JPS6150001B2 - - Google Patents

Info

Publication number
JPS6150001B2
JPS6150001B2 JP17259879A JP17259879A JPS6150001B2 JP S6150001 B2 JPS6150001 B2 JP S6150001B2 JP 17259879 A JP17259879 A JP 17259879A JP 17259879 A JP17259879 A JP 17259879A JP S6150001 B2 JPS6150001 B2 JP S6150001B2
Authority
JP
Japan
Prior art keywords
cooling
synthetic resin
crystals
rotating shaft
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17259879A
Other languages
Japanese (ja)
Other versions
JPS5695302A (en
Inventor
Akio Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP17259879A priority Critical patent/JPS5695302A/en
Publication of JPS5695302A publication Critical patent/JPS5695302A/en
Publication of JPS6150001B2 publication Critical patent/JPS6150001B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はタンク式冷却晶析装置に関する。更に
詳しくは可撓性の合成樹脂管の表面を冷却面と
し、晶析槽内部で該合成樹脂管にひねり回転を与
えると同時に上下動させる冷却面に結晶を付着さ
せない晶析装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tank-type cooling crystallizer. More specifically, the present invention relates to a crystallizer in which the surface of a flexible synthetic resin tube is used as a cooling surface, and crystals are not deposited on the cooling surface which is moved up and down while twisting the synthetic resin tube inside a crystallization tank.

従来、温度によつての溶解度の差の大きい物質
を含む溶液より、該物質を結晶として取出す方法
としては、冷却による晶析が行なわれている。
Conventionally, crystallization by cooling has been used as a method for extracting a substance as crystals from a solution containing a substance whose solubility varies greatly depending on temperature.

このための冷却晶析装置として晶析槽の側壁部
より冷却する晶析器が広く用いられているが、こ
のような固定した冷却面をもつ晶析器においては
一番過飽和度の大きいところが冷却面の表面であ
り、その表面へのスケーリングが起りやすく冷却
面表面に晶析した結晶の除去操作をしばしば行な
わなければならない。この冷却面表面への結晶の
析出を避けるためには、例えば冷却面と被冷却液
とに大きな相対速度を持たせ、冷却面に結晶が析
出し難くさせるが、又は被冷却液と冷却面との温
度差を小さくとり結晶を析出し難くさせる方法が
採られている。しかし、冷却面と被冷却液とに大
きな相対速度を持たせるためには、高速撹拌翼あ
るいは大容量のポンプ等の移送手段が必要であ
り、又、冷却面と被冷却液との温度産を小さくと
る場合には非常に大きな冷却面積が必要となる。
更に他の手段としてスクレーバーを設け冷却面上
に析出した結晶を機械的に剥ぎ取る方法もあるが
装置が複雑となり機械的トラブルも起りやすい。
As a cooling crystallizer for this purpose, a crystallizer that cools from the side wall of the crystallizer is widely used, but in such a crystallizer with a fixed cooling surface, the part with the highest degree of supersaturation is cooled. This is the surface of a cooling surface, and scaling tends to occur on that surface, so it is often necessary to remove crystals that have crystallized on the surface of the cooling surface. In order to avoid the precipitation of crystals on the surface of the cooling surface, for example, the cooling surface and the liquid to be cooled may have a large relative velocity to make it difficult for crystals to precipitate on the cooling surface, or the liquid to be cooled and the cooling surface may A method has been adopted to make it difficult for crystals to precipitate by keeping the temperature difference small. However, in order to provide a large relative velocity between the cooling surface and the liquid to be cooled, a transfer means such as a high-speed stirring blade or a large-capacity pump is required, and the temperature difference between the cooling surface and the liquid to be cooled is also reduced. If it is made small, a very large cooling area is required.
Another method is to provide a scraper and mechanically scrape off the crystals deposited on the cooling surface, but this requires a complicated device and is likely to cause mechanical troubles.

又、従来の固定された冷却面をもつ晶析器に対
し、内部に冷媒を通した中空板を回転させる回転
冷却面をもつ晶析器が提案されている(特開昭50
−43051号)。しかし回転する平板状冷却面への結
晶の析出は固定された冷却面に比べ、かなり抑制
されるが、なお冷却面への結晶の析出はさけられ
ず回転する冷却面に対しスクレーバーを設け、冷
却面に析出する結晶を掻き取る必要がある。
Furthermore, in contrast to the conventional crystallizer with a fixed cooling surface, a crystallizer with a rotating cooling surface in which a hollow plate with a refrigerant passed inside is rotated has been proposed (Japanese Patent Application Laid-Open No. 1989-1999).
−43051). However, although the precipitation of crystals on a rotating flat cooling surface is considerably suppressed compared to a fixed cooling surface, the precipitation of crystals on a cooling surface cannot be avoided. It is necessary to scrape off the crystals deposited on the surface.

これらのいずれの方法においても冷却面への結
晶の析出に基づく不都合を完全に防ぐことができ
ず、更に装置の大型化、或は複雑化を伴なう。
None of these methods can completely prevent problems caused by precipitation of crystals on the cooling surface, and furthermore, the apparatus becomes larger or more complex.

本発明者は、かかる欠点を伴うことなく冷却面
への結晶の析出のない晶析装置について研究した
結果、可撓性の合成樹脂管の表面を冷却面とし、
該合成樹脂管にひねり回転および上下動を与える
ことにより析出した結晶の冷却面への付着のない
晶析装置を完成するに至つた。
As a result of research on a crystallizer that does not have such drawbacks and does not cause precipitation of crystals on the cooling surface, the present inventor has found that the surface of a flexible synthetic resin pipe is used as the cooling surface,
By applying twisting rotation and vertical motion to the synthetic resin tube, we have completed a crystallizer in which the deposited crystals do not adhere to the cooling surface.

本発明の晶析装置は可撓性の合成樹脂管に冷媒
を通し冷却管とするものであつて、この合成樹脂
管を垂直にU字状に取りつけU字管とし、U字管
の上端部を上下往復運動、底部は往復ひねり回転
することにより冷却面であるU字管表面に付着し
ようとする結晶の付着をさまたげるものである。
The crystallizer of the present invention is a cooling tube in which a refrigerant is passed through a flexible synthetic resin tube, and the synthetic resin tube is installed vertically in a U-shape to form a U-shaped tube. By reciprocating up and down, and twisting the bottom part back and forth, it prevents crystals from adhering to the surface of the U-shaped tube, which is the cooling surface.

第1図は本発明装置の一例を示す断面図であ
り、1は晶析槽、2は冷却管体(実施例では合成
樹脂管束)を示す。晶析槽1の中心部には往復回
転する回転軸3が設けられ、この回転軸3は上部
回転軸3′と下部回転軸3″より構成された軸受1
2,13,14,15により保持されている。尚
軸受12は晶析槽の上蓋に、軸受13は上蓋に取
付けられたステー16上に取付けられている。又
軸受14,15は晶析槽内部のステー17により
支持されたコーン18内のステー19,20上に
取付けられている。
FIG. 1 is a sectional view showing an example of the apparatus of the present invention, where 1 is a crystallization tank and 2 is a cooling pipe body (synthetic resin tube bundle in the embodiment). A rotating shaft 3 that reciprocates is provided in the center of the crystallization tank 1, and this rotating shaft 3 has a bearing 1 composed of an upper rotating shaft 3' and a lower rotating shaft 3''.
2, 13, 14, and 15. The bearing 12 is attached to the upper lid of the crystallization tank, and the bearing 13 is attached to the stay 16 attached to the upper lid. Further, the bearings 14 and 15 are mounted on stays 19 and 20 within a cone 18 supported by a stay 17 inside the crystallization tank.

上部回転軸3′には水平支持棒4の固着された
カラー21が遊合されて、且つカラー21には上
部回転軸3′に植えられたピン22に遊合するピ
ン誘導溝5が加工されている。そして水平支持棒
4の一端は上下方向のガイド4′と遊合して上下
方向にのみ動く様にされている。
A collar 21 to which the horizontal support rod 4 is fixed is loosely fitted to the upper rotating shaft 3', and a pin guide groove 5 is formed in the collar 21 to fit a pin 22 installed on the upper rotating shaft 3'. ing. One end of the horizontal support rod 4 is loosely engaged with a vertical guide 4' so that it can move only in the vertical direction.

一方、上部回転軸3′と下部回転軸3″は上部回
転軸3′に固着されたカラー33内において下部
回転軸3″が相対的に回動可能に結合され、両軸
3′,3″の端部は第2図にそれぞれの端面を示す
如き形状で嵌合しているので、3′軸と3″軸の回
転には遊びが生ずる。
On the other hand, the upper rotating shaft 3' and the lower rotating shaft 3'' are coupled in a collar 33 fixed to the upper rotating shaft 3' so that the lower rotating shaft 3'' can rotate relative to each other. Since the ends of the two are fitted in the shape shown in FIG. 2, there is some play in the rotation of the 3' and 3'' axes.

かくして3′軸が180゜の往復回転するとき3″
軸は90゜即ち上部回転軸3′に対し、下部回転軸
3″の回転は約1/2となる様にされている。
Thus, when the 3′ axis rotates back and forth through 180°, 3″
The shaft is arranged at an angle of 90 degrees, that is, the rotation of the lower rotary shaft 3'' relative to the upper rotary shaft 3' is approximately 1/2.

上記の如く設定された水平支持棒4にU字型に
曲げられた合成樹脂管の束2の両端部が固着部材
23により、下部回転軸3″に該束の底部が固着
部材24により固着される。この様にとりつけら
れた合成樹脂管の束2の両端には、冷媒を通すた
めのフレキシブルチユーブ6がコネクター25を
介して連結されている。
Both ends of the bundle 2 of synthetic resin tubes bent into a U-shape are fixed to the horizontal support rod 4 set as described above by fixing members 23, and the bottom of the bundle is fixed to the lower rotating shaft 3'' by a fixing member 24. Flexible tubes 6 for passing the refrigerant are connected to both ends of the bundle 2 of synthetic resin pipes installed in this manner via connectors 25.

かくして上部回転軸3′が上から見て反時計方
向に約180゜回転するとカラー21はピン22に
より上方にせり上げられるので、これに伴い水平
支持棒4即ち合成樹脂管の束2の両端部はカラー
21の誘導溝5の高さだけ持ち上げられる。又下
部軸は約90゜回転するので合成樹脂管の束2は伸
ばされつつ回転する。同様にして上部回転軸3′
が時計方向に回る場合には上述の現象と逆の現象
が起り、水平支持棒4は下り、下部回転軸3″は
逆方向に回転するので合成樹脂管の束2はたるま
せられつつひねり回転をするのである。
Thus, when the upper rotating shaft 3' rotates about 180 degrees counterclockwise when viewed from above, the collar 21 is pushed upward by the pin 22, and as a result, the horizontal support rod 4, that is, both ends of the bundle of synthetic resin tubes 2 is raised by the height of the guide groove 5 of the collar 21. Also, since the lower shaft rotates about 90 degrees, the bundle 2 of synthetic resin tubes rotates while being stretched. Similarly, the upper rotating shaft 3'
When it rotates clockwise, the opposite phenomenon to that described above occurs, and the horizontal support rod 4 descends and the lower rotating shaft 3'' rotates in the opposite direction, causing the bundle of synthetic resin tubes 2 to twist and rotate while being slackened. This is what we do.

晶析槽1には、上蓋にとりつけられた供給ノズ
ル7および又は中央部側面にとりつけられた供給
ノズル7′、上部内面には溢流口仕切り板26、
上部側面に溢流口9、下部側面に取出し口8、下
部中央に分級用吹上げノズル28が設けられてい
る。
The crystallization tank 1 includes a supply nozzle 7 attached to the upper lid and/or a supply nozzle 7' attached to the side surface of the central part, an overflow port partition plate 26 on the inner surface of the upper part,
An overflow port 9 is provided on the upper side, an outlet 8 is provided on the lower side, and a blow-up nozzle 28 for classification is provided at the center of the lower portion.

かくして原料はノズル7および又はノズル7′
より連続的に供給され、冷却管である合成樹脂管
の束2によつて冷却されて晶析され、結晶性成分
の濃度の低くなつた液は溢流口9より流出し、濃
度の高くなつた液はスラリー取出口8よりとり出
される。
The raw material is thus transferred to nozzle 7 and/or nozzle 7'
The liquid is supplied more continuously and is cooled and crystallized by the bundle of synthetic resin tubes 2, which is a cooling tube, and the liquid with a lower concentration of crystalline components flows out from the overflow port 9 and becomes higher in concentration. The liquid is taken out from the slurry outlet 8.

溢流口9より流出した液はポンプ27によりノ
ズル28に注入され分級に用いられる。
The liquid flowing out from the overflow port 9 is injected into a nozzle 28 by a pump 27 and used for classification.

尚液中に浮遊している微細結晶は溢流口9より
抜き出されて加熱器29で微細結晶を溶解させて
後、一部の液は管31により分級脚30の底部よ
り、また残部の液を必要に応じ管32により晶析
槽側面より晶析槽1に戻し、該槽内に上昇流を与
え大なる結晶のみをスラリーとして取り出すこと
ができる。
After the fine crystals floating in the liquid are extracted from the overflow port 9 and dissolved in the heater 29, some of the liquid is taken out through the tube 31 from the bottom of the classification leg 30, and the remaining part is If necessary, the liquid is returned to the crystallization tank 1 from the side of the crystallization tank through the pipe 32, and an upward flow is applied to the tank so that only large crystals can be taken out as a slurry.

尚前述の回転軸は上部回転軸3′と下部回転軸
3″に分れていてカツプリングで90゜の遊びを有
して結合しているが、これはカラー21のピン誘
導溝の設計の問題と関連する事であつて、この様
なカツプリングなしに単に1本の回転軸としても
よい。
The aforementioned rotating shaft is divided into an upper rotating shaft 3' and a lower rotating shaft 3'', which are connected by a coupling with a play of 90 degrees, but this is due to a design problem of the pin guiding groove of the collar 21. This is related to the above, and it is also possible to use only one rotating shaft without such a coupling.

要は合成樹脂管束の上端が上下動し、下端がひ
ねり回動すればよいので、そのための設計は各種
任意に選定する事ができる。
The point is that the upper end of the synthetic resin tube bundle should move up and down, and the lower end should twist and turn, so any design can be selected for this purpose.

本発明で冷却管体2を構成する合成樹脂は可撓
性のものであればよく、ポリ四フツ化エチレン、
四フツ化エチレンと六フツ化プロピレンの共重合
体などの機械的強度の大なるものが好ましいが、
ポリ塩化ビニル、ポリエチレン、ポリプロピレン
などであつてもよい。この冷却管体は伝熱面積を
大きくするために多数の細管よりなる管束を用い
ることが好ましい。この細管としては内部に冷媒
を円滑に通すことができる範囲で、できるだけ細
いものが好ましく、具体的には外径2.5〜6.4mmの
ものが用いられる。
In the present invention, the synthetic resin constituting the cooling pipe body 2 may be any flexible resin, such as polytetrafluoroethylene, polytetrafluoroethylene,
A material with high mechanical strength such as a copolymer of tetrafluoroethylene and hexafluoropropylene is preferable, but
It may also be polyvinyl chloride, polyethylene, polypropylene, etc. It is preferable to use a tube bundle consisting of a large number of thin tubes for this cooling tube body in order to increase the heat transfer area. This thin tube is preferably as thin as possible within a range that allows the refrigerant to pass smoothly through the inside, and specifically, one with an outer diameter of 2.5 to 6.4 mm is used.

このような本発明装置を用いて冷却晶析するに
当つては、晶析槽1に晶析すべき液を入れ、冷却
管体2にフレキシブルチユーブ6により冷媒を通
しながら冷却管体2を往復回転させる。冷却管体
の往復回転はモーター10の回転を変換機11に
より往復回転に転換して行う。回転軸3は上部と
下部とで回転角度が異なるようにしてあり、上部
で90〜180゜好ましくは略180゜下部でその1/2程
度としてあることおよび冷却管体の両端部を固定
した水平支持棒が回転に伴ない上下動することか
ら、冷却管体は上下動とひねり回転が与えられる
ため冷却管体表面に結晶が付着することがない。
冷却により析出した結晶は晶析槽底に沈降し、槽
底の結晶取出口より抜き出される。連続的に晶析
するときは、晶析すべき液を槽上部及び又は下部
側面より連続的に供給し、上部より結晶性成分の
濃度の低くなつた液を溢流させればよい。
When performing cooling crystallization using such an apparatus of the present invention, a liquid to be crystallized is placed in the crystallization tank 1, and the cooling tube body 2 is reciprocated while passing the coolant through the flexible tube 6. Rotate. The reciprocating rotation of the cooling pipe body is performed by converting the rotation of the motor 10 into reciprocating rotation by a converter 11. The rotation angle of the rotating shaft 3 is different between the upper and lower parts, and the angle of rotation is 90 to 180° at the upper part, preferably about 180° at the lower part, and about 1/2 of that at the lower part. Since the support rod moves up and down as it rotates, the cooling pipe body is given vertical movement and twisting rotation, so that crystals do not adhere to the surface of the cooling pipe body.
The crystals precipitated by cooling settle to the bottom of the crystallization tank and are extracted from the crystal outlet at the bottom of the tank. When crystallizing continuously, the liquid to be crystallized may be continuously supplied from the upper and/or lower sides of the tank, and the liquid with a lower concentration of crystalline components may overflow from the upper part.

本発明装置の冷却面は合成樹脂で構成された管
体で、全て曲面をなしていることおよび常に上下
動およびひねり回転が与えられることから、長期
の連続運転においても冷却面に結晶が付着するこ
とがない。
The cooling surface of the device of the present invention is a tube made of synthetic resin, and since it is entirely curved and constantly subject to vertical movement and twisting rotation, crystals will adhere to the cooling surface even during long-term continuous operation. Never.

本発明装置は、種々の物質の晶析に適用するこ
とができる。例えば、食塩を含む苛性ソーダ水溶
液より食塩を除去するための苛性ソーダの晶析、
或はジクロルベンゼンやジクロルフエノールの異
性体の分離等に用いることができ、冷却面への結
晶の析出はなく、連続操作で長時間又はバツチ式
で繰り返し晶析することができる。
The apparatus of the present invention can be applied to crystallization of various substances. For example, caustic soda crystallization for removing salt from a caustic soda aqueous solution containing salt;
Alternatively, it can be used to separate isomers of dichlorobenzene or dichlorophenol, and crystals do not precipitate on the cooling surface, and crystallization can be performed continuously for a long time or repeatedly in batches.

実施例 四フツ化エチレンと六フツ化プロピレンの共重
合体よりなる直径2.54mmの管を束ねて冷却管とし
た付図に示す装置によりパラジクロルベンゼン65
重量%およびオルソジクロルベンゼン35重量%を
含む液よりパラジクロルベンゼン結晶を析出させ
た。このとき、冷却管体は回転角が上部で180゜
下部で90゜となる往復回転運動を20往復/分でさ
せた。冷却管体に通すブライン温度は−10℃であ
る。
Example Paradichlorobenzene 65
Para-dichlorobenzene crystals were precipitated from a liquid containing 35% by weight of ortho-dichlorobenzene. At this time, the cooling pipe body was subjected to a reciprocating rotational movement at a rotation angle of 180° at the top and 90° at the bottom at a rate of 20 reciprocations/min. The temperature of the brine passed through the cooling pipe body is -10°C.

晶析槽に上記被冷却液100を入れ、冷却管体
を往復回転させ5℃とした後、60℃の被冷却液を
10Kg/hで晶析槽下部より供給し槽底より平均粒
径0.55mmのパラジクロルベンゼン結晶を40%含む
スラリーを10Kg/hで抜き出した。
Put 100% of the above liquid to be cooled into the crystallization tank, rotate the cooling pipe body back and forth to bring the temperature to 5℃, and then pour the liquid to be cooled at 60℃.
A slurry containing 40% paradichlorobenzene crystals with an average particle size of 0.55 mm was extracted from the bottom of the tank at a rate of 10 kg/h.

6時間の連続運転の結果、可動部分の冷却管体
の表面には結晶の析出は殆んどみられなかつた。
As a result of continuous operation for 6 hours, almost no crystal precipitation was observed on the surface of the cooling pipe body of the moving part.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の1例を示す断面図であ
り、第2図は第1図の上下回転軸の結合部の各端
面図である。 1……晶析槽、2……冷却管体、3……回転
軸、4……支持棒、5……誘導路、6……フレキ
シブルチユーブ、7……被冷却液供給口、8……
結晶取出口。
FIG. 1 is a cross-sectional view showing one example of the device of the present invention, and FIG. 2 is an end view of the connecting portion of the vertical rotation shaft shown in FIG. DESCRIPTION OF SYMBOLS 1... Crystallization tank, 2... Cooling pipe body, 3... Rotating shaft, 4... Support rod, 5... Guideway, 6... Flexible tube, 7... Cooled liquid supply port, 8...
Crystal outlet.

Claims (1)

【特許請求の範囲】 1 晶析槽の中に、上部に垂直軸と遊合して上下
に往復する水平支持部材を設け、一方合成樹脂管
をU字状にしてその上方の両端部を該水平支持部
材に、底部を該垂直軸下部に固定し、該両端部は
冷媒を通すよう構成され、該垂直軸の往復回転に
伴い該U字状合成樹脂管の両端部は上下往復運
動、底部は往復ひねり回転することを特徴とする
晶析装置。 2 垂直軸が上下2軸より構成され、上部垂直軸
と下部垂直軸は、遊びを有して結合されている事
を特徴とする特許請求の範囲第1項記載の晶析装
置。
[Claims] 1. A horizontal support member is provided in the upper part of the crystallization tank to reciprocate up and down while interacting with a vertical shaft, and a synthetic resin pipe is made into a U-shape and its upper ends are The bottom of the U-shaped synthetic resin pipe is fixed to a horizontal support member below the vertical shaft, and both ends are configured to allow refrigerant to pass therethrough.As the vertical shaft reciprocates, both ends of the U-shaped synthetic resin tube move vertically and reciprocally. is a crystallizer characterized by reciprocating twisting rotation. 2. The crystallizer according to claim 1, wherein the vertical axis is composed of two upper and lower axes, and the upper vertical axis and the lower vertical axis are connected with play.
JP17259879A 1979-12-29 1979-12-29 Crystallizing apparatus Granted JPS5695302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17259879A JPS5695302A (en) 1979-12-29 1979-12-29 Crystallizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17259879A JPS5695302A (en) 1979-12-29 1979-12-29 Crystallizing apparatus

Publications (2)

Publication Number Publication Date
JPS5695302A JPS5695302A (en) 1981-08-01
JPS6150001B2 true JPS6150001B2 (en) 1986-11-01

Family

ID=15944813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17259879A Granted JPS5695302A (en) 1979-12-29 1979-12-29 Crystallizing apparatus

Country Status (1)

Country Link
JP (1) JPS5695302A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4995947B2 (en) * 2010-07-05 2012-08-08 塩野義製薬株式会社 Crystallizer, crystallization method, and concentrated crystallization system
CN103055525B (en) * 2013-01-05 2014-11-05 吴嘉 Anti-blocking evaporation sedimentation chamber producing clean secondary steam

Also Published As

Publication number Publication date
JPS5695302A (en) 1981-08-01

Similar Documents

Publication Publication Date Title
Woolley Motility of spermatozoa at surfaces
RU2227182C2 (en) High-purity gallium for production of compound semiconductors, method of cleaning and device for realization of this method
US7754083B2 (en) Solid hollow fiber cooling crystallization systems and methods
US1353571A (en) Method of and apparatus for forming large crystals
RU2000120199A (en) GALLIUM OF HIGH PURITY FOR PRODUCTION OF COMPLEX SEMICONDUCTORS, METHOD OF CLEANING AND DEVICE FOR IMPLEMENTATION OF THIS METHOD
US2288667A (en) Method of crystallizing substances from solution
US5394827A (en) Draft tube, direct contact cryogenic crystallizer
JP3398384B2 (en) Swivel drive in heat transfer device
KR20170125798A (en) Evaporation device
JP3525126B2 (en) Crystallizer and crystallization method
JPS6150001B2 (en)
CN107381637B (en) A kind of method of preventing scaring in ammonium metavanadate crystallization process
Spicer et al. Crystal comets: Dewetting during emulsion droplet crystallization
NZ208973A (en) Continuous extraction apparatus and process: oscillating vertical screen in vertical cylindrical column
JP2000513998A (en) Crystallization equipment and method
JPS63100439A (en) Method and apparatus for continuous melting of gel-like material
CN209490508U (en) A kind of crystallizing tank
CN114733226B (en) Sodium nitrate preparation equipment and preparation method
Shao et al. On-line monitoring and analysis of membrane-assisted internal seeding for cooling crystallization of ammonium persulfate
CN212491636U (en) High-purity gallium crystallization device
CN213113853U (en) Belt cleaning device is used in weaving cloth production
JP2511070B2 (en) Method and apparatus for melting glass
TW200407192A (en) Magma circulation type crystallizer
CN215039156U (en) Raw material crystallizing cylinder for producing zipper monofilaments
CN210357163U (en) Pharmaceutical recrystallization reation kettle