JPS6149865A - Thermal head having normal resistance temperature coefficient - Google Patents

Thermal head having normal resistance temperature coefficient

Info

Publication number
JPS6149865A
JPS6149865A JP59172131A JP17213184A JPS6149865A JP S6149865 A JPS6149865 A JP S6149865A JP 59172131 A JP59172131 A JP 59172131A JP 17213184 A JP17213184 A JP 17213184A JP S6149865 A JPS6149865 A JP S6149865A
Authority
JP
Japan
Prior art keywords
dot
resistor
scanning direction
thermal head
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59172131A
Other languages
Japanese (ja)
Inventor
Kenichi Kanazawa
健一 金澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP59172131A priority Critical patent/JPS6149865A/en
Publication of JPS6149865A publication Critical patent/JPS6149865A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N97/00Electric solid-state thin-film or thick-film devices, not otherwise provided for

Landscapes

  • Electronic Switches (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Facsimile Heads (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To continue picture elements in the scanning direction by using a thermal head consisting of a row of resistor dot groups of a material having normal resistance temperature coefficient and paired cell groups to supply electric current to each dot. CONSTITUTION:A powder obtained by mixing BaCO3, TiO2, Y2O3, MnO2, etc., calcining the mixture, and grinding the calcined mixture is mixed with a binder to form a paste. The paste is coated on an alumina base plate S by screen printing and backed to form a resistor dot 1 group. Afterwards, Ni is laminated on resistor dot 1 group by electroless plating, an Ag cell is provided by print-out method, and a pattering is made by usualy photolithographic method to form paired cells 2a and 2b group. An over-grave layer is formed as a protective film on the whole surface of the dot rows by coating a glass paste on it by screen printing and then baking it.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は感熱記録及び熱転写記録に用いられるサーマル
ヘッドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a thermal head used for thermal recording and thermal transfer recording.

(発明の背景) テレビ、ビデオカメラ、ビデオディスク等から得られる
電気的画像信号から写真の如キノ・−トコビーの形で画
像を再生する方法が盛んに研究されており、その中のひ
とつに感熱記録及び熱転写記録がある。
(Background of the Invention) Methods for reproducing images in the form of photographs from electrical image signals obtained from televisions, video cameras, video discs, etc. have been actively researched, and one of them is a thermosensitive method. There are recordings and thermal transfer recordings.

これらの記録に使用されるものがサーマルヘッドであシ
、サーマルヘッドは、ひとつの画素を印しては現在4−
16ドツト/111Iの密度で全体で500〜4000
 ドツトのライン型ヘッドが研究されている。
What is used for these recordings is a thermal head, which currently has a 4-
Total density of 500-4000 with 16 dots/111I
Dot line type heads are being researched.

そして抵抗体材料としては現在Tα、N、Tα−8io
!、Tα−8iC,Cr−8iOなどが使用されている
Currently, Tα, N, and Tα-8io are used as resistor materials.
! , Tα-8iC, Cr-8iO, etc. are used.

しかしながら、これらの抵抗体材料は常温から発熱時の
温度一般には0〜400℃にわたってほぼ一定の抵抗値
Rを有しており、各温度に於ける抵抗温度係数は、はと
んどゼロである。また1つのドツト内のどの点に於いて
も抵抗値Rは一様と考えられる。
However, these resistor materials have a nearly constant resistance value R from room temperature to temperatures generally between 0 and 400 degrees Celsius, and the temperature coefficient of resistance at each temperature is almost zero. . Further, the resistance value R is considered to be uniform at any point within one dot.

ところでドツトで発生する熱量Qは、式:%式% で表わされる。ここでVはドツトに印加する電圧であシ
、tは時間である。
By the way, the amount of heat Q generated in a dot is expressed by the formula: % formula %. Here, V is the voltage applied to the dot, and t is the time.

一般には定電圧駆動法がとられるのでVも一定であり、
従って発生する熱−1itqもドツト内のどの点に於い
ても一様になる。
Generally, a constant voltage drive method is used, so V is also constant.
Therefore, the generated heat -1itq is also uniform at any point within the dot.

しかしながら、発熱させた場合、ドツト外の温度は低い
ので熱が周囲に逃げ、その結果、ドツトの中心部では温
度が高く、周辺部では温度が低いことになる。本発明者
らの測定によると、1つのドツトの主走査方向での温度
分布は、第2図に示すように中心部が高く周辺部が低い
山型となる。
However, when heat is generated, the temperature outside the dot is low, so the heat escapes to the surroundings, resulting in a high temperature at the center of the dot and a low temperature at the periphery. According to the measurements made by the inventors, the temperature distribution of one dot in the main scanning direction has a mountain-like shape where the center is high and the periphery is low, as shown in FIG.

困ったことに、このような抵抗体材料のサーマルヘッド
で画素を印字させると、画素印字濃度と抵抗体の発熱温
度との間には第3図に示すような関係があるので、飽和
領域以下ではjつの画素内で濃度ムラが現われることに
7′c、υ、特に発熱温度が低い領域では印字される画
素の形状も小さくなってしまう。従って、印加電力を変
えることにより濃度を変える中間調表現方式の場合、画
素の形状及び濃度ムラの両方が変化することになり、駆
動回路の調整は極めて複雑になる。できれば、画素の形
状が画素間で一定で、かつ1つの画素内で濃度ムラのな
いことが好ましい。
The problem is that when printing pixels with a thermal head made of such a resistor material, there is a relationship between the pixel print density and the heat generation temperature of the resistor as shown in Figure 3, so the temperature is below the saturation region. In this case, density unevenness appears within the j pixels, and the shape of the printed pixels becomes smaller especially in the area where the heat generation temperature is low. Therefore, in the case of a halftone expression method in which the density is changed by changing the applied power, both the shape of the pixel and the density unevenness change, and the adjustment of the drive circuit becomes extremely complicated. If possible, it is preferable that the shape of each pixel is constant between pixels and that there is no density unevenness within one pixel.

また、山型の温度分布を持つ場合、中心部が過加熱の状
態となることがあp、そのため中心部が先に寿命がつき
、結局全体の寿命が早くつきることになる。
Furthermore, in the case of a mountain-shaped temperature distribution, the center may become overheated, so that the center reaches the end of its life first, and the overall life ends quickly.

そのため、抵抗体ドツトを正のPTCを持つ抵抗体材料
で構成することが提案された(特開昭53−43539
号参照)。このような材料では温度が上がれば抵抗が太
きくなるので発熱量Qが低下し、結局温度が下がること
になり、温度分布は第4図に示すようにドツト内で一様
になると考えられる。
Therefore, it was proposed to construct the resistor dots with a resistor material having a positive PTC (Japanese Patent Laid-Open No. 53-43539
(see issue). In such a material, as the temperature rises, the resistance becomes thicker, so the amount of heat generated Q decreases, and the temperature eventually decreases, so that the temperature distribution becomes uniform within the dot as shown in FIG.

しかしながら、本発明者らが先の特開昭53−4353
9号に具体的に開示された唯一の材料であるチタン酸バ
リウム(正確には、チタン酸バリウム系PTCサーミス
タのこと)を用いて、同じく具体的に開示された構造の
サーマルヘッドを試作して印字してみたところ、ドツト
が並んでいる方向である主走査方向の画素と画素との間
が連続して印字されたいことが判明した。そのため得ら
れる画像の画質は劣悪なものであった。
However, the inventors of the present invention
Using barium titanate (more precisely, barium titanate-based PTC thermistor), which is the only material specifically disclosed in No. 9, we prototyped a thermal head with a structure also specifically disclosed. When I tried printing, I found that I wanted to print continuously between pixels in the main scanning direction, which is the direction in which the dots were lined up. Therefore, the quality of the images obtained was poor.

(発明の目的〕 本発明の目的は、正の抵抗温度係数を持つ抵抗体材料を
使用する特開昭53−43539号の発明を改良して、
主走査方向の画素と画素ζを連続させ、それによシ画質
を向上させることにある。
(Object of the Invention) The object of the present invention is to improve the invention of JP-A No. 53-43539, which uses a resistor material having a positive temperature coefficient of resistance.
The objective is to make pixels in the main scanning direction and pixels ζ consecutive, thereby improving image quality.

(発明の概要) 本発明者らは、先の特開昭53−43539号に具体的
に開示された唯一の抵抗体材料であるチタン酸バリウム
系PTCサーミスタ並びに同じく具体的に開示されたサ
ーマルヘッド構造について詳細に検討したところ、その
構造は抵抗体ドツトに通電するための一対の電極が主走
査方向(つまり、ドツトが並んでいる方向)に沿って設
けられており、電流は主走査方向に流れる構造となって
おり、またチタン酸バリウムは電流の流れる方向に直交
する方向つまり副走査方向(記録紙の移動方向)には発
熱時の温度分布が第4図に示すように一様になるものの
、電流の流れる方向つまシ主走査方向では、相変らず第
2図に示すような山型の温度分布を示し、そのため隣り
合うドツト群を発熱させたときにもドツトとドツトとの
間の温度が低く第5図に示すような温度分布を示し、従
って、主走査方向に隣り合う画素が連続して印字されな
いことが判明した。この問題の解決のためにドツト間隔
を狭くすることが考えられるが、それは絶縁性の問題及
び加工性の問題があって余り狭くすることはできない。
(Summary of the Invention) The present inventors have developed a barium titanate-based PTC thermistor, which is the only resistor material specifically disclosed in the aforementioned Japanese Patent Application Laid-Open No. 53-43539, and a thermal head also specifically disclosed. A detailed study of the structure revealed that a pair of electrodes for supplying current to the resistor dots are provided along the main scanning direction (in other words, the direction in which the dots are lined up), and the current flows in the main scanning direction. Barium titanate has a flowing structure, and the temperature distribution of barium titanate when it generates heat is uniform in the direction perpendicular to the direction of current flow, that is, in the sub-scanning direction (direction of movement of the recording paper), as shown in Figure 4. However, in the main scanning direction, where the current flows, it still shows a mountain-shaped temperature distribution as shown in Figure 2, and therefore, even when a group of adjacent dots is heated, the temperature distribution between the dots is It was found that the temperature was low and showed a temperature distribution as shown in FIG. 5, and therefore pixels adjacent in the main scanning direction were not printed continuously. In order to solve this problem, it is conceivable to narrow the dot spacing, but it is not possible to make the dot spacing too narrow because of insulation problems and workability problems.

そこで更に研究を進めたところ、電流を流す方向を90
度変えることを着想し、そうすれば、主走査方向の温度
分布は第4図に示すように一様になるため隣り合うドツ
ト群を発熱させたときにもドツトとドツトとの間の温度
が余り下がらず第6図に示すようなほぼ一様な温度分布
を示すので、主走査方向での画素が連続して印字される
こと、並びにそのために今度は副走査方向で画素の長さ
が短かくなり、また濃度ムラも発生することになるが、
この新たな問題は、記録紙の1行分の移動距離を短かく
することや、その他の方法でいくらでも解決可能である
ことを見い出し、本発明を成すに至った。
After further research, we found that the direction of current flow was 90 degrees.
By doing so, the temperature distribution in the main scanning direction will be uniform as shown in Figure 4, so even when adjacent dots are heated, the temperature between the dots will be the same. Since the temperature does not drop much and shows an almost uniform temperature distribution as shown in Figure 6, the pixels in the main scanning direction are printed continuously, and for this reason the length of the pixels in the sub-scanning direction is short. This will result in uneven density and uneven density.
It was discovered that this new problem could be solved by shortening the moving distance of one line of recording paper, or by any number of other methods, leading to the present invention.

従って、本発明は、主走査方向に一列に並んだ抵抗体ド
ツト群と各ドツトに副走査方向に電流を流すための一対
の電極群とからなり、前記抵抗体ドツトを正の抵抗温度
係数を持つ抵抗体材料で構成したことを特徴とするサー
マルヘッドを提供する。
Therefore, the present invention consists of a group of resistor dots lined up in a line in the main scanning direction and a pair of electrode groups for passing a current through each dot in the sub-scanning direction, and the resistor dots have a positive temperature coefficient of resistance. To provide a thermal head characterized in that it is constructed of a resistor material having

以下、実施例により本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

(実施例) BaCO2及びTiQ2にY2・O8,1M n O2
等を添加混合、仮焼、粉砕して作製した粉末にバインダ
ーを加えたペーストをスクリーン印刷法により、アルミ
ナ基板(S)上に塗付し、焼成して、第1図(α)に示
すような抵抗体ドツト(1)群を形成する。
(Example) BaCO2 and TiQ2 with Y2・O8, 1M n O2
A paste made by adding a binder to the powder prepared by adding, mixing, calcining, and pulverizing the above ingredients is applied onto an alumina substrate (S) by screen printing method, and is fired to form a paste as shown in Figure 1 (α). A group of resistor dots (1) is formed.

次に無電解メッキによpNiを積層した後、銀電極を焼
付け、通常のフォトリングラフイー法によりバターニン
グして第1図(b)に示す如き一対の電極(2LL)、
(2b)群を形成する。その後、保護のためにドツト列
全体を覆うようにオーバーグレーズ層としてガラスペー
ストをスクリーン印刷法により塗布し、焼成して保護層
を形成する。
Next, after pNi was laminated by electroless plating, a silver electrode was baked and patterned by the usual photophosphorography method to form a pair of electrodes (2LL) as shown in FIG. 1(b).
(2b) Form a group. Thereafter, for protection, a glass paste is applied as an overglaze layer by screen printing so as to cover the entire dot row, and is fired to form a protective layer.

こうして密度4ドクト/蕗のサーマルヘッドが得られる
In this way, a thermal head with a density of 4 dots/brush is obtained.

得られたサーマルヘッドを発熱させると、主走査方向で
の温度分布は第6図の如き分布を示した。
When the obtained thermal head was made to generate heat, the temperature distribution in the main scanning direction showed a distribution as shown in FIG.

(発明の効果) 以上の通り、本発明によれば、正の抵抗温度係数を持つ
抵抗体ドツトに対し副走査方向から電流を供給する構造
としたので、主走査方向での発熱温度分布が一様とr、
c D、そのため主走査方向での画素が連続し、画質が
向上する。
(Effects of the Invention) As described above, according to the present invention, since the structure is such that current is supplied from the sub-scanning direction to the resistor dots having a positive temperature coefficient of resistance, the heat generation temperature distribution in the main-scanning direction is uniform. Mr. and r,
c D, therefore, pixels are continuous in the main scanning direction, improving image quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(α)及び(A)は本発明の実施例で製造したサ
ーマルヘッドの各製造工程に於ける部分平面図である。 第2図は従来の負の抵抗温度係数を持つ1つの抵抗体ド
ツトの断面とそのドツトの発熱時の温度分布を示すグラ
フである。 第3図は抵抗体ドツトの発熱温度と画素印字濃度との関
係を示すグラフである。 第4図は正の抵抗温度係数を持つ1つの抵抗体ドツトの
断面とそのドツトの発熱時の温度分布を示すグラフであ
る。 第5図はチタン酸バリウム系PTCサーミスタからなる
抵抗体ドツト群の主走査方向の断面とそのドツト群の主
走査方向に於ける発熱時の温度分布を示すグラフである
。 第6図は本発明の実施例にかかる抵抗体ドツト群の主走
査方向の断面とそのドツト群の主走査方向に於ける発熱
時の温度分布を示すグラフである。 〔主要部分の符号の説明〕 1・・・・・・抵抗体ドツト 2α、2b・・・・・・一対の電極 S・・・・・・基 板
FIGS. 1(α) and 1(A) are partial plan views in each manufacturing process of a thermal head manufactured in an embodiment of the present invention. FIG. 2 is a graph showing the cross section of one conventional resistor dot having a negative temperature coefficient of resistance and the temperature distribution of the dot when it generates heat. FIG. 3 is a graph showing the relationship between the heat generation temperature of the resistor dots and the pixel print density. FIG. 4 is a graph showing the cross section of one resistor dot having a positive temperature coefficient of resistance and the temperature distribution of the dot when it generates heat. FIG. 5 is a graph showing a cross section in the main scanning direction of a group of resistor dots made of a barium titanate PTC thermistor and a temperature distribution of the dot group during heat generation in the main scanning direction. FIG. 6 is a graph showing a cross section in the main scanning direction of a resistor dot group according to an embodiment of the present invention and a temperature distribution of the dot group during heat generation in the main scanning direction. [Explanation of symbols of main parts] 1...Resistor dots 2α, 2b...Pair of electrodes S...Substrate

Claims (1)

【特許請求の範囲】 1 主走査方向に一列に並んだ抵抗体ドット群と各ドッ
トに副走査方向に電流を流すための一対の電極群とから
なり、前記抵抗体ドットを正の抵抗温度係数を持つ抵抗
体材料で構成したことを特徴とするサーマルヘッド。 2、前記抵抗体材料がチタン酸バリウム系PTCサーミ
スタであることを特徴とする特許請求の範囲第1項記載
のサーマルヘッド。
[Scope of Claims] 1. Consisting of a group of resistor dots arranged in a line in the main scanning direction and a pair of electrode groups for passing current through each dot in the sub-scanning direction, the resistor dots have a positive temperature coefficient of resistance. A thermal head characterized in that it is made of a resistor material that has. 2. The thermal head according to claim 1, wherein the resistor material is a barium titanate PTC thermistor.
JP59172131A 1984-08-18 1984-08-18 Thermal head having normal resistance temperature coefficient Pending JPS6149865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59172131A JPS6149865A (en) 1984-08-18 1984-08-18 Thermal head having normal resistance temperature coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59172131A JPS6149865A (en) 1984-08-18 1984-08-18 Thermal head having normal resistance temperature coefficient

Publications (1)

Publication Number Publication Date
JPS6149865A true JPS6149865A (en) 1986-03-11

Family

ID=15936137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59172131A Pending JPS6149865A (en) 1984-08-18 1984-08-18 Thermal head having normal resistance temperature coefficient

Country Status (1)

Country Link
JP (1) JPS6149865A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418819A (en) * 1991-11-18 1995-05-23 Nippon Hoso Kyokai Transmitting apparatus and receiving apparatus based on phase modulation method
JPH0839846A (en) * 1994-07-28 1996-02-13 Nec Corp Thermal head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418819A (en) * 1991-11-18 1995-05-23 Nippon Hoso Kyokai Transmitting apparatus and receiving apparatus based on phase modulation method
JPH0839846A (en) * 1994-07-28 1996-02-13 Nec Corp Thermal head

Similar Documents

Publication Publication Date Title
JPS6149865A (en) Thermal head having normal resistance temperature coefficient
JP2609748B2 (en) Thick film type thermal recording head and recording device
JPH0263063B2 (en)
JPH0532297Y2 (en)
JPS60214972A (en) Printer
JP2965339B2 (en) Manufacturing method of thermal head
JP2932661B2 (en) Manufacturing method of thermal head
JPH01286864A (en) Thermal head
JP5329887B2 (en) Thermal head
JP4131757B2 (en) Heating resistor, thermal head, and manufacturing method thereof
JPH04110165A (en) Thermal head and manufacture thereof
JPH01135659A (en) Thick film thermal head
JPH1029335A (en) Thermal head
JP2530743Y2 (en) Thick film type thermal head
JPH06208311A (en) Heater for heating
JPS6149866A (en) Line form thermal head having positive temperature coefficient of resistance
JPH0263749A (en) Thermal head
JP2554556B2 (en) Thermal print head
JPS60214973A (en) Printer
JPH04250074A (en) Thermal head
JPH0657456B2 (en) Thermal recording head
JPH05338231A (en) Thermal head and printing method thereof
JPS62282950A (en) Thermal recording head
JPS6183056A (en) Thermal head
JPS63149165A (en) Thick-film thermal head