JPS6149754A - Method for preventing clogging of nozzle in process for producing quickly cooled thin strip - Google Patents
Method for preventing clogging of nozzle in process for producing quickly cooled thin stripInfo
- Publication number
- JPS6149754A JPS6149754A JP16874584A JP16874584A JPS6149754A JP S6149754 A JPS6149754 A JP S6149754A JP 16874584 A JP16874584 A JP 16874584A JP 16874584 A JP16874584 A JP 16874584A JP S6149754 A JPS6149754 A JP S6149754A
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- molten metal
- injection
- temperature
- quickly cooled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/18—Controlling or regulating processes or operations for pouring
- B22D11/181—Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level
- B22D11/182—Controlling or regulating processes or operations for pouring responsive to molten metal level or slag level by measuring temperature
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0611—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
この発明は、急冷金属薄帯(以下単に急冷薄帯という)
の製造法におけるノズル閉塞防止法に関し、とくに溶融
金属を、その射出ノズルから高速で更新移動する冷却面
たとえば冷却用ロールの胴周面などに向けて流下供給し
、該ロール面との接触抜熱によって急冷凝固させて薄帯
化を導くいわ・ゆる液体急冷直接製板法において、溶融
金属がノズルの射出口で凝固することによって生じるノ
ズル詰りを効果的に解消しようとするものでめる。[Detailed Description of the Invention] (Industrial Application Field) This invention relates to quenched metal ribbon (hereinafter simply referred to as quenched ribbon).
Regarding the method of preventing nozzle clogging in the manufacturing method of In the so-called liquid quenching direct sheet manufacturing method, in which the metal is rapidly cooled and solidified to form a thin strip, it is an attempt to effectively eliminate nozzle clogging that occurs when molten metal solidifies at the injection port of the nozzle.
(従来の技術〕
溶融金属を冷却媒体で急冷凝固させて金属薄帯゛とする
製法は、仰られる急冷薄帯の物理的、化学的および電磁
気的な性質が特異である場合が多く、近年、とくに非晶
質合金の製法として注目を浴びている。(Prior art) The manufacturing method of rapidly solidifying molten metal with a cooling medium to produce metal ribbon has been developed in recent years because the physical, chemical, and electromagnetic properties of the quenched ribbon are often unique. In particular, it is attracting attention as a method for producing amorphous alloys.
冷却媒体としては、単Xロール、双ロール、ベルトおよ
びドラムなどが一般的に用いられ、このうち単篤ロール
を用いて長尺広幅形状の非晶質合金を工業的規模で製造
する技術については、すでに確立されつつらる。Single X rolls, double rolls, belts, drums, etc. are commonly used as cooling media. Among these, the technology for manufacturing long and wide amorphous alloys on an industrial scale using single rolls is currently being developed. , already established.
これに伴い溶融金属の供給ノズルについても・種々の改
良が加えられ、金属あるいはセラミックス製の多孔ノズ
ルやスリットノズルなど多数のノズルが提案されている
。Along with this, various improvements have been made to molten metal supply nozzles, and a large number of nozzles such as porous nozzles and slit nozzles made of metal or ceramics have been proposed.
ところで上記しfcような溶融金属の供給ノズル゛は、
流出口がスリット状の場合には、スリット厚が狭い几め
に、たとえば単ロール式非晶質合金製造用の′ノズルに
おいては、合金を非晶質化させるために十分な冷却効果
を持几せる意味から、スリット厚みは0.24+11.
Ommにも狭くされている几めに、溶融金属の完全な流
出が果次されず、しばしばノズル詰りを生じてい友。By the way, the molten metal supply nozzle like the fc mentioned above is
When the outlet is in the form of a slit, the slit thickness is narrow, such as a single-roll nozzle for manufacturing amorphous alloys, which has a sufficient cooling effect to make the alloy amorphous. For this reason, the slit thickness is 0.24+11.
Due to the narrowing of the nozzle, the molten metal does not flow out completely and the nozzle often becomes clogged.
かかる弊害は、溶融金属の温度が、ノズルとくにその流
出口における抜熱現象によって低下し、粘性が上昇する
ことに起因している。This problem is caused by the fact that the temperature of the molten metal decreases due to the heat removal phenomenon at the nozzle, particularly at its outlet, and the viscosity increases.
そこでかような問題の解決策として、特開昭57−18
4号および同57−159246号各公報Cにおいて、
ノズルの変形を防止するための嵌着保持装置内に、スリ
ット部加熱のための通電発熱帯を装置させることが提案
された。しかしながらこの方法では、溶融金属を射出す
るに従ってノズルをあらかじめ溶融温度の近傍まで刀口
熱しておかねばならず、美大な熱エネルギーを必要とす
る不利がめつ7tc、と、くに非晶質合金表造用のノズ
ルとしては、溶融金属との間に物質移動(拡散1反応)
がある°と非晶質合金の特性が劣化する場合が多いため
一般に化学的に安定なセラミックスが用いられるが、セ
ラミツ、クスはほとんどの場合熱伝44が小さいために
閉塞を完全に防止するのに十分な予備加熱を施すことは
極めて難しかった。しかもかような処理を施しfCとし
てもなお、加熱むらによるノズル詰りは依然として免れ
得なかったのである。Therefore, as a solution to such problems,
In each publication C of No. 4 and No. 57-159246,
It has been proposed to install an energized heat generating section for heating the slit part in the fitting and holding device for preventing deformation of the nozzle. However, in this method, the nozzle must be preheated to near the melting temperature as the molten metal is injected, and this method has the disadvantage of requiring a large amount of thermal energy. As a nozzle, mass transfer between the molten metal (diffusion 1 reaction)
Chemically stable ceramics are generally used because the properties of amorphous alloys often deteriorate when exposed to a certain degree of temperature, but ceramics and clays have low heat transfer in most cases, so it is difficult to completely prevent clogging. It was extremely difficult to provide sufficient preheating. Moreover, even if such treatment was performed and fC was applied, nozzle clogging due to uneven heating could still be avoided.
この発明は、上記の問題を有利に解決するもので、ノズ
ル加熱装置などを必要とすることなく・まkたとえセラ
ミックス製ノズルを用いた場合であってもノズル詰9を
有利に回避することができるノズル閉塞防止法を提案す
ることを目的とする。The present invention advantageously solves the above problems, and can advantageously avoid nozzle clogging 9 even when a ceramic nozzle is used, without requiring a nozzle heating device or the like. The purpose of this study is to propose a method to prevent nozzle clogging.
(問題点を解決するrcめの手段)
°発明者らは、上記の問題を解決すべく、ノズル −
詰りの原因について再検討し九ところ、ノズル詰Vは、
ノズル温度(T)と溶融金属温度(TM)との温度差(
ΔT)、ノズルの熱伝導率および溶融金属の成分組成、
中でも温度差ΔTにとジわけ強く依存し、このΔTが大
きくなるほど激しくなる傾向にあることが判明し九〇
゛そこで発明者らは、がかる温度差ΔTに応じて、゛溶
融金属の射出圧力Pを変化させてみ友ところ。(RC means for solving the problem) In order to solve the above problem, the inventors have developed a nozzle -
After reconsidering the cause of the clogging, we found that the nozzle was clogged.
Temperature difference between nozzle temperature (T) and molten metal temperature (TM) (
ΔT), the thermal conductivity of the nozzle and the composition of the molten metal,
Among them, it was found that the injection pressure P of molten metal depends particularly strongly on the temperature difference ΔT, and tends to become more severe as this ΔT increases. Let's try to change it.
ノ“ズ〜ル拮)め防止た関し、□望外の成果を得次ので
ある。なお他の要因すなわちノズルの熱伝導率や溶融金
属の組成に起因するノズル詰りは、射出圧力−の対応に
よって何ら問題がないことも併せて突止め友。Regarding the prevention of nozzle clogging, we obtained the following unexpected results.In addition, nozzle clogging caused by other factors, such as the thermal conductivity of the nozzle and the composition of the molten metal, can be prevented by adjusting the injection pressure. I also found out that there was no problem.
この発明は、上記の知見に由来するものであ・る。This invention is derived from the above knowledge.
すなわちこの発明は、溶融金属を、その′射出ノズルか
ら、冷却面が高速で更新移、動する冷却体上に連続して
供給し、急冷凝固させて薄帯化する急冷薄帯の製造法に
おいて、溶融金属およびノズルの一温度を常時測定して
おき、かかる溶融金属およびノズルの温飯化に応じて該
溶融金属の射出圧力を。That is, the present invention provides a method for manufacturing a quenched ribbon in which molten metal is continuously supplied from an injection nozzle onto a cooling body whose cooling surface is updated and moved at high speed, and is rapidly solidified into a thin ribbon. The temperatures of the molten metal and nozzle are constantly measured, and the injection pressure of the molten metal is adjusted as the molten metal and nozzle become warmer.
調整することからなる急冷薄帯製造法におけるノズル閉
塞防止法である。This is a method for preventing nozzle clogging in the quenched ribbon manufacturing method, which involves adjustment.
この発明では、具体的には、ノズルと溶融金属との温度
差ΔTによって射出圧力Pを調整するわけであるが、こ
のΔTとPとの関係は、ノズル材質および溶融金属の成
分組成さらにはノズルおよ゛び溶融金属の各温度によっ
て変化する。従ってΔTとPとの関係は、常にかような
条件を考慮しt上で決定する必要がある。In this invention, specifically, the injection pressure P is adjusted by the temperature difference ΔT between the nozzle and the molten metal, but the relationship between ΔT and P depends on the nozzle material, the composition of the molten metal, and the nozzle. and the temperature of the molten metal. Therefore, the relationship between ΔT and P must always be determined on t, taking such conditions into consideration.
(作用)
第1図に、こめ発明に従う射出圧力Pの制御型 □領
を図解する。(Function) FIG. 1 illustrates the control type □ of the injection pressure P according to the invention.
図中番号lは溶融金属、2はノズル、8はその射出孔で
61)、番は冷却単ロール、6は急冷薄帯である。そし
て6は溶融金属用温度針、7はノズル用温度計、8は制
御系であり、この制御系8には、溶融金属の各盛分系毎
の比熱や粘性さらにはノズルの熱伝導率などを考慮した
種々のΔT−P曲線が予めプログラミングされていて、
溶融金属およびノズル用の温度計6,7で計測され比容
温度TM、 TIに応じて、その成分系に適切な射出圧
力を導出するしくみになっている。9は制御系8からの
出力制御信号に基いてノズル2内の圧力を調整する圧力
調整器でおる。In the figure, number 1 is the molten metal, 2 is the nozzle, 8 is the injection hole (61), number is the cooling single roll, and 6 is the quenched ribbon. 6 is a temperature needle for the molten metal, 7 is a nozzle thermometer, and 8 is a control system.This control system 8 includes information such as the specific heat and viscosity of each fraction of the molten metal, as well as the thermal conductivity of the nozzle. Various ΔT-P curves are programmed in advance, taking into account
The system derives an appropriate injection pressure for the component system according to the specific volume temperatures TM and TI measured by thermometers 6 and 7 for the molten metal and the nozzle. Reference numeral 9 denotes a pressure regulator that adjusts the pressure inside the nozzle 2 based on an output control signal from the control system 8.
この発明において、T T およびPの関係は。In this invention, the relationship between T, T and P is as follows.
基本的にはP=α(TM−T、)なる式によって表゛わ
される。ここにαは、溶融金属の比熱、粘性、およびノ
ズルの熱伝専率を考慮して決定される係数であり、実験
的に求めることができる。Basically, it is expressed by the formula P=α(TM-T,). Here, α is a coefficient determined in consideration of the specific heat of the molten metal, viscosity, and the heat transfer rate of the nozzle, and can be determined experimentally.
几だし、非晶質合金を製造する場合は、非晶質となるた
めの薄帯厚みの上限値が存在するため。When manufacturing an amorphous alloy, there is an upper limit to the thickness of the ribbon for it to become amorphous.
Pの変化量もその制約を受ける。発明者らの実験によれ
ば、スリット厚が0.4〜9.13mmのときPはO0
z〜8 kqf/cm程度がヌましいことが確められて
いる。The amount of change in P is also subject to this restriction. According to experiments conducted by the inventors, when the slit thickness is 0.4 to 9.13 mm, P is O0.
It has been confirmed that about z~8 kqf/cm is undesirable.
(実施例) 以下この発明の実施例を、従来例と比較して説明する。(Example) Examples of the present invention will be described below in comparison with conventional examples.
実施例
Fe!78B□、S1□。(′fCだし添数字は原子百
分率〕の組成に溶製しfc1300℃の溶湯を、厚み:
o、amm。Example Fe! 78B□, S1□. (The suffix number is atomic percentage) The molten metal was melted at fc 1300℃, and the thickness:
o, amm.
長さ:100mmのスリット孔を持つ溶融シリカ質の射
出ノズルを用い、射出開始から終了(1zO秒後)まで
の全期間にv九って、第2図に示し友とおりの温度差Δ
T−射出射出圧力線曲線く圧力制御を行いながら1周速
二80%で回転する単ロールの°ロール胴表面に供給し
友。溶融温度は1300℃と一定であり・射出開始時の
ノズル温度は100℃でめったので、まず1.0呻f/
cmの射出圧力を与え、その後ノズル温度の上昇に伴い
第2図の曲線に従って射出圧力を漸次減少していき、2
5秒後にノズル温度が1290℃になった時点でg 、
4 kpf/cnr まで下げ、以後この圧力に保
持した。Length: Using a fused siliceous injection nozzle with a slit hole of 100 mm, the temperature difference Δ during the entire period from the start of injection to the end (after 1 zO seconds), where v9, is as shown in Figure 2.
T-Injection The injection pressure line is applied to the surface of the roll cylinder of a single roll rotating at 280% per circumferential speed while controlling the pressure. The melting temperature was constant at 1300°C, and the nozzle temperature at the start of injection was rarely 100°C, so at first the temperature was 1.0 mm/f/
cm of injection pressure was applied, and then as the nozzle temperature rose, the injection pressure was gradually decreased according to the curve in Figure 2.
When the nozzle temperature reached 1290°C after 5 seconds, g
The pressure was lowered to 4 kpf/cnr and maintained at this pressure thereafter.
その結果、射出開始から終了までに至る全期間にわfc
つて、ノズルの閉塞を生じることなしに全溶解量を射出
することができ、しかも幅方向はいうまでもなく長手方
向の厚みも均一な急冷薄帯が得られた。As a result, during the entire period from the start of injection to the end,
As a result, the entire melt amount could be injected without clogging the nozzle, and a quenched ribbon having a uniform thickness not only in the width direction but also in the longitudinal direction was obtained.
比較例
実施例と同一の成分組成、温度になる溶湯を、やはジ同
−形状のスリットノズルから、従来法に従い0 、4
kilf/cm”の一定圧力で射出したところ1幅方向
に3ケ所のノズル詰りか発生し、約4秒後にノズル詰り
部の凝固金属によってノズルが破壊された。Comparative Example A molten metal having the same composition and temperature as the example was passed through a slit nozzle with the same shape as the conventional method.
When the injection was carried out at a constant pressure of 100 kg/cm'', the nozzle was clogged at three locations in one width direction, and about 4 seconds later, the nozzle was destroyed by the solidified metal in the clogged nozzle.
°(4発明の効果〕
かくしてこの発明によれば、急冷金属薄帯の製造におい
て、ノズル那熱などの繁雑な処置を行う必要なしに、溶
融金属温度とノズル温度との差に応じ几射出圧力の調整
という簡単な操作で、ノズル詰ジを完全に防止できるだ
けでなく、従来ノズル温度の低い領域で、溶融金属の粘
性が上がることic起因して生じていた溶融金属射出量
の減少も併せて解決することができる。(4) Effects of the Invention Thus, according to the present invention, in the production of quenched metal ribbon, the injection pressure can be adjusted according to the difference between the molten metal temperature and the nozzle temperature without the need for complicated measures such as heating the nozzle. With the simple operation of adjusting the nozzle, it is possible to not only completely prevent nozzle clogging, but also reduce the amount of molten metal injected, which previously occurred due to the increased viscosity of molten metal in the low nozzle temperature range. It can be solved.
さらに得られる急冷?V帯は、その幅方向はいうまでも
なく、長手方向においても厚みむらの発生は全くない。Quenching to get more? The V band has no thickness unevenness at all not only in the width direction but also in the longitudinal direction.
第1図は、この発明に従う射出圧力制御要領の説明図。
第2図は、 Fe78B工2S1□。の組成になる18
00℃の溶湯をノズル詰りなしで射出するためのΔT−
PT−を示したグラフである。FIG. 1 is an explanatory diagram of the injection pressure control procedure according to the present invention. Figure 2 shows Fe78B engineering 2S1□. The composition is 18
ΔT- for injecting 00℃ molten metal without clogging the nozzle
It is a graph showing PT-.
Claims (1)
更新移動する冷却体上に連続して供給し、急冷凝固させ
て薄帯化する急冷金属薄帯の製造法において、溶融金属
およびノズルの温度を常時測定しておき、かかる溶融金
属およびノズルの温度変化に応じて該溶融金属の射出圧
力を調整することを特徴とする急冷金属薄帯の製造法に
おけるノズル閉塞防止法。1. In a method for producing quenched metal ribbon, in which molten metal is continuously supplied from its injection nozzle onto a cooling body whose cooling surface is updated and moves at high speed, and is rapidly solidified into a thin ribbon, the molten metal and the nozzle are 1. A method for preventing nozzle clogging in a method for producing a rapidly cooled metal ribbon, characterized in that the temperature of the molten metal is constantly measured, and the injection pressure of the molten metal is adjusted according to changes in the temperature of the molten metal and the nozzle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16874584A JPS6149754A (en) | 1984-08-14 | 1984-08-14 | Method for preventing clogging of nozzle in process for producing quickly cooled thin strip |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16874584A JPS6149754A (en) | 1984-08-14 | 1984-08-14 | Method for preventing clogging of nozzle in process for producing quickly cooled thin strip |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6149754A true JPS6149754A (en) | 1986-03-11 |
Family
ID=15873626
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16874584A Pending JPS6149754A (en) | 1984-08-14 | 1984-08-14 | Method for preventing clogging of nozzle in process for producing quickly cooled thin strip |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6149754A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06262310A (en) * | 1993-03-12 | 1994-09-20 | Kawasaki Steel Corp | Method for casting rapidly cooled strip metal and apparatus therefor |
CN109365766A (en) * | 2018-12-25 | 2019-02-22 | 锦州同创真空冶金科技有限公司 | A kind of automation amorphous pressure tape producing apparatus and method |
-
1984
- 1984-08-14 JP JP16874584A patent/JPS6149754A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06262310A (en) * | 1993-03-12 | 1994-09-20 | Kawasaki Steel Corp | Method for casting rapidly cooled strip metal and apparatus therefor |
CN109365766A (en) * | 2018-12-25 | 2019-02-22 | 锦州同创真空冶金科技有限公司 | A kind of automation amorphous pressure tape producing apparatus and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940011764B1 (en) | Casting in an exothermic reducing flame atmosphere | |
JPH03253525A (en) | Manufacture of amorphous alloy solidified material | |
JPS6149754A (en) | Method for preventing clogging of nozzle in process for producing quickly cooled thin strip | |
JP3199382B2 (en) | Manufacturing method and apparatus for semi-finished products | |
ES8507434A1 (en) | Process for producing coated flat glass | |
JP3553295B2 (en) | Molten alloy supply method and long nozzle for supply of amorphous alloy | |
KR850000692B1 (en) | Method for strip casting abstract of the disclosure | |
US5299627A (en) | Continuous casting method | |
JPS5930455A (en) | Cooling method of roll for production of quickly cooled light-gage strip | |
US11717883B2 (en) | Method for manufacturing cast strip | |
JPS62166061A (en) | Production of rapid cooling solidified active foil metal | |
JPS6114049A (en) | Production of quickly cooled thin strip having uniform thickness | |
JPH0810909A (en) | Casting method by strip continuous casting apparatus of twin roll side pouring type | |
JPH0259147A (en) | Apparatus for producing rapidly solidified strip in twin roll method | |
JPS5937705B2 (en) | Method for producing rapidly solidified metal thin sheets | |
JPS643590B2 (en) | ||
JPH05123835A (en) | Apparatus and method for producing rapidly cooled strip | |
JPS6027575Y2 (en) | Rapid solidification metal material manufacturing equipment | |
JPS6327412B2 (en) | ||
JPH0722806B2 (en) | Belt cooling method in belt type continuous casting machine | |
JPS62214855A (en) | Production of thin strip | |
SU621461A1 (en) | Method of cooling casting ib casting mould | |
JP2002283008A (en) | Method for casting rapidly cooled and solidified strip | |
KR850000589Y1 (en) | Strip casting apparatus | |
JP3117409B2 (en) | Belt type thin slab caster |