JPS6149605A - 3-phase simultaneous gas insulated switching device - Google Patents

3-phase simultaneous gas insulated switching device

Info

Publication number
JPS6149605A
JPS6149605A JP59168783A JP16878384A JPS6149605A JP S6149605 A JPS6149605 A JP S6149605A JP 59168783 A JP59168783 A JP 59168783A JP 16878384 A JP16878384 A JP 16878384A JP S6149605 A JPS6149605 A JP S6149605A
Authority
JP
Japan
Prior art keywords
container
phase
current
breaker
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59168783A
Other languages
Japanese (ja)
Inventor
藤原 治雄
吉田 民憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59168783A priority Critical patent/JPS6149605A/en
Publication of JPS6149605A publication Critical patent/JPS6149605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、しゃ断部を収納した容器内に複母線を接続す
る為の通電導体を配置した3相一括形ガス絶縁間開8置
に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a 3-phase gas-insulated 8-position gas-insulated open circuit in which a current-carrying conductor for connecting a multi-bus bar is arranged in a container housing a breaker. be.

[発明の技術向背rA1 大都市周辺とか臨海地区に設置される変電所或いは17
i1閉所においては、用地の入手テ11とかm書対策上
で滑れた長所を右づるガス絶縁開閉装置が使用される。
[Technical background of the invention rA1 Substations installed around large cities or coastal areas or 17
In closed spaces, gas insulated switchgear is used, which has the advantage of being useful in terms of land acquisition and M-book measures.

この種のガス絶縁間開装置は、都市部における電力需要
の増加に伴い、増々高゛七圧、大容量化されてさており
、一層の小型化と信頼性の向上並びに保守の簡素化が要
求されでいる。その為、一つの綴器に他のゆ能を組込ん
で全体の容器数を減らし、コス1〜の低減や設置スペー
スの縮小    ・化を図る様にしている。
This type of gas-insulated open circuit equipment is becoming increasingly high-voltage and large-capacity as the demand for electricity increases in urban areas, and there is a demand for further downsizing, improved reliability, and simplified maintenance. It's been done. Therefore, other functions are incorporated into one binding device to reduce the total number of containers, thereby reducing the cost by 1 or more and reducing the installation space.

以上の様なガス絶縁開閉装置の一例を第4図乃至第6図
を用いて説明する。
An example of the gas insulated switchgear as described above will be explained with reference to FIGS. 4 to 6.

より“、第4図は、複母線方式−同わ11分の単線結線
図を示すもので、主母線BUS1.BUS2には夫々断
路器DS1.DS2が配設され、それら・がし1b所器
CBに接続され、このしt+ ff/i器CBはπ1器
用変流器CT及び線路用断路器DS3を介して接地装置
ES、計器用変圧器P T及びケーブル接続部CHに接
続されている。
Figure 4 shows a single-line connection diagram for the double bus system - 11 minutes.Disconnectors DS1 and DS2 are installed on the main buses BUS1 and BUS2, respectively, and the switches 1b and 1b are The t+ff/i transformer CB is connected to the grounding device ES, the potential transformer PT, and the cable connection CH via the π1 current transformer CT and the line disconnector DS3.

従来この様な単線結線図における代表的な機器配置構成
例としては、アメリカ特許第4241379何の様な第
5図に示す”構成のものが知られている。
Conventionally, as a typical example of the arrangement of equipment in such a single-line diagram, there is known a structure shown in FIG. 5 of U.S. Pat. No. 4,241,379.

同図において、しゃ断器21の容器22は、据付は面に
対し水平に配置され、絶縁ガスが封入されており、この
容器22内に、各相のしゃ断部23が配設され、このし
ゃ断部23の両端から夫々各相の通電導体24.25が
導出されている。
In the same figure, a container 22 of a circuit breaker 21 is installed horizontally to a surface and is filled with insulating gas. Current-carrying conductors 24 and 25 for each phase are led out from both ends of 23, respectively.

一方の通゛電導体25は、容器22の内部にしゃ断部2
3ど平行に配置され、且つ2つに分岐されてJ5す、夫
々、容器22上部にその軸線の直交方向に向けて設けら
れた2つの口出し端子部29゜30より導出されている
。即ち、通電導体25がら分岐された一方の通電導体2
6は容器22の軸線ど直交して口出し端子部29からQ
出され、また、油力の通電導体27は、軸線と平行して
おり、その先端が直交方向に屈曲して10出し端子部3
0から導出されている。そして、各日出し端子部29.
30は、夫々断路器と一体(14成の主母線30゜31
に接続されている。
One current-carrying conductor 25 has a breaker section 2 inside the container 22.
The three terminals are arranged parallel to each other and branched into two, each of which is led out from two outlet terminal portions 29 and 30 provided at the top of the container 22 in a direction orthogonal to its axis. That is, one current-carrying conductor 2 branched from the current-carrying conductor 25
6 is perpendicular to the axis of the container 22 from the outlet terminal part 29 to Q.
The hydraulic current-carrying conductor 27 is parallel to the axis, and its tip is bent in the orthogonal direction to form the 10-output terminal portion 3.
It is derived from 0. And each sunrise terminal part 29.
30 is integrated with a disconnector (14 main busbars 30°, 31
It is connected to the.

また、23の他方から導出された通7R導体24は、U
fI断部23と同軸方向に配設された81器用変流器3
3を介し、容器22の軸線方向に設けられた口出し端子
部28から導出され、更に、断路器34を介して接地装
置35、計器用変圧器36、及びケーブル接続部37に
接続されている。
In addition, the through 7R conductor 24 derived from the other side of the U
81 current transformer 3 arranged coaxially with fI section 23
3 from an outlet terminal portion 28 provided in the axial direction of the container 22, and further connected to a grounding device 35, an instrument transformer 36, and a cable connecting portion 37 via a disconnector 34.

[背量技術の問題点] しかしながら、この様な従来の3相一括形ガス絶縁開閉
装置の構成には、次の様な欠点があった。
[Problems with backweight technology] However, the configuration of such a conventional three-phase integrated gas insulated switchgear has the following drawbacks.

即ち、第6図は第5図の矢視E−EITI面図であるが
、この図から明らかな様に、各相の計器用変流器33の
内、2つの相の計器用変流器33R133王は、容器2
2の軸心Oと同一水平面上にこの軸心Oから夫々等しい
距離に対向して配置され、残りの一相の計器用変流器3
38は、容器22の軸心Oと同一!Il!直平面上平面
上2相の計器用変流e33R,33Tから等しい距離に
配置されている。
That is, FIG. 6 is a plane view taken along arrow E-EITI in FIG. 33R133 King is container 2
The remaining one-phase instrument current transformers 3 are arranged on the same horizontal plane as the axial center O of 2 and facing each other at equal distances from this axial center O.
38 is the same as the axis O of the container 22! Il! It is arranged at the same distance from the two-phase instrument current transformers e33R and 33T on a straight plane.

即ち、3相の計器用変流器33は、容器22に直交する
断面上において、夫々の軸心が二等辺三角形を形成し、
且つこの二等辺三角形の一辺が容器22の軸線0と交わ
る様に配置されている。
That is, in the three-phase instrument current transformer 33, each axis forms an isosceles triangle on a cross section perpendicular to the container 22,
Further, the isosceles triangle is arranged so that one side intersects with the axis 0 of the container 22.

ところが、この様な配置4i−′J成ににると、計器用
変流器33の上方に図中二点鎖線F部に示す様な無駄な
スペースが生じる。また、計器用変流器33の直径d3
が制限されてしまい、一定の容量を1qる為には、軸方
向長さ!L2を長くしなければならず、これによって全
体の艮ざが艮くなってしまう。この結果、ガス絶縁開閉
装置の設置6スペースが増大することになるが、特に都
市部にJ3いて、8囮ビル等の地下に設置される地下変
電所では、わずかな股間スペースの増加でも建設コスト
の若しい増大に繋がる為、装置仝休の大型化は大きな問
題となっていた。
However, when such an arrangement 4i-'J is adopted, a wasted space is created above the instrument current transformer 33 as indicated by a chain double-dashed line F in the figure. In addition, the diameter d3 of the instrument current transformer 33
is limited, and in order to have a constant capacity of 1q, the axial length! L2 has to be made longer, which makes the overall appearance less noticeable. As a result, the installation space for gas-insulated switchgear will increase, but even a slight increase in groin space will increase construction costs, especially for underground substations located underground in J3 buildings in urban areas. The increase in equipment size has become a major problem as it leads to a premature increase in the amount of equipment.

[発明の目的] 本発明は、以上の様な従来技術の欠点を解消する為に提
案されたものであり、その目的は、特に変流器の配置構
成に改良を施すことにより、容器内の空間を有効に利用
して装置全体を小型化し、装置Vjの設置スペースを縮
小して、建設コス)〜を大幅に低減し得る様な3相一括
形ガス絶縁開閉装置を提供することである。
[Object of the Invention] The present invention was proposed in order to eliminate the above-mentioned drawbacks of the prior art, and its purpose is to improve the current transformer arrangement in particular. To provide a three-phase integrated gas insulated switchgear that can effectively utilize space, downsize the entire device, reduce the installation space of a device Vj, and significantly reduce construction costs.

[発明の概要] 本発明の3相一括形ガス絶縁間開IA Fiは、容器内
に配設される3相各相の31器用変流器を、夫々の+h
t+心が容器に直交するrJJi面上で正三角形を形成
する様に配置したことにより、従来の二等辺三角系の配
置に比べて計器用変流器の直径を拡大でき、従ってその
容器軸方向の長さを縮小司能とすることで、容器内の空
間を無駄なく活用し、装置全体の良さを縮小したもので
ある。
[Summary of the Invention] The three-phase collective type gas insulated open IA Fi of the present invention connects 31 current transformers for each of the three phases arranged in a container to each +h
By arranging the t+ center to form an equilateral triangle on the rJJi plane perpendicular to the vessel, the diameter of the instrument current transformer can be expanded compared to the conventional isosceles triangular arrangement, and therefore the diameter of the instrument current transformer can be increased in the axial direction of the vessel. By reducing the length of the container, the space inside the container is utilized without wasting it, and the overall quality of the device is reduced.

[発明の実施例] 以上説明した様な本発明にょる3相一括形ガス絶縁開閉
装置の実施例を第1図乃至第3図を用いて具体的に説明
する。
[Embodiments of the Invention] Examples of the three-phase all-in-one gas insulated switchgear according to the present invention as described above will be specifically described with reference to FIGS. 1 to 3.

第1図において、しゃ断器1の容器2は、水平方向に配
置され、絶縁ガスが封入されたその内部には各相のしl
5I07部3が容器と同Qq1方向に配設され、このし
1q L’R部3の両側からは、夫々通電導体4.5が
導出されている。
In FIG. 1, a container 2 of a circuit breaker 1 is arranged horizontally, and the inside of the container 2, which is filled with insulating gas, contains a container for each phase.
The 5I07 section 3 is arranged in the same Qq1 direction as the container, and current-carrying conductors 4.5 are led out from both sides of the 1q L'R section 3, respectively.

一方の通電導体5は、L/ p断部と平行に配置され、
且つ2つに分岐されて、通電導体6.7を形成しており
、これらは、容器2の上方に容器2と直交方向に設けら
れた2つの口出し端子部9,10から導出されている。
One current-carrying conductor 5 is arranged parallel to the L/p section,
It is branched into two to form a current-carrying conductor 6.7, which is led out from two lead terminal portions 9 and 10 provided above the container 2 in a direction orthogonal to the container 2.

また、他方の通電導体4は、計器用変流器13を介して
、容器2の端部に容器2の軸線方向に設けられた口出し
端子部8から導出され、更に、断路器14を介して、接
地装置15、計器用変圧器16及びケーブル接続部17
が接続されている。そして、各日出し端子部9゜10に
は、夫々断路器と一体構成の主母線11゜12が接続さ
れている。
The other current-carrying conductor 4 is led out from an outlet terminal portion 8 provided at the end of the container 2 in the axial direction of the container 2 via a measuring current transformer 13, and is further led out via a disconnector 14. , grounding device 15, instrument transformer 16 and cable connection section 17
is connected. Main busbars 11 and 12, which are integrated with disconnectors, are connected to each of the sunrise terminals 9 and 10, respectively.

次に、第2図(A)(B)を用いて、より詳細に説明す
る。なお、同図(A)は、第1図の容器2の軸線に垂直
な平面による矢視△−A IIJi面図、同図(B)は
同様に矢視B −B 1tJi面図でおる。
Next, a more detailed explanation will be given using FIGS. 2(A) and 2(B). Note that FIG. 1A is a plane view taken along arrows Δ-A IIJi taken along a plane perpendicular to the axis of the container 2 in FIG. 1, and FIG. 1B is a view taken along arrows B-B 1tJi.

同図(A>において、各相の通電導体5R05S、5T
は、容器2の軸線と平行目つほぼ同一平面上に互いに等
間隔dlを保って配置されている。
In the same figure (A>, the current-carrying conductors of each phase are 5R05S and 5T.
are arranged on substantially the same plane parallel to the axis of the container 2 and spaced from each other at equal intervals dl.

そして、各相のしゃ断部3R〜3Tは、2つの相のしゃ
断部3R,3Tの軸心が容器2の軸心Oと同一水平面上
で対向し且つ軸心Oから等しい間隔に位置づ−るね;に
配置され、残り一相のし15断部3Sは、容器の軸心O
と同一垂直平面上に配置されている。即ち、3つのしゃ
断部3R〜3丁は、軸心に垂直な断面上において、その
軸心同士が二等辺三角形をなし、しかも、その−辺が容
器2のil+1+心Oと交わる様に配置されている。
The axial centers of the two phase breaker parts 3R and 3T face the axial center O of the container 2 on the same horizontal plane and are located at equal intervals from the axial center O. The remaining one phase 15 section 3S is located at the axis O of the container.
is placed on the same vertical plane. That is, the three cutoff parts 3R to 3 are arranged so that, on a cross section perpendicular to the axis, their axes form an isosceles triangle, and the - side intersects with the il + 1 + center O of the container 2. ing.

ま1=、同図(B)では、各相の計器用変流器11R,
11S、11Tは、夫々の軸心が正三角形を形成し、こ
の正三角形が容器2の軸心Oを中心とする円に内接する
様に配置されている。
M1=, In the same figure (B), the instrument current transformer 11R of each phase,
11S and 11T are arranged such that their axes form an equilateral triangle, and this equilateral triangle is inscribed in a circle centered on the axis O of the container 2.

以上の様に配置することにより、容器2内部の空間を有
効に利用できると共に計器用変流器11の直径d2を従
来より大きくすることが可能な為、第1図中の計器用変
流器11の軸方向長さl+を短縮でさ、全体の良さを縮
小できる。
By arranging the instrument as described above, the space inside the container 2 can be used effectively and the diameter d2 of the instrument current transformer 11 can be made larger than before, so that the instrument current transformer 11 shown in FIG. By shortening the axial length l+ of No. 11, the overall quality can be reduced.

従って、容器内の空間を有効に利用して装置全体を小型
化し、装はの設置、Iiミスペース縮小できる為、特に
、高層ビルの地下空等に設ける際に、建設コス1−を大
幅に低減できる。
Therefore, the space inside the container can be effectively used to reduce the size of the entire device, and the installation space of the enclosure can be reduced, so construction costs can be significantly reduced, especially when installing in the basement of a high-rise building. Can be reduced.

なJ′3、本発明は、上記の実施例は、第3図に示す様
な縦置形の配置にも適用できる。
According to the present invention, the above-described embodiment can also be applied to a vertical arrangement as shown in FIG.

同図において、シ15所器1の容器2は、縦置形i−:
配置されてJ5つ、この容器2の口出し※i1子部8へ
・10は、容器2の側面に上下−列に並べられ、共に水
平方向に向けて配置されている。
In the same figure, the container 2 of the container 1 is vertically placed i-:
The five openings of this container 2 are arranged in vertical rows on the side of the container 2, and are both oriented in the horizontal direction.

従って、しゃ断部3及びこのし15断部3の両端から夫
々導出される各相の通電導体4.5の配置も、これに合
せて上下方向どされている。一方の通電導体5は、2つ
に分岐されて通電導体6.7を形成しており、これらの
通電導体9,10は、夫々口出し端子部9.10より、
水平方向に導出され、また、他方の通電導体4は、同じ
く上下方向に設【プられた計器用変流器13を介して水
平方向に屈曲し、口出し端子部8より導出されている。
Accordingly, the arrangement of the current-carrying conductors 4.5 of each phase led out from both ends of the breaker 3 and the breaker 15 is also shifted in the vertical direction accordingly. One current-carrying conductor 5 is branched into two to form a current-carrying conductor 6.7, and these current-carrying conductors 9 and 10 are connected to each other from an output terminal portion 9.10.
The other current-carrying conductor 4 is bent in the horizontal direction via an instrument current transformer 13 which is also provided in the vertical direction, and is led out from the lead terminal portion 8.

そして、線路側の断路器14、断路器と一体構成された
主母線11.12も、この口出し端子部8〜10の位置
に合せて上下に並べて配tffiされ夫々の口出し端子
部8〜10に接続されており、断路器14は更に、接地
装置15を介して、ケーブル接続部17に接続されてい
る。また、tI器用変圧器16は、ケーブル接続部17
の側面に配置され、これによって、I幾日の高さがほぼ
同一に合せられている。
The line-side disconnect switch 14 and the main bus bar 11.12 integrated with the disconnect switch are also arranged vertically in line with the positions of the output terminal parts 8 to 10, and are connected to the respective output terminal parts 8 to 10. The disconnector 14 is further connected to the cable connection 17 via the grounding device 15 . Further, the tI transformer 16 has a cable connecting portion 17.
, so that the heights of the I days are approximately the same.

なお、矢視C−Cl!7i面図及び矢視D −D断面図
にJ5けるしゃ断部3と通電導体5の配置、及び計器用
変流器13の配置は、第2図(A>(B)で示した矢視
A−八へ面図及び矢視B −B IFF面図と同−IM
成にされている。
In addition, arrow view C-Cl! The arrangement of the breaker 3 and the current-carrying conductor 5 and the arrangement of the instrument current transformer 13 at J5 in the 7i plane view and the cross-sectional view taken along the arrow D-D are as shown in the arrow A shown in Fig. 2 (A>(B)). - 8th side view and arrow view B - B Same as IFF side view - IM
It is being made into

従って、本実施例によっても、前記の実施例と同様に容
器2内部の空間を無駄なく有効に活用して、a)器用変
流器13のn径を拡大し、その長さを短縮できる。特に
、組置形の本実施例では、容器の高ざを縮小づることに
J:す、装冒仝体を小型化するものであるが、設置スペ
ースの縮小やコストの低減における効果は、前記実施例
と同様である。
Therefore, in this embodiment as well, as in the previous embodiment, the space inside the container 2 can be used effectively without waste, and a) the n-diameter of the transformer 13 can be expanded and its length can be shortened. In particular, in this embodiment of the assembled type, the height of the container is reduced, and the equipment is made smaller. Similar to the example.

[発明のダJ果] 以上説明した様に、本発明にJ:れば、容器内の空間を
有効に活用して計器用変流器の長さを短縮することにに
す、装置仝休の小型化を可能にした為、特に高層ピルの
地下等に設置する際、設置スペースを縮小し、建設コス
1−を大幅に低減できる様な3相一括形ガス絶縁間開装
置を提供できる。
[Results of the Invention] As explained above, the present invention provides a method for reducing the length of an instrument current transformer by effectively utilizing the space inside the container. Because it has become possible to downsize, it is possible to provide a three-phase integrated gas insulated open-air system that can reduce the installation space and significantly reduce construction costs, especially when installed underground in a high-rise building.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第3図は本発明による3相−指形ガス絶縁開
閉装置の実施例を示す図で、第1図は一実施例を示す断
面図、第2図(A>(B)は夫々第1図の矢視△−八面
断面図び矢視B−B−面図、第3図は他の実施例を示す
断面図、第4図乃至第6図は従来のガス絶縁開閉装置を
示づ°図で、第4図は複母線方式のガス絶縁開閉装置の
一例を示す単線結線図、第5図はその配置(14成の一
例を示す断面図、第6図は第5図の矢視Fi −E断面
図である。 1・・・し15断器、2・・・容器、3・・・しゃ断部
、4〜7・・・通電導体、8〜10・・・口出し端子部
、11゜12・・・主m線、13・・・変流器、14・
・・[fIi路器、15・・・接地装置、16・・・4
器用変圧器、17・・・ケーブル接続部。 7317  代Jy人 弁理士 間近 憲イ4i (外
1名)第1図 第2図 (A)      (B) 第 3 図 第4図 第 5[IZl 第6図
1 to 3 are diagrams showing an embodiment of a three-phase finger-shaped gas insulated switchgear according to the present invention. FIG. 1 is a sectional view showing one embodiment, and FIG. 2 (A>(B) Fig. 1 is a cross-sectional view taken along the line △-octahedral and a view taken taken along the line B-B shown in Fig. 1, Fig. 3 is a sectional view showing another embodiment, and Figs. 4 to 6 are a conventional gas-insulated switchgear. Fig. 4 is a single line diagram showing an example of a gas insulated switchgear with a double bus system, Fig. 5 is a sectional view showing an example of its arrangement (14 configurations, and Fig. 6 is a It is a sectional view taken along arrow Fi-E of 1... 15 disconnector, 2... container, 3... interrupting part, 4-7... energizing conductor, 8-10... lead terminal. Part, 11゜12...Main m line, 13...Current transformer, 14.
...[fIi road device, 15...Earthing device, 16...4
dexterity transformer, 17...cable connection part. 7317 Representative Jy Patent Attorney Near Keni 4i (1 other person) Fig. 1 Fig. 2 (A) (B) Fig. 3 Fig. 4 Fig. 5 [IZl Fig. 6

Claims (1)

【特許請求の範囲】[Claims] (1)絶縁性ガスを封入した容器内に、互いに接離自在
に動作する固定側と可動側の電極を有する3相分のしゃ
断部を、夫々容器の軸線と平行に配置した3相一括形ガ
ス絶縁開閉装置において、各相のしゃ断部の両端より夫
々導出された通電導体の内、一方の通電導体は、容器内
でしゃ断部と平行に配置され、且つ2つに分岐されて容
器に設けられた第1、第2の口出し端子部より導出され
、また他方の通電導体は、しゃ断部の動作軸方向に配置
された各相の計器用変流器を介して、容器に設けられた
第3の口出し端子部より導出され、更に、容器軸線に直
交する断面から見て、前記3相各相のしゃ断部が、夫々
の軸心が二等辺三角形を形成する様に配置され、且つ前
記3相各相の計器用変流器は、夫々の軸心が正三角形を
形成する様に配置されたことを特徴とする3相一括形ガ
ス絶縁開閉装置。
(1) A 3-phase integrated type in which a 3-phase interrupter with fixed and movable electrodes that can move toward and away from each other is arranged parallel to the axis of the container in a container filled with insulating gas. In a gas-insulated switchgear, one of the current-carrying conductors led out from both ends of the breaker of each phase is arranged parallel to the breaker in the container, and is branched into two and installed in the container. The other current-carrying conductor is led out from the first and second outlet terminals provided in the breaker section, and the other current-carrying conductor is connected to the first and second lead terminals provided in the container through instrument current transformers for each phase arranged in the direction of the operating axis of the breaker. Further, when viewed from a cross section orthogonal to the container axis, the breaking portions of each of the three phases are arranged such that their axes form an isosceles triangle; A three-phase integrated gas-insulated switchgear characterized in that the instrument current transformers for each phase are arranged so that their axes form an equilateral triangle.
JP59168783A 1984-08-14 1984-08-14 3-phase simultaneous gas insulated switching device Pending JPS6149605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59168783A JPS6149605A (en) 1984-08-14 1984-08-14 3-phase simultaneous gas insulated switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59168783A JPS6149605A (en) 1984-08-14 1984-08-14 3-phase simultaneous gas insulated switching device

Publications (1)

Publication Number Publication Date
JPS6149605A true JPS6149605A (en) 1986-03-11

Family

ID=15874389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59168783A Pending JPS6149605A (en) 1984-08-14 1984-08-14 3-phase simultaneous gas insulated switching device

Country Status (1)

Country Link
JP (1) JPS6149605A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183911A (en) * 1984-03-02 1985-09-19 株式会社日立製作所 Gas insulted switching device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60183911A (en) * 1984-03-02 1985-09-19 株式会社日立製作所 Gas insulted switching device

Similar Documents

Publication Publication Date Title
JPH01185107A (en) Gas insulated switchgear
JPS6149605A (en) 3-phase simultaneous gas insulated switching device
JPH0611163B2 (en) Gas insulated switchgear
JPH0572044B2 (en)
JPS60213206A (en) Gas insulated switching device
JPS60213205A (en) Gas insulated switching device
JPH0588044B2 (en)
JPS58139609A (en) Gas insulated switching device
JPH063962B2 (en) Gas insulated switchgear
JPS59185107A (en) Gas insulated switching device
JPS5937623A (en) Gas breaker
JPS58157305A (en) Gas sealed switching device
JPS60213207A (en) Gas insulated switching device
JPH0458704A (en) Gas insulation switchgear
JPS61121707A (en) Gas insulated switchgear for communicating bus
JPS60213208A (en) Gas insulated switching device
JPS6350922B2 (en)
JPS5972908A (en) Power distributing device using gas insulated switching dev-ice
JPS61189110A (en) Gas insulated switchgear
JPS60213204A (en) 3-phase gas insulated switching device
JPS6241346B2 (en)
JPS61147712A (en) Gas insulated switch unit
JPS58192412A (en) Gas insulated switching device
JPH0564004B2 (en)
JPS6162304A (en) Gas insulated switching device