JPS6149574B2 - - Google Patents

Info

Publication number
JPS6149574B2
JPS6149574B2 JP54169831A JP16983179A JPS6149574B2 JP S6149574 B2 JPS6149574 B2 JP S6149574B2 JP 54169831 A JP54169831 A JP 54169831A JP 16983179 A JP16983179 A JP 16983179A JP S6149574 B2 JPS6149574 B2 JP S6149574B2
Authority
JP
Japan
Prior art keywords
temperature
radiant
indoor
room
radiant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54169831A
Other languages
Japanese (ja)
Other versions
JPS5691139A (en
Inventor
Keijiro Kunimoto
Katsumi Ishii
Masayoshi Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16983179A priority Critical patent/JPS5691139A/en
Publication of JPS5691139A publication Critical patent/JPS5691139A/en
Publication of JPS6149574B2 publication Critical patent/JPS6149574B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は空気調和機の室内環境制御装置に関す
るもので、室内の輻射温度を検出して室温及び吹
出方向を変更させることにより快適な室内環境を
提供しようとするものである。
[Detailed Description of the Invention] The present invention relates to an indoor environment control device for an air conditioner, which attempts to provide a comfortable indoor environment by detecting indoor radiant temperature and changing the room temperature and blowing direction. be.

従来の空気調和装置の多くは、室内温度を検知
して、空調能力を制御する、すなわち室内の輻射
温度の高低に関係なく室温を一定にする制御を行
なつていた。輻射温度は、壁面、床面、天井面等
の表面温度で決定されるが、それらは室内と室外
の温度差、日射、室内温度分布等の多くは要因に
より変化する。又、人体の感ずる温度は、室内温
度だけでなく、輻射、風速、湿度等も温感に影響
する。したがつて従来のように室内温度を一定に
するだけでは十分快適な制御とはいえずいくら室
温を適温と思われる温度に一定に保つていても、
昼間の日射の強い時などの室内輻射温度の高い時
は暑く感じるだろうし、夜間の暖房時のような場
合は逆に寒く感じる。このような欠点を解消する
ため従来においても、室内輻射温度検出器を設
け、輻射温度を加味した制御を行う空気調和装置
もあつたが、室内の輻射温度というのは、前記し
たように室内壁面、床面、天井面など6面全ての
平均輻射温度で決まるため、従来使われた単一の
輻射検出器では部屋全体の一部を代表温度として
室内平均輻射温度としていた。そのため、たとえ
ば日射により天井面や、壁面の一部の温度が極端
に上昇した場合、その部分の輻射温度を検出する
と、実際の平均輻射温度よりも高い温度で検知す
ることになり室温を最適温度以上に下げる制御を
行なつてしまう。反対に実際の平均輻射温度より
も低い場所を検出すると、室温が最適温度よりも
高くなり暑くなつてしまう。日射以外にも冷暖房
を行なつている場合に室内の温度分布により室内
6面の表面温度に分布できても実際の平均輻射温
度を検知することができなくなる。さらに、この
問題を解決するために、複数の室内輻射温度検出
器により平均輻射温度を検知し、室内温度を最適
な温度に補正する制御ができたとしても、輻射の
強い面と弱い面の差があるため、温感としては体
表面に温度差が生じ温度分布を感じてしまう。
Most conventional air conditioners detect the indoor temperature and control the air conditioning capacity, that is, control the room temperature to be constant regardless of the height of the indoor radiant temperature. The radiant temperature is determined by the surface temperature of walls, floors, ceilings, etc., but it changes depending on many factors such as the temperature difference between indoors and outdoors, solar radiation, and indoor temperature distribution. Furthermore, the temperature felt by the human body is affected not only by indoor temperature but also by radiation, wind speed, humidity, etc. Therefore, simply keeping the indoor temperature constant as in the past is not enough to provide comfortable control.
You will feel hot when the indoor radiation temperature is high, such as when there is strong sunlight during the day, and you will feel cold when the room is heated at night. In order to overcome these drawbacks, some air conditioners have conventionally been equipped with indoor radiant temperature detectors and controlled in consideration of the radiant temperature. However, as mentioned above, the indoor radiant temperature Since the temperature is determined by the average radiant temperature of all six surfaces such as the floor and ceiling, conventional single radiation detectors use a portion of the entire room as a representative temperature to determine the indoor average radiant temperature. Therefore, for example, if the temperature of a part of the ceiling or wall rises extremely due to solar radiation, when the radiant temperature of that part is detected, it will be detected at a higher temperature than the actual average radiant temperature, and the room temperature will be set to the optimum temperature. Control is performed to lower the temperature even further. On the other hand, if a location is detected that is lower than the actual average radiant temperature, the room temperature will be higher than the optimal temperature and it will become hot. When heating and cooling are performed in addition to solar radiation, the actual average radiant temperature cannot be detected even if the temperature distribution in the room can be distributed to the surface temperatures of six surfaces in the room. Furthermore, in order to solve this problem, even if it were possible to detect the average radiant temperature using multiple indoor radiant temperature detectors and control the indoor temperature to correct it to the optimal temperature, the difference between surfaces with strong radiation and surfaces with weak radiation As a result, there is a temperature difference on the body surface and a temperature distribution is felt.

以上のように従来の輻射温度を検知するタイプ
の空気調和装置では輻射温度の分布がある場合
に、輻射検出器が単一であるために、室内平均輻
射温度に対応した制御ができないばかりか、室温
が均一でも温度分布を感じてしまうなどの不都合
が生じていた。
As mentioned above, in the case of conventional air conditioners that detect radiant temperature, when there is a radiant temperature distribution, since there is only a single radiant detector, it is not only impossible to perform control corresponding to the indoor average radiant temperature. Even if the room temperature was uniform, there were problems such as the feeling of temperature distribution.

本発明は輻射検出器を複数、角度を変えて設け
室温及び吹出角度を制御することにより上記従来
の欠点を解消するものである。以下、本発明の一
実施例について、第1図〜第7図に基づいて説明
する。
The present invention solves the above-mentioned drawbacks of the conventional apparatus by providing a plurality of radiation detectors at different angles and controlling the room temperature and the blowing angle. Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 to 7.

1は熱交換器2、送風機3等を内蔵する本体、
本体1前面上部には吸込口4前面下部には吹出口
5があり、吹出口5の内部には吹出方向を上下に
吹き別ける風向変更装置6が取付けてある。7は
室内上部の輻射温度を検出する上部輻射温度検出
器、8は室内下部の輻射温度を検出する下部輻射
温度検出器である。上記風向変更装置6は、鉄製
の羽根9、風向を上吹きにするため羽根9を上向
きにする電磁石A10、風向を下吹きにする電磁
石B11、羽根を支えるばね12で構成されてい
る。
1 is a main body containing a heat exchanger 2, a blower 3, etc.;
There is an air inlet 4 at the upper front of the main body 1 and an air outlet 5 at the lower front of the main body 1. Inside the air outlet 5, a wind direction changing device 6 is installed which blows the air in different directions up and down. 7 is an upper radiant temperature detector that detects the radiant temperature in the upper part of the room, and 8 is a lower radiant temperature detector that detects the radiant temperature in the lower part of the room. The wind direction changing device 6 is composed of iron blades 9, an electromagnet A10 that directs the blades 9 upward to blow the wind upward, an electromagnet B11 that changes the wind direction downward, and a spring 12 that supports the blades.

上記構成において、制御手段の動作内容を次に
説明する。特に冷房時での運転を中心に説明す
る。まず室温制御動作の説明すると、上下部輻射
温度検出器7,8で検出した輻射温度を、平均輻
射温度演算回路13で平均輻射温度を算出し、そ
の信号を室温比較回路14へ送る。室温は室温検
出器15で検出した信号が室温比較回路14へ送
られ輻射温度と比較される。室温比較回路14で
は(室温)−(平均輻射温度)の信号が温度補正手
段である設定温度修正回路16へ送られる。設定
器温度修正回路16は室温設定器17の設定値を
室温比較回路14から送られた信号に、ある係数
Kを乗じて減じる修正を行ない、能力制御回路1
8でコンプレツサー19の制御を行なう。
In the above configuration, the operation of the control means will be explained next. In particular, the explanation will focus on operation during cooling. First, to explain the room temperature control operation, the average radiant temperature calculation circuit 13 calculates the average radiant temperature of the radiant temperatures detected by the upper and lower radiant temperature detectors 7 and 8, and sends the signal to the room temperature comparison circuit 14. As for the room temperature, a signal detected by the room temperature detector 15 is sent to the room temperature comparison circuit 14 and compared with the radiant temperature. In the room temperature comparison circuit 14, a signal of (room temperature)-(average radiant temperature) is sent to a set temperature correction circuit 16, which is temperature correction means. The setter temperature correction circuit 16 corrects the set value of the room temperature setter 17 by multiplying the signal sent from the room temperature comparison circuit 14 by a certain coefficient K and subtracts it.
8 controls the compressor 19.

(修正温度)=(設定温度)−K {(平均輻射温度)−(室温)} 定数kは、設定温度が体感温度に近くなる値をあ
たえる。
(Corrected temperature) = (Set temperature) - K {(Average radiant temperature) - (Room temperature)} The constant k gives a value that makes the set temperature close to the sensible temperature.

したがつて、第4図に示すグラフのようになる
(この場合、設定温度=室温とする)クラフは2
0が設定温度、21が平均輻射温度、22が修正
値で、平均輻射温度が低い場合は修正値が高くな
り、平均輻射温度が高い場合は修正値が低くな
る。一般に冷房時は室温より平均輻射温度の方が
高くなるため、設定値より修正値の方が低い温度
となり輻射により暑く感じる温度分だけ設定値を
下げる修正を行なうわけである。すなわち設定値
に、輻射と室温による体感温が近づくことにな
る。
Therefore, the graph shown in Figure 4 (in this case, the set temperature = room temperature) is 2.
0 is the set temperature, 21 is the average radiant temperature, and 22 is the corrected value. When the average radiant temperature is low, the corrected value becomes high, and when the average radiant temperature is high, the corrected value becomes low. Generally, during cooling, the average radiant temperature is higher than the room temperature, so the corrected value is lower than the set value, and the set value is corrected to be lowered by the temperature that makes you feel hot due to radiation. In other words, the sensible temperature due to radiation and room temperature approaches the set value.

次に制御動作の説明を第5図〜第7図を用いて
説明する。
Next, the control operation will be explained using FIGS. 5 to 7.

23は上下部輻射温度検出器7,8から検出角
度と輻射温度の高低を判定する判定手段である輻
射温度比較回路、24は、風向変更装置6の羽根
9を駆動する作動手段である動作回路である。輻
射温度比較回路23は、 (上部輻射温度)−(下部輻射温度) の演算を行ない、その差が正の場合はコンパレー
タ25より動作回路24内のトランジスター26
へ動作信号が送られ電磁石A10は通電し、負の
場合はコンパレータ26よりトランジスタ27へ
動作信号を送り、電磁石B11に通電する。すな
わち、室内の上部輻射温度が下部輻射温度より高
くなると電磁石A10に通電され羽根9が吸着
し、冷気の吹出方向は室内上部方向となる室内の
天内の天井面、壁面上部を冷却する。逆に、室内
の上部輻射温度が下部輻射温度より低くなると電
磁石B11に通電され羽根9が電磁石B11に吸
着し、冷気の吹出方向は室内下部方向となり室内
壁面下部、床面を冷却する。
23 is a radiant temperature comparison circuit that is a determining means for determining the detection angle and the level of radiant temperature from the upper and lower radiant temperature detectors 7 and 8; 24 is an operating circuit that is an actuating means for driving the blades 9 of the wind direction changing device 6; It is. The radiation temperature comparison circuit 23 calculates (upper radiation temperature) - (lower radiation temperature), and if the difference is positive, the comparator 25 selects the transistor 26 in the operation circuit 24.
An operation signal is sent to energize the electromagnet A10, and when the voltage is negative, an operation signal is sent from the comparator 26 to the transistor 27, and the electromagnet B11 is energized. That is, when the indoor upper radiant temperature becomes higher than the lower radiant temperature, the electromagnet A10 is energized, the blades 9 are attracted, and the cool air is blown out in the upper direction of the indoor room to cool the ceiling and upper wall surfaces of the indoor ceiling. Conversely, when the indoor upper radiant temperature becomes lower than the lower radiant temperature, the electromagnet B11 is energized, the blades 9 are attracted to the electromagnet B11, and the cool air is blown out toward the lower part of the room, cooling the lower walls and floor of the room.

したがつて冷気の吹出方向が輻射温度の高い方
へ向くため、室内の輻射の分布すなわち室内6面
の温度差は減少する。
Therefore, the blowing direction of the cold air is directed toward the side with higher radiation temperature, so that the indoor radiation distribution, that is, the temperature difference between the six sides of the room, decreases.

以上の説明から明らかなように、本発明の空気
調和装置は、輻射温度検出器を複数設けることに
より正確な平均輻射温度を検出できるため、より
体感温度に対応した温度制御ができる。又、輻射
温度の高い方向へ冷気を吹き出す風向制御ができ
るため、室内の輻射分布を減少し、体感的に温度
分布の少ない室内環境となるなど、快適な空気調
和が可能である。
As is clear from the above description, the air conditioner of the present invention can accurately detect the average radiant temperature by providing a plurality of radiant temperature detectors, and therefore can perform temperature control more responsive to the sensible temperature. In addition, since the wind direction can be controlled to blow cool air in the direction of higher radiant temperature, the indoor radiation distribution is reduced, resulting in an indoor environment with a less perceptible temperature distribution, and comfortable air conditioning is possible.

実施例では冷房時においての説明を行なつたが
暖房時においても、同じ制御を使うことができ
る。ただその場合、風向制御の時、冷房時では (上部輻射温度)−(下部輻射温度) が正の場合に電磁石A10に通電していたが、暖
房時は逆に電磁石B11に通電し、負の場合に電
磁石A10に通電する。
In the embodiment, explanation was given for cooling, but the same control can be used also for heating. However, in that case, when controlling the wind direction, during cooling, the electromagnet A10 is energized when (upper radiant temperature) - (lower radiant temperature) is positive, but during heating, the electromagnet B11 is energized, and the negative In this case, the electromagnet A10 is energized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の空気調和装置の一実施例を示
す正面図、第2図は上記空気調和装置の側断面
図、第3図は上記空気調和装置の制御手段の室内
制御のブロツク図、第4図は上記空気調和装置の
室温制御の温度変化を示す特性図、第5図は上記
空気調和装置の制御手段の風向制御ブロツク図、
第6図は上記空気調和装置の風向変更装置の一部
説明図、第7図は上記空気調和装置の風向制御の
具体的な回路図である。 1…空気調和装置本体、6…風向変更装置、
7,8…輻射検出器、9…羽根、13…平均輻射
温度演算回路、14…室温比較回路、15…室温
検出器、16…温度修正回路、17…室温設定
器、23…輻射温度比較回路。
FIG. 1 is a front view showing an embodiment of the air conditioner of the present invention, FIG. 2 is a side sectional view of the air conditioner, and FIG. 3 is a block diagram of indoor control of the control means of the air conditioner. FIG. 4 is a characteristic diagram showing temperature changes in the room temperature control of the air conditioner, FIG. 5 is a block diagram of the wind direction control of the control means of the air conditioner,
FIG. 6 is a partial explanatory diagram of the wind direction changing device of the air conditioner, and FIG. 7 is a specific circuit diagram of the wind direction control of the air conditioner. 1...Air conditioner main body, 6...Wind direction change device,
7, 8...Radiation detector, 9...Blade, 13...Average radiant temperature calculation circuit, 14...Room temperature comparison circuit, 15...Room temperature detector, 16...Temperature correction circuit, 17...Room temperature setter, 23...Radiation temperature comparison circuit .

Claims (1)

【特許請求の範囲】[Claims] 1 室内検出する室温検出器と、室内温度を任意
の温度に設定する温度設定器と、吹出空気の風向
を変更する風向変更装置と、室内の輻射温度を検
出する複数の検出器の検出角度をそれぞれ異なら
せて設けた輻射温度検出器と、前記輻射温度検出
器の検出温度に応じて前記温度設定器の設定温度
を補正する温度補正手段と、前記輻射温度検出器
から検出角度と輻射の高低を判定する判定手段
と、前記判定手段の判定結果に応じ冷房時は輻射
温度の高に方向へ暖房時は輻射温度の低い方向へ
前記風向変更装置の風向を作動させる作動手段と
を備えた空気調和装置。
1. A room temperature detector that detects the indoor temperature, a temperature setting device that sets the indoor temperature to a desired temperature, a wind direction change device that changes the direction of the blown air, and multiple detectors that detect the indoor radiant temperature. radiant temperature detectors provided separately, temperature correction means for correcting the set temperature of the temperature setting device according to the detected temperature of the radiant temperature detector, and a detection angle and the height of radiation from the radiant temperature detector. and an actuating means for operating the wind direction of the airflow direction changing device in the direction of high radiant temperature during cooling and in the direction of low radiant temperature during heating according to the judgment result of the judgment means. harmonization device.
JP16983179A 1979-12-25 1979-12-25 Air conditioner Granted JPS5691139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16983179A JPS5691139A (en) 1979-12-25 1979-12-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16983179A JPS5691139A (en) 1979-12-25 1979-12-25 Air conditioner

Publications (2)

Publication Number Publication Date
JPS5691139A JPS5691139A (en) 1981-07-23
JPS6149574B2 true JPS6149574B2 (en) 1986-10-30

Family

ID=15893714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16983179A Granted JPS5691139A (en) 1979-12-25 1979-12-25 Air conditioner

Country Status (1)

Country Link
JP (1) JPS5691139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44685E1 (en) 1994-04-28 2013-12-31 Opentv, Inc. Apparatus for transmitting and receiving executable applications as for a multimedia system, and method and system to order an item using a distributed computing system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5831244A (en) * 1981-08-17 1983-02-23 Daikin Ind Ltd Controller for temperature of air conditioner
JPH0788957B2 (en) * 1985-02-25 1995-09-27 株式会社東芝 Air conditioner
JPH02124427U (en) * 1989-03-22 1990-10-12
JPH0317459A (en) * 1989-03-24 1991-01-25 Yamatake Honeywell Co Ltd Method of controlling comfortable air conditioning

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE44685E1 (en) 1994-04-28 2013-12-31 Opentv, Inc. Apparatus for transmitting and receiving executable applications as for a multimedia system, and method and system to order an item using a distributed computing system

Also Published As

Publication number Publication date
JPS5691139A (en) 1981-07-23

Similar Documents

Publication Publication Date Title
US5815078A (en) Louver driving device for an air conditioner and method of controlling the louver driving device
JPH03286944A (en) Air-conditioning system and method for operating the air-conditioning system
US5267450A (en) Air conditioning apparatus
JPH0788957B2 (en) Air conditioner
EP1319900B1 (en) Air conditioner and method for controlling the same
CN1073225C (en) Air conditioner
JPS6149574B2 (en)
ES2097689A2 (en) Air-conditioning machine
JP6219107B2 (en) Air conditioning method and air conditioning system used in the air conditioning method
JP3751516B2 (en) Air conditioner
JPH0749879B2 (en) Air conditioner
JP2556884B2 (en) Air conditioning system controller
JPH1151445A (en) Radiant air conditioning system
JPH01147243A (en) Airconditioner
JPH05312387A (en) Air conditioning system
JP3187260B2 (en) Perimeter air conditioning controller
JP2960997B2 (en) Air conditioner
JP4169861B2 (en) Operation control device for ceiling cassette type air conditioner
JP2526291B2 (en) Control method for air conditioner cooling by floor blowing
JPH0364781B2 (en)
JPH05296548A (en) Air conditioner
JPH0719562A (en) Air conditioner
JP7404458B1 (en) task air conditioner
JPH07139768A (en) Air conditioner system and air conditioning panel
JP7209846B2 (en) air conditioner