens 5 or 5' and an optical fiber 2 or 2'. The light from the optical fiber to be measured is diffracted when the signal is applied to the light from the driving circuit 8. The light is guided to a light detector through a lens 6 and a light receiving optical fiber 3. Namely, with respect to the light passing the lens 5, theta=theta3 is obtained when f=f3, and theta=theta4 is obtained when f=f4. Thus the direction of the light agrees with the direction of the lens 6.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光分岐回路に関し、特に光ファイバの後方散乱
光測定に用いる偏向型光分岐回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical branching circuit, and more particularly to a deflection type optical branching circuit used for measuring backscattered light of an optical fiber.

従来例の溝成とその問題点 光フアイバ中を光パルスが伝搬するとき、反射およびレ
イリー薮乱により後方散乱が生じる。今日光ファイバの
障害点の探索および損失測定をするためにこの後方散乱
光を検知して情報処理する方法が有効な手段となってお
シ、一般にこの装置は光パルス試験器と呼ばれている。
Conventional groove formation and its problems When a light pulse propagates through an optical fiber, backscattering occurs due to reflection and Rayleigh turbulence. Today, a method of detecting and processing this backscattered light has become an effective means for searching for fault points and measuring loss in optical fibers, and this device is generally called an optical pulse tester. .

同試験器は入射光パルスと後方散乱光とを分離する光分
岐回路十備えているが、この光分岐回路の性能が光パル
ス試験器の性能を大きく左右する。今まて報告さhてい
る光分岐回路には、 (1)方解石等の結晶の複屈折性を利用して光を分;;
1「する偏波分離方式。
The tester is equipped with enough optical branching circuits to separate the incident light pulse and backscattered light, but the performance of this optical branching circuit greatly influences the performance of the optical pulse tester. The optical branching circuit that has been reported so far includes: (1) splitting light using the birefringence of crystals such as calcite;
1. Polarization separation method.

(2)半ffyj N”jl鏡を使用したビームスプリ
、り方式。
(2) Beam splitting method using a half ffyj N"jl mirror.

(3)音響光学光偏向器によりディジタル的て光を分離
する方式。
(3) A method of digitally separating light using an acousto-optic light deflector.

などの方式がある。この中で最も贋れているのは光領域
でのマスキングが可能な前記(3)の音響光学光偏向器
を用いた方式であることがよく知られており、その光分
岐回路の従来の構成図を第1図に示す。
There are methods such as It is well known that the most fraudulent method among these is the method using the acousto-optic optical deflector described in (3) above, which allows masking in the optical domain, and the conventional configuration of the optical branch circuit is A diagram is shown in FIG.

第1図の光分岐回路において、光源からの光パルスは光
ファイバ1、レンズ4、音響光学光偏向冊子、レンズ6
、光ファイバ2を経て被測定光ファイバに入る。被測定
光ファイバにおける欠陥および損失に関する情報を含ん
だ光測定光ファイバからの反射光はレンズ5を通過して
音響光学光偏向器7を通過するが、このとき駆動回路8
から電気信号が印加されると同偏向冊子を伝搬する音波
の作用により次の(1)式で与えられる方向θに回折さ
れる。
In the optical branching circuit shown in FIG.
, and enters the optical fiber to be measured via the optical fiber 2. The reflected light from the optical measurement optical fiber containing information regarding defects and losses in the optical fiber to be measured passes through the lens 5 and the acousto-optic optical deflector 7. At this time, the driving circuit 8
When an electric signal is applied from the deflection booklet, it is diffracted in the direction θ given by the following equation (1) due to the action of sound waves propagating through the deflection booklet.

θ−λ−f/v        ・・・・・・・・  
(1)ここで、λは光波長、fは音響光学光偏向器を、
1ハ動する搬送波周波数、■は音響光学光偏向器の媒体
中を伝搬する音波の音速である。回折された散乱光はレ
ンズ6、光ファイバ3を経て光検出器に入り、光ファイ
バ2の障害点および損失に関する情報が得られる。した
がって上記回路では、被測定ファイバからの反射光パル
スが偏向器7を通過するときに駆動回路8により音響光
学光偏向器を駆動すれば、必要な情報を含んだ散乱光を
光ファイバ3につながる光検出器に尋くことができるわ
けである。
θ−λ−f/v・・・・・・・・・
(1) Here, λ is the optical wavelength, f is the acousto-optic optical deflector,
1 is the carrier wave frequency that moves, and 2 is the sound speed of the sound wave propagating in the medium of the acousto-optic optical deflector. The diffracted scattered light passes through the lens 6 and the optical fiber 3 and enters the photodetector, where information regarding the failure point and loss of the optical fiber 2 is obtained. Therefore, in the above circuit, if the drive circuit 8 drives the acousto-optic optical deflector when the reflected light pulse from the fiber under test passes through the deflector 7, the scattered light containing the necessary information is connected to the optical fiber 3. In other words, we can ask the photodetector.

上記従来の構成の光分岐回路においては、光源から光フ
ァイバ1、レンズ4および音響光学光偏向器7を通過し
た光は一個所にしか集まらないため、レンズ5と光ファ
イバ2とよシ形成される被測定光ファイバの接続用端子
は1個しか設けられなかった。
In the optical branching circuit with the above-mentioned conventional configuration, the light that passes from the light source through the optical fiber 1, the lens 4, and the acousto-optic optical deflector 7 is concentrated in only one place. Only one terminal was provided for connecting the optical fiber to be measured.

(図で光ファイバ2の右端2aが被測定光ファイバとの
接続部になる。) そして、レンズ5と光ファイバ2よりなるこの被測定用
光ファイバの接続用端子は被測定光ファイバが単一モー
ドファイバか多モードファイバかのどちらかによりその
型が特定されてしまう。
(In the figure, the right end 2a of the optical fiber 2 is the connection part with the optical fiber to be measured.) The connection terminal of this optical fiber to be measured, which is made up of the lens 5 and the optical fiber 2, is The type is determined by whether it is a mode fiber or a multimode fiber.

そのため、光分岐回路は被測定用光ファイバのモードの
種類にあわせて、単一モードファイバ用と多モードファ
イバ用の2、種類を別々に製造する必要があり、光パル
ス試験器としての[”1〒成も別々になり、経費が増大
し、汎用性がないという欠点があった。
Therefore, it is necessary to separately manufacture two types of optical branch circuits, one for single mode fiber and one for multimode fiber, according to the mode type of the optical fiber to be measured. The drawbacks were that the first configuration was separate, increased costs, and lacked versatility.

なお、被測定用光ファイバのモードの種類により接続用
端子が特定されるのは次の理由による。
Note that the connection terminal is specified depending on the mode type of the optical fiber to be measured for the following reason.

すなわち被」11定光フアイバが単一モードア1イ・く
の場合は光ファイバ2を単一モードファイ・くとしかつ
レンズ6と光ファイバ2との結合部も単一モードファイ
バに特有の寸法とする必要がおり、寸だ被測定光ファイ
バが多モードファイバの場合は光7 y イハ2 ヲ多
モードファイバとしかつレンズ5と光ファイバ2との接
合部も複合モードファイバに特有の寸法とする必要があ
るためである。
In other words, when the constant optical fiber 11 is a single mode fiber, the optical fiber 2 is made into a single mode fiber, and the coupling portion between the lens 6 and the optical fiber 2 is also made to have dimensions specific to the single mode fiber. If the optical fiber to be measured is a multi-mode fiber, it must be a multi-mode fiber, and the junction between the lens 5 and the optical fiber 2 must also have dimensions specific to a multi-mode fiber. This is because there is.

発明の目的 本発明はこのような従来の欠点を除去するもので、被測
定光ファイバとして単一モードファイバおよび多モード
ファイバを共用できる光分岐回路を提供することを目的
とする。
OBJECTS OF THE INVENTION The present invention aims to eliminate such conventional drawbacks, and aims to provide an optical branching circuit that can use both a single mode fiber and a multimode fiber as the optical fiber to be measured.

発明の構成 この目的を達成するために本発明は音響光学光偏向器の
偏向周波数帯域幅を利用し、送光用光ファイバからの光
が偏向周波数帯域内の2つの周波数によりそれぞれ回折
される方向に被」り走光ファイバとして単一モードファ
イバと多モードファイバおよびこれらのファイバに光を
入射させるためのレンズを配置し、それぞれの被測定光
ファイバからの反射あるいは散乱された光を再び偏向周
波数帯域内の周波数で回折させ、送光用光ファイバの配
置された方向とは異なる方向に配置した受光用光ファイ
バに入射させるものである。この配置により、送光用光
フフイバからの光は音響光学光偏向器を通過する時、電
気信号により方向と強度が制御されてどちらかの被測定
光ファイバへ樽がれる。被測定ファイバからの光はそれ
ぞれ異なる角度から音響光学光偏向器に入射するが、こ
のとき、偏向周波数帯域内であれば音−1′ネ波面に対
しブラッグ角と呼ばれる入射条件を満たすことができ、
それぞれ異なる角度から入射した光はそれぞれ適尚な周
波数を選ぶことにより同一方向に進行し受光用光ファイ
バへ導かれる。したがってファイバの種類に応じてどち
らかの被測定光ファイバに接、続し、他方を閉じて使用
し、音響光学光偏向器の搬送波周波数と振幅を設定すれ
ば共用できることになる。
Structure of the Invention To achieve this objective, the present invention utilizes the deflection frequency bandwidth of an acousto-optic optical deflector to determine the direction in which light from a light transmitting optical fiber is diffracted by two frequencies within the deflection frequency band. Single-mode fibers and multi-mode fibers are placed as optical traveling fibers, and lenses are arranged to input light into these fibers, and the reflected or scattered light from each optical fiber to be measured is deflected again into the frequency band. The light is diffracted at a frequency within the range, and is made incident on a light-receiving optical fiber arranged in a direction different from the direction in which the light-transmitting optical fiber is arranged. With this arrangement, when the light from the light transmitting optical fiber passes through the acousto-optic optical deflector, the direction and intensity are controlled by electrical signals and the light is directed to one of the optical fibers to be measured. The light from the fiber under test enters the acousto-optic optical deflector from different angles, but at this time, if it is within the deflection frequency band, it can satisfy the incident condition called the Bragg angle with respect to the sound -1' wavefront. ,
By selecting appropriate frequencies, the lights incident from different angles travel in the same direction and are guided to the receiving optical fiber. Therefore, depending on the type of fiber, it can be connected to one of the optical fibers to be measured, the other being closed and used, and the carrier frequency and amplitude of the acousto-optic optical deflector can be set so that they can be used in common.

実施レリの説明 以下、本発明の一実殉例を第2図の図面を用いて説明す
る。なお、第2図中、第1図と同一部品については同一
番号をつけている。
DESCRIPTION OF EMBODIMENTS A practical example of the present invention will be described below with reference to FIG. 2. In FIG. 2, parts that are the same as those in FIG. 1 are given the same numbers.

第2図において、送光用光ファイバ1からの光はレンズ
4により平行に近い光ビームで音響光学光偏向器7に入
射し、1駆動回路8からの信号が印加されるとき(1)
式による方向に回折される。すなわち、f−f+とした
時ばθ=θ1に、f−12とした時ばθ−θ2になシそ
れぞれレンズ5またば5′および光ファイバ2(例えば
多モードファイバ)またば2′(例えば単一モードファ
イバ)を経て被測定光ファイバに導かれる。
In FIG. 2, the light from the light transmitting optical fiber 1 enters the acousto-optic optical deflector 7 as a nearly parallel light beam through the lens 4, and when a signal from the 1 drive circuit 8 is applied (1)
It is diffracted in the direction according to Eq. That is, when f-f+ is set, θ=θ1, and when f-12 is set, θ-θ2. single mode fiber) to the optical fiber to be measured.

次に被測定光ファイバからの光に対しては、駆動回路8
からの信号が印加されるとき回折されてレンズ6、受光
用光ファイバ3を経て光検出器に導かれる。すなわち、
レンズ6を経由する光に対してはf = fsのときθ
−θ5になり、レンズ5′を経由する光に対してばf 
= f、のときθ=θ4になり、レンズ6の方向に一致
する。この例では音響光学光偏向器の周波数帯域内でθ
3が最小周波数、θ2が最大周波数となっている。光の
信号は送光と受光とを時分割するため、駆動回路からの
信号を時分割して各搬送波周波数により構成できる。
Next, for the light from the optical fiber to be measured, the drive circuit 8
When a signal is applied, it is diffracted and guided to a photodetector via a lens 6 and a light-receiving optical fiber 3. That is,
For light passing through lens 6, when f = fs, θ
-θ5, and for the light passing through lens 5', f
= f, then θ=θ4, which coincides with the direction of the lens 6. In this example, θ is within the frequency band of the acousto-optic light deflector.
3 is the minimum frequency, and θ2 is the maximum frequency. Since the optical signal is transmitted and received in a time-division manner, the signal from the drive circuit can be time-divisionally configured using each carrier wave frequency.

例えば4鍾類の搬送波を発振器により常時発振させスイ
ッチング回路にょシ適宜切替えればよい〇このようにし
て構成した光分岐回路を使用すれば、被測定光ファイバ
の種類に応じて、光ファイバ2,2′のどちらかに接続
し他方を閉じておくだけで、光パルス試験器として単一
モード用、多モード用に共用できることになる。
For example, four types of carrier waves can be constantly oscillated by an oscillator and the switching circuit can be switched as appropriate. If the optical branch circuit configured in this way is used, depending on the type of optical fiber to be measured, the optical fiber 2, By simply connecting one of the terminals 2' and closing the other, the optical pulse tester can be used both for single mode and multimode.

さらに、音響光学光偏向器は駆動される電気信号の振幅
に応じて回折効率を1lilJ御することができるため
、光減衰器の機能も同時に使うことができる。すなわち
、光源の光量に応じて適尚な振幅の電気信号により、%
動すれば、単一モードファイバのji:I定時をで生じ
易い、光が強過き゛るためのラマン散乱、プリルアン赦
乱などによる悪形QJi’を除くことができるとともに
、多モードファイバの測定時には光強度を上げることも
でき、共用でありながら光強度の大きい光源を使用する
こともてきるため高精度で安定な測定が実現できる。
Furthermore, since the acousto-optic optical deflector can control the diffraction efficiency by 1 lilJ according to the amplitude of the driven electric signal, it can also function as an optical attenuator at the same time. In other words, by using an electrical signal with an appropriate amplitude depending on the light intensity of the light source,
By moving the ji: The intensity can be increased, and a shared light source with high light intensity can be used, making it possible to achieve highly accurate and stable measurements.

また、本発明のもう一つの大きな効果として極めて憂江
たS/Nがどちらの被測定光ファイバ(fこ′  おい
ても得られることがあげられる。すなわち、受光用元フ
ァイバへ光を専〈際にも常に回折光を使用するため、必
要な時間にだけ受光することが電気信号により簡単に行
なえるので、不要な反射光を取り除くことができるから
である。
Another major effect of the present invention is that an extremely high S/N ratio can be obtained no matter which optical fiber to be measured (f) is used. This is because, since diffracted light is always used, it is possible to easily receive light only at the necessary times using electrical signals, and unnecessary reflected light can be removed.

製作上の位置精度も緩和できることになる。すなわち、
被測定光ファイバおよび受光用光ファイバへの光の導入
は全て音響光学光偏向器の琳動時の搬送波周波数f1+
 f2r f5 +八 により方向が定まるため、逆に
この周波数を調整することにより光の結合効率を改善す
ることができるわけであるQ 発明の効果 以上のように本発明による光分岐回路(・こより、単一
モードファイバおよび多モードファイバのijl定が共
用できる光パルス試験器:)の構成が可能となり犬I陥
な経費節減と汎用性拡大、性能向上が得られる。
Positional accuracy in manufacturing can also be relaxed. That is,
All light is introduced into the optical fiber to be measured and the receiving optical fiber at the carrier wave frequency f1+ when the acousto-optic optical deflector is in motion.
Since the direction is determined by f2r f5 + 8, the light coupling efficiency can be improved by adjusting this frequency. It becomes possible to construct an optical pulse tester that can share the ijl constant of single mode fiber and multimode fiber, resulting in significant cost savings, increased versatility, and improved performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の音響光学光偏向器を用いた光分岐回路の
構成図、第2図は本発明の一実笥例を示す音響光学光偏
向器を用いた光分岐回路構成図てある。 1・・・・送光用光ファイノ:、2 、2’・・・・元
ファイバ、3・、・、・受光用光ファイ・く、4 + 
5 + 5 + 6  ・・円柱レンズ、7・・・・・
音響光学光偏向著3.8・・・音響光学光偏向器用駆動
回路。 代理人の氏名 弁理士 中 尾 ;・枚 男 (・丘か
1名第1図 第2図
FIG. 1 is a block diagram of an optical branching circuit using a conventional acousto-optic optical deflector, and FIG. 2 is a block diagram of an optical branching circuit using an acousto-optic optical deflector showing an example of the present invention. 1... Optical fiber for light transmission:, 2, 2'... Source fiber, 3... Optical fiber for light reception, 4 +
5 + 5 + 6...Cylindrical lens, 7...
Written by Acousto-Optic Light Deflector 3.8... Drive circuit for acousto-optic light deflector. Name of agent: Patent attorney Nakao ;・Hara Oka (・1 person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 送光用光ファイバと、この光ファイバからの出射光の広
がりを制御する第1のレンズと、この出射光の進行方向
および強度を電気信号により変えることができる音響光
学光偏向器と、この音響光学光偏向器を経由した光を被
測定光ファイバに入射させるための第2および第3のレ
ンズと、被測定光ファイバからの反射あるいは散乱され
かつ、上記第2または第3のレンズを経由した後、上記
音響光学光偏向器を経由した光を受光する受光用光ファ
イバと、この受光用光ファイバに入射させるための第4
のレンズを備えてなり、上記音響光学光偏向器に印加さ
れた第1または第2の周波数を搬送波とする信号により
、上記送光用光ファイバからの光がそれぞれ回折される
方向に上記第2、第3のレンズを配置し、上記被測定光
ファイバとして一方を単一モードファイバとし、他方を
多モードファイバとするとともに、上記被測定光ファイ
バからの反射あるいは散乱され上記第2または第3のレ
ンズを経由した光を上記音響光学光偏向器に印加された
第3または第4の周波数を搬送波とする信号により同一
方向に回折させ、この方向に上記第4のレンズを配置し
たことを特徴とする光分岐回路。
an optical fiber for transmitting light, a first lens for controlling the spread of the emitted light from this optical fiber, an acousto-optic optical deflector that can change the traveling direction and intensity of the emitted light by an electrical signal, and second and third lenses for making the light that has passed through the optical deflector enter the optical fiber to be measured; After that, a light-receiving optical fiber that receives the light that has passed through the acousto-optic optical deflector, and a fourth light-receiving optical fiber that makes the light enter the light-receiving optical fiber.
the second lens in the direction in which the light from the light transmission optical fiber is respectively diffracted by a signal having a first or second frequency as a carrier wave applied to the acousto-optic optical deflector. , a third lens is arranged, one of the optical fibers to be measured is a single mode fiber and the other is a multimode fiber, and the second or third optical fiber is reflected or scattered from the optical fiber to be measured. The light passing through the lens is diffracted in the same direction by a signal having a third or fourth frequency as a carrier wave applied to the acousto-optic optical deflector, and the fourth lens is disposed in this direction. optical branch circuit.
JP17289184A 1984-08-20 1984-08-20 Light splitting circuit Pending JPS6150036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17289184A JPS6150036A (en) 1984-08-20 1984-08-20 Light splitting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17289184A JPS6150036A (en) 1984-08-20 1984-08-20 Light splitting circuit

Publications (1)

Publication Number Publication Date
JPS6150036A true JPS6150036A (en) 1986-03-12

Family

ID=15950240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17289184A Pending JPS6150036A (en) 1984-08-20 1984-08-20 Light splitting circuit

Country Status (1)

Country Link
JP (1) JPS6150036A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285515A (en) * 1987-05-18 1988-11-22 Matsushita Electric Ind Co Ltd Optical branching device
JPH06328046A (en) * 1993-05-27 1994-11-29 Hiromi Hirabayashi Removal and cleaning of extraneous matters attached to architectural and civil engineering members and removal/cleaning device therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734529A (en) * 1980-08-07 1982-02-24 Shimadzu Corp Optical changeover switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5734529A (en) * 1980-08-07 1982-02-24 Shimadzu Corp Optical changeover switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285515A (en) * 1987-05-18 1988-11-22 Matsushita Electric Ind Co Ltd Optical branching device
JPH06328046A (en) * 1993-05-27 1994-11-29 Hiromi Hirabayashi Removal and cleaning of extraneous matters attached to architectural and civil engineering members and removal/cleaning device therefor

Similar Documents

Publication Publication Date Title
EP0251632B1 (en) Distributed sensor array and method using a pulsed signal source
US5619326A (en) Method of sample valuation based on the measurement of photothermal displacement
US4444503A (en) Ring interferometer with a mode diaphragm
US4373814A (en) Compact optical coupling device and optical-fiber interferometer gyrometer comprising such a device
JPS6150036A (en) Light splitting circuit
JPS6150037A (en) Light splitting circuit
JPS62207927A (en) Optical fiber measuring instrument
US4704031A (en) Rotation rate measuring device
JPS6150034A (en) Light splitting circuit
JPS6150035A (en) Light splitting circuit
JPS63161434A (en) Acoustooptic optical switch
JPS5915841A (en) Refractive index measuring apparatus
JP2507790B2 (en) Semiconductor laser FM modulation characteristic measuring device
JP2538569B2 (en) Acousto-optic switch
JPH0240631A (en) Acoustooptic switch
JPH10232109A (en) Optical displacement sensor
JPS6235657B2 (en)
JPH0769550B2 (en) Acousto-optic switch
JPS63307434A (en) Acoustooptic switch
SU1051430A1 (en) Fibre-optical velocity transducer
CA2066260A1 (en) Quantum non-demolition optical tapping
JPS61113034A (en) Acousto-optic switch
JPS6385327A (en) Light pulse tester
SU1278723A1 (en) Fibre-optic probe for doppler anemometer
JPH02242237A (en) Acoustooptical light frequency shifter