JPS6149530A - Optical heterodyne communicating method - Google Patents

Optical heterodyne communicating method

Info

Publication number
JPS6149530A
JPS6149530A JP59171093A JP17109384A JPS6149530A JP S6149530 A JPS6149530 A JP S6149530A JP 59171093 A JP59171093 A JP 59171093A JP 17109384 A JP17109384 A JP 17109384A JP S6149530 A JPS6149530 A JP S6149530A
Authority
JP
Japan
Prior art keywords
signal
frequency
optical
light
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59171093A
Other languages
Japanese (ja)
Inventor
Sadao Fujita
定男 藤田
Katsumi Emura
克己 江村
Minoru Shikada
鹿田 實
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59171093A priority Critical patent/JPS6149530A/en
Publication of JPS6149530A publication Critical patent/JPS6149530A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To output a demodulated signal extracted from a composite signal and to reduce the influence of noise in a high frequency component by extracting a low modulation frequency part and a high modulation frequency part independently from an IF signal from an optical reception part and composing the composite signal of them while the intensity ratio of detection outputs is varied. CONSTITUTION:Signal light 4 is sent from an optical transmission line 5 to an optical multiplexing part 6 after binary frequency modulation is imposed by the transmitting light source 1 of the system with a modulating signal 3 from a signal generator 2. This multiplexing part 6 multiplexes the light with local oscillation light 8, the composite light 9 is detected by a photodetector 10, and a receiving circuit 11 outputs the double-peak IF signal 12 which has a peak value at a low frequency and a high frequency. This signal 12 is applied to envelope detectors 15 and 16 through an LPF13 and a BPF14 to detect signals of the low frequency and high frequency. Their detection outputs 17 and 18 are applied to a power mixer 19 and the composition ratio is adjusted according to the noise ratio of the detection outputs 17 and 18 to reduce the influence of a noise in the high-frequency component, thereby outputting a demodulation output 20.

Description

【発明の詳細な説明】 (3−1)  発明が属する技術分野 本発明は光通信方法、特に光ヘテロゲイン検波半導体レ
ーザの高性能化、特に単一軸モード発振特性等の改善に
よって、半導体レーザを用いた光フアイバ通信において
も、光波の位相や周波数に信号を乗せて伝送するコヒー
レント通信方式、例えば、周波数シフトキーインクある
いは位相シフトキーインクによる光ヘテロゲイン・ホモ
ダイン検波通信方式等の実現が可能になって来た。特に
半導体レーザは注入電流の大きさを変えることによって
発振周波数の直接変調が可能であるため、周波数シフト
キーインクによる光へテロダイン通信方法は構成が簡単
で、有効な通信方法と考えられている。
Detailed Description of the Invention (3-1) Technical field to which the invention pertains The present invention relates to optical communication methods, particularly to the use of semiconductor lasers by improving the performance of optical heterogain detection semiconductor lasers, and in particular by improving single-axis mode oscillation characteristics. Even in optical fiber communication, it has become possible to realize coherent communication methods that transmit signals by adding signals to the phase and frequency of light waves, such as optical heterogain/homodyne detection communication methods using frequency shift key ink or phase shift key ink. . In particular, since the oscillation frequency of semiconductor lasers can be directly modulated by changing the magnitude of the injected current, the optical heterodyne communication method using frequency shift key ink has a simple configuration and is considered to be an effective communication method.

(3−3)  従来技術の欠点 光ヘテロダイン検波を用いる通信方法のうち周波数情報
を用いる周波数シフトキーインクによる光ヘテロダイン
検波方法は、光源として半導体レーザを用いれば、光源
の直接周波数変調が可能で構成が簡単となるほか、強度
シフトキーインク検波方式に比べ理論的に3dBの受信
感度加養が可能である等の利点もある。この周波数シフ
トキーインクによる光ヘテロゲイン検波方法としてニス
・サイトウ(8,8aito)氏らにより米国の雑誌ア
イ・イー・イー・イージャーナル、オブ、クオンタムエ
レクトロニクス(IBEE Journal of Q
ua−ntum Electronics )第19巻
、2号(1983年2月発行)第180頁所載の論文「
エスエヌアンドエラーレートエバリュエーションフォア
ンオプチ力ルエ7エスケイーヘテロダインディテクショ
ンシステムユージングセミコンダクターレーザーズJ 
(S/N  and error rate eyal
uationfor an optical FSK−
heterodyne detectionsyste
m using semiconductor 1as
ers)がある。この論文では半導体レーザを200 
Mb/ sの信号速度で直接周波数変調し、信号光と局
部発振光とを合波した後、光受信部で受信して、周波数
弁別器を用いて復調信号出力を取り出している。
(3-3) Disadvantages of Prior Art Among the communication methods using optical heterodyne detection, the optical heterodyne detection method using frequency shift key ink using frequency information allows direct frequency modulation of the light source if a semiconductor laser is used as the light source. In addition to being simple, this method also has the advantage that it is theoretically possible to improve reception sensitivity by 3 dB compared to the intensity shift key ink detection method. This optical heterogain detection method using frequency shift key ink was published by Nis Saito et al. in the American magazine IBEE Journal of Q.
ua-ntum Electronics) Volume 19, No. 2 (published February 1983), page 180
SNA and Error Rate Evaluation Fount Optit Force Rouet 7 SC Heterodyne Detection System Using Semiconductor Lasers J
(S/N and error rate
application for an optical FSK-
heterodyne detection system
using semiconductor 1as
ers). In this paper, a semiconductor laser with 200
After direct frequency modulation at a signal speed of Mb/s and multiplexing of the signal light and local oscillation light, the light is received by an optical receiver and a demodulated signal output is extracted using a frequency discriminator.

一般に周波数シフトキーインクによる光ヘテロダイン検
波方式では光源に狭いスペクトル幅、高い周波数安定度
が要求されるが、現状の半導体レーザは必ずしもこの要
求を満たしていない。そのため前記論文のシステムにお
いても半導体レーザのスペクトル拡がシがベースバンド
における信号対雑音比劣化の原因となり、符号誤シ率特
性を悪化させている。
Generally, optical heterodyne detection using frequency shift key ink requires a light source to have a narrow spectrum width and high frequency stability, but current semiconductor lasers do not necessarily meet these requirements. Therefore, in the system of the above-mentioned paper as well, the spectrum broadening of the semiconductor laser causes deterioration of the signal-to-noise ratio in the baseband, which worsens the code error rate characteristic.

この問題を解決するには、周波数偏移を大きくとシ牛導
体レーザのスペクトル拡がシの影響をなくすればよいが
、この場合帯域の広い光受信部が必要となる。しかし、
光受信部では周波数が高くなるほど雑音が増加するため
、高い周波数の変調周波数成分の信号対雑音比が劣化し
周波数弁別器を用いて復調する際、受信感度を高くでき
ないと云う欠点があった。
To solve this problem, the frequency shift can be increased to eliminate the effect of spectrum broadening of the conductor laser, but in this case, an optical receiver with a wide band is required. but,
In the optical receiver, noise increases as the frequency increases, so the signal-to-noise ratio of the modulated frequency component of the high frequency deteriorates, making it impossible to increase reception sensitivity when demodulating using a frequency discriminator.

一方、光源のスペクトル幅に対する要求がゆるく光源の
直接変調が可能な周波数シフトキーインクによる光ヘテ
ロゲイン・ホモダイン検波方法として注封らによるrD
FB−LDを用いたF8に光ヘテロダイン単一フィルタ
検波方式の特性」(昭和59年度電子通信学会総合全国
大会、2612 )がある。これは信号光の周波数変調
時に、脅發ト15肯車#周波数偏移を大きくしだ2値の
周波数変調を行い、復調部においては中間周波数の2つ
の変調周波数成分のうち、低廟波側の成分のみを取り出
し、復調する方法であシ、光源のスペクトル拡がシの影
響を受けに<<、低周波側の成分のみを取り出すので受
信回路の低雑音比が容易である点を特徴としている。
On the other hand, as an optical heterogain/homodyne detection method using frequency shift key ink that has loose requirements on the spectral width of the light source and allows direct modulation of the light source, the rD method proposed by Shufu et al.
"Characteristics of optical heterodyne single filter detection method for F8 using FB-LD" (1981 National Conference of the Institute of Electronics and Communication Engineers, 2612). When frequency modulating the signal light, the larger the frequency shift, the more binary frequency modulation is performed. This method extracts only the components of the light source and demodulates them, so that the spectral spread of the light source is not affected by There is.

しかし、この方式では復調時に変調信号の半分の成分し
か復調に利用しないため、本来の2値周波数変調方法に
比べ受信感度が3dB劣ると云う欠点があった。
However, since this method uses only half the components of the modulated signal during demodulation, it has the disadvantage that the reception sensitivity is 3 dB lower than the original binary frequency modulation method.

(3−4)  発明の目的 本発明の目的は2値以上の周波数変調された信号を復調
する際に、光受信部での高い周波数成分の雑音の影響を
低減し、高い受信感度の得られる光ヘテロダイン通信方
式を提供することにある。
(3-4) Purpose of the Invention The purpose of the present invention is to reduce the influence of noise of high frequency components in the optical receiver when demodulating a binary or higher frequency modulated signal, and to obtain high reception sensitivity. The purpose of the present invention is to provide an optical heterodyne communication system.

(3−5)  発明の構成 本発明の光ヘテロゲイン通信方法は、光送信部において
情報信号によや変調された信号光を送信し光合波部にお
いて伝送されてきた前記信号光を局部発振光と合波し、
この合波した光を光受信部で中間周波数信号に変換し、
復調部で前記中間周波数信号から復調信号を取り出す、
光ヘテロゲイン通信方法において、前記光送信部におけ
る信号光の変調は2値以上の周波数変調によって行ない
、前記復調部においては前記中間周波数信号中の変調周
波数成分をそれぞれ独立に取り出して検波し、それぞれ
の検波信号の信号対雑音比に応じて各検波信号の強度比
を変えて、合成した後、復調出力として取り出すことを
特徴とする。
(3-5) Structure of the Invention In the optical heterogain communication method of the present invention, an optical transmitter transmits signal light modulated into an information signal, and an optical multiplexer converts the transmitted signal light into local oscillation light. Combined,
This multiplexed light is converted into an intermediate frequency signal at the optical receiver,
extracting a demodulated signal from the intermediate frequency signal in a demodulation section;
In the optical heterogain communication method, the modulation of the signal light in the optical transmission section is performed by binary or higher frequency modulation, and the demodulation section independently extracts and detects the modulated frequency components in the intermediate frequency signal, and The present invention is characterized in that the intensity ratio of each detected signal is changed according to the signal-to-noise ratio of the detected signal, and the synthesized signal is extracted as a demodulated output.

(3−6)  発明の原理 前述のように半導体レーザのスペクトル拡がシの影響を
受けないように半導体レーザを直接周波数変調するには
、周波数偏移を大きくとればよいが、この場合、中間周
波数信号のスペクトルはかなり拡がシ、帯域の広い光受
信部が必要となる。
(3-6) Principle of the Invention As mentioned above, in order to directly frequency modulate a semiconductor laser so that the spectrum expansion of the semiconductor laser is not affected by The spectrum of the frequency signal is considerably spread, and an optical receiver with a wide band is required.

しかし、光受信部では周波数が高くなるほど雑音が増加
するため、高い変調周波数成分の信号対雑音比が劣化す
る。
However, in the optical receiving section, noise increases as the frequency increases, so the signal-to-noise ratio of high modulation frequency components deteriorates.

一方復調部で2値周波数変調された低周波成分のみ取り
出す方法では、半導体レーザのスペクトル拡がシの影響
を受けにくいが本来の2値周波数変調方法に比べ受信感
度が3dB劣る。そこで本発明では中間周波数信号の低
い変調周波数成分と高い変調周波数成分を独立に取り出
して検波し、それぞれの検波出力の強度比を変えて合成
し、復調出力として取り出すことによや、高い変調周波
数成分の雑音の影響を低減し、高い受信感度を得る。
On the other hand, in the method of extracting only the low frequency component that has been binary frequency modulated in the demodulation section, the spectrum expansion of the semiconductor laser is less susceptible to the influence of shading, but the receiving sensitivity is 3 dB lower than the original binary frequency modulation method. Therefore, in the present invention, the low modulation frequency component and the high modulation frequency component of the intermediate frequency signal are independently extracted and detected, and the intensity ratio of each detection output is changed and synthesized, and the result is extracted as a demodulated output. Reduce the influence of component noise and obtain high reception sensitivity.

(,3−7)  実施例 次に実施例によυ本発明について説明する。(,3-7) Example Next, the present invention will be explained with reference to Examples.

第1図は本発明の第1の実施例を説明するためのブロッ
ク図、第2図は各部の周波数の特性を示す図である。ま
ず送信用光源1は信号発生器2からの変調信号3で2値
周波数変調される。これによや周波数変調された信号光
4は光伝送路5を伝搬した後光合波部6によや局部発振
光源7の出力光である局部発振光8と合波される。この
合波光9は光受信部で光検出器10によや検波され、受
信回路11によや第2図(、)に示すような低い周波数
と高い周波数とにピークを持つ双峰性の2値の中間周波
数信号12が取り出される。これを2分して低域通過の
フィルタ13と帯域通過のフィルタ14に加え、それぞ
れ、周波数の異なるピークが1つの中間周波数信号を得
る。この出力をそれぞれ包絡線検波器15.16によや
検波し、検波出力17.18の信号対雑音比に応じて、
電力合成器19で合成比を調整して、復号出力20を得
る。
FIG. 1 is a block diagram for explaining a first embodiment of the present invention, and FIG. 2 is a diagram showing frequency characteristics of each part. First, the transmission light source 1 is subjected to binary frequency modulation using a modulation signal 3 from a signal generator 2. Thereby, the frequency-modulated signal light 4 propagates through the optical transmission line 5 and is then multiplexed with the local oscillation light 8 which is the output light of the local oscillation light source 7 in the optical multiplexing section 6 . This multiplexed light 9 is detected by a photodetector 10 in the optical receiving section, and then sent to a receiving circuit 11, which has a bimodal peak at a low frequency and a high frequency as shown in FIG. An intermediate frequency signal 12 of values is retrieved. This is divided into two and applied to a low-pass filter 13 and a band-pass filter 14 to obtain intermediate frequency signals each having one peak of different frequencies. These outputs are each detected by envelope detectors 15 and 16, and depending on the signal-to-noise ratio of the detected outputs 17 and 18,
A power combiner 19 adjusts the combination ratio to obtain a decoded output 20.

送信用光源1としては単一軸モード発振する半導体レー
ザを用い、注入電流を微小に変化させ、(/r7.’i
Mb / sの2値周波数変調を行なった。この時の注
入電流のふれ幅は4 mAで周波数偏移はIGHzであ
った。光伝送路5としては単一モード光ファイバを用い
、光合波部6には)・−7ミラーを用いた。光検出器1
0としてはアバランシェフォトダイオードを使用し、合
波光9をヘテロダイン検波した。受信回路11の帯域は
2G)(zであり、中間周波数信号12には第2図(、
)に示すような、500MHzと1.5 GHzにピー
クをもつ双峰性のビート出力を得た。
As the transmission light source 1, a semiconductor laser that oscillates in a single axis mode is used, and the injected current is slightly changed, (/r7.'i
Binary frequency modulation of Mb/s was performed. The fluctuation width of the injected current at this time was 4 mA, and the frequency deviation was IGHz. A single mode optical fiber was used as the optical transmission line 5, and a -7 mirror was used as the optical multiplexer 6. Photodetector 1
0, an avalanche photodiode was used, and the combined light 9 was subjected to heterodyne detection. The band of the receiving circuit 11 is 2G) (z), and the intermediate frequency signal 12 has a frequency band of 2G) (z).
), we obtained a bimodal beat output with peaks at 500 MHz and 1.5 GHz.

中間周波数信号12を2等分して、一方を周波数特性が
第2図(b)に示される様な遮断周波数IGHzの低域
通過のフィルタ13に通すとその出力波形は第2図(c
)に示される様な信号符号”1”に対応する中心周波数
500 MHzのビート出力となる。
When the intermediate frequency signal 12 is divided into two equal parts and one is passed through a low-pass filter 13 with a cutoff frequency of IGHz whose frequency characteristics are shown in FIG. 2(b), the output waveform is as shown in FIG. 2(c).
) is a beat output with a center frequency of 500 MHz corresponding to the signal code "1".

これを包絡線検波器15で検波する事によや、第1の検
波出力17を得た。
By detecting this with the envelope detector 15, a first detection output 17 was obtained.

同様に中間周波数信号12を第2図(d)に示されるよ
うな周波数特性をもつ帯域通過のフィルタ14を用いて
、第2図(e)に示されるような信号符号”0”に対応
する中心周波数1.5GHzのビート出力を取り出し、
包絡線検波器16で検波し、第1の検波出力とは逆極性
の第2の検波出力18を得た。
Similarly, the intermediate frequency signal 12 is filtered using a band-pass filter 14 having frequency characteristics as shown in FIG. 2(d), which corresponds to the signal code "0" as shown in FIG. 2(e). Take out the beat output with a center frequency of 1.5 GHz,
Detection was performed by an envelope detector 16, and a second detection output 18 having a polarity opposite to that of the first detection output was obtained.

第1の検波出力17の信号対雑音比は27 dBであっ
た。一方、受信回路の高周波領域で回路雑音が大きいた
め第2の検波出力18の信号雑音比は21 dBであっ
た。これらの第1j第2の検波出力17.18の信号対
雑音特性を考慮して、電力合成器19において第2の検
波出力18を6dE程減衰させて第1の検波出力17と
差動的に加え、復調信号20を得た。
The signal-to-noise ratio of the first detection output 17 was 27 dB. On the other hand, since circuit noise is large in the high frequency region of the receiving circuit, the signal-to-noise ratio of the second detection output 18 was 21 dB. Considering the signal-to-noise characteristics of the second detection outputs 17 and 18, the power combiner 19 attenuates the second detection outputs 18 by about 6 dE and differentially outputs them from the first detection outputs 17. In addition, a demodulated signal 20 was obtained.

この場合の受信感度は、それぞれの包絡線検波器15j
 16からの出力を1=1で差動的に加えた場合の受信
感度に比べ約1dB改善された。
In this case, the reception sensitivity of each envelope detector 15j is
The receiving sensitivity was improved by about 1 dB compared to when the output from 16 was added differentially with 1=1.

第3図は本発明の第2の実施例を説明するためのブロッ
ク図、第4図は各部の周波数特性を示す図である。この
実施例では広帯域の受信回路を用いる代わシに、光検出
器10で得られた中間周波数信号21を、それぞれ低周
波成分、高周波成分に分離し、各中間周波数信号のビー
トの中心周波数で整合のとれた低周波増幅器25、高周
波増幅器26を用いて、等測的に受信回路の広帯域化を
図ると共に、各中間周波数信号を独立に取り出して復調
している。
FIG. 3 is a block diagram for explaining the second embodiment of the present invention, and FIG. 4 is a diagram showing frequency characteristics of each part. In this embodiment, instead of using a wideband receiving circuit, the intermediate frequency signal 21 obtained by the photodetector 10 is separated into a low frequency component and a high frequency component, and matched at the center frequency of the beat of each intermediate frequency signal. By using a low frequency amplifier 25 and a high frequency amplifier 26, each intermediate frequency signal is independently extracted and demodulated.

この実施例においては送信用光源1には承−軸モード発
振する半導体レーザを用い、注入電流を微少に変化させ
450 Mb / sの2値周波数変調を行なった。こ
の時の注入電流のふれ幅は6mAで周波数偏移は1.6
GHzであった。
In this embodiment, a semiconductor laser that oscillates in a back-axis mode is used as the transmitting light source 1, and binary frequency modulation of 450 Mb/s is performed by slightly changing the injection current. At this time, the amplitude of the injection current is 6 mA, and the frequency deviation is 1.6.
It was GHz.

この信号光4と局部発振光8との合波光9を光検出器1
0を用い、ヘテロダイン検波した。このとき中間周波数
信号21は第4図(a)に示されるような双峰性のビー
ト出力であり、帯域は3.2GHz程度と広いものであ
った。この中間周波数信号21は、第4図(b)に示す
1.5 GHzで3dBカツプラとして動作する方向性
結合器22を用いて、それぞれ第4図(c)に示す信号
符号“1″に対応する中心周波数が700MHzの低周
波のビート出力23と、第4図(d)に示す信号符号”
0”に対応する中心周波数が2.3GHzの高周波のビ
ート出力24に分離した。ここで用いた方向性結合器2
2はマイクロストリップ線路で構成された広帯域の位相
反転形ノ・イブリッドリングである。方向性結合器22
により分離された低周波のビート出力23と高周波のビ
ート出力24をそれぞれ中心周波数700 MHzで整
合のとれた低周波増幅器25、中心周波数2.3 GH
z整合のとれた高周波増幅器26を用いて増幅し、包絡
線検波器15゜16で検波する。この時の第1の検波出
力17と第2検波出力18の信号対雑音比はそれぞれ2
3dB ? 19 dBであった。電力合成器では第2
の検波出力18を3dB減衰させて第1の検波出力17
と差動的に加え合わせ、良好な復調信号20を得た。
The combined light 9 of the signal light 4 and the local oscillation light 8 is detected by a photodetector 1.
Heterodyne detection was performed using 0. At this time, the intermediate frequency signal 21 was a bimodal beat output as shown in FIG. 4(a), and had a wide band of about 3.2 GHz. This intermediate frequency signal 21 is converted using a directional coupler 22 which operates as a 3 dB coupler at 1.5 GHz as shown in FIG. 4(b), and each corresponds to the signal code "1" shown in FIG. 4(c). The low-frequency beat output 23 with a center frequency of 700 MHz and the signal code shown in FIG. 4(d)"
The center frequency corresponding to 0" was separated into high frequency beat outputs 24 of 2.3 GHz.The directional coupler 2 used here
Reference numeral 2 is a broadband phase-inverted hybrid ring composed of microstrip lines. Directional coupler 22
The low frequency beat output 23 and high frequency beat output 24 separated by the low frequency amplifier 25 are matched at a center frequency of 700 MHz, respectively, and the center frequency is 2.3 GHz.
The signal is amplified using a Z-matched high frequency amplifier 26, and detected using envelope detectors 15 and 16. At this time, the signal-to-noise ratio of the first detection output 17 and the second detection output 18 is 2.
3dB? It was 19 dB. In the power combiner, the second
The first detection output 17 is attenuated by 3 dB.
A good demodulated signal 20 was obtained.

本発明においては以上の実施例の他にもさまざまな変形
が可能である。送信用光源1としては半導体レーザの他
に、He−Neレーザ等のガスレー舒 ザや、外部鈍物の半導体レーザを用い、その共振器長を
変えて周波数変調をかけるようにすることも可能である
。またガスレーザや固体レーザと音響光学変調器等の周
波数変調器を組合せて送信用光源1とすることも可能で
ある。光伝送路5としては光ファイバの他に空間伝搬の
場合や他の光導波路を考えることもできる。光合波部6
としてはハーフミラ−の他にファイバカップラや回折格
子を用いることも可能である。局部発振光源7としては
、半導体レーザの他にガスレーザ、固体レーザ等の各種
レーザを用いることができるし、光検出器10としては
、フォトダイオード、光電子増倍管等の使用が可能であ
る。またヘテロダイン検波を行なう場合に、電気的な検
波器としては、包絡線検波器15.16のかわシに、あ
る基準周波数を用いる同期検波器を用いることも可能で
ある。
In addition to the above-described embodiments, various modifications can be made to the present invention. As the transmission light source 1, in addition to a semiconductor laser, it is also possible to use a gas laser such as a He-Ne laser or an external blunt semiconductor laser, and to apply frequency modulation by changing the resonator length. be. Furthermore, the transmission light source 1 can be made by combining a gas laser or a solid-state laser with a frequency modulator such as an acousto-optic modulator. As the optical transmission line 5, in addition to optical fibers, spatial propagation or other optical waveguides can be considered. Optical multiplexing section 6
In addition to a half mirror, it is also possible to use a fiber coupler or a diffraction grating. As the local oscillation light source 7, various lasers such as a gas laser and a solid-state laser can be used in addition to a semiconductor laser, and as the photodetector 10, a photodiode, a photomultiplier tube, etc. can be used. Further, when performing heterodyne detection, it is also possible to use a synchronous detector using a certain reference frequency in place of the envelope detectors 15 and 16 as the electrical detector.

また局部発振光源7の発振周波数を送信用光源1からの
信号光のうちの一方の周波数成分と合わせて検波を行な
い、そのベースバンド信号の振幅あるいは強度情報から
信号を復調するようにすることも可能である。
It is also possible to perform detection by combining the oscillation frequency of the local oscillation light source 7 with one frequency component of the signal light from the transmitting light source 1, and demodulate the signal from the amplitude or intensity information of the baseband signal. It is possible.

さらに光検出器10と受信回路11をハイブリット構成
し、光受信部の低雑音化を図ったPIN−FFiT型の
光受信器の使用も・可能である。また第1の実施例では
帯域通過のフィルタ14を使用しているが、高域通過の
フィルタ、共振器等を使用してもよい。第2の実施例で
は2つのビート出力を分離す′るだめに方向性結合器2
2を用いているが、リング共振器等を利用した分波器を
用いてもよい。
Furthermore, it is also possible to use a PIN-FFiT type optical receiver in which the photodetector 10 and the receiving circuit 11 are configured in a hybrid manner to reduce noise in the optical receiving section. Further, in the first embodiment, a band-pass filter 14 is used, but a high-pass filter, a resonator, etc. may also be used. In the second embodiment, a directional coupler 2 is used to separate the two beat outputs.
2 is used, however, a duplexer using a ring resonator or the like may also be used.

また実施例は2値の周波数シフトキーインク方式につい
ての例であるが、4値等の多値の周波数シフトキーイン
ク゛方式についても2値の周波数シフトキーインク方式
と同様に本発明の方法を適用できる。
Further, although the embodiment is an example of a binary frequency shift key ink method, the method of the present invention can be applied to a multi-value frequency shift key ink method such as a four-value method in the same way as the binary frequency shift key ink method.

(3−8)  発明の効果 以上詳しく述べたように本発明では、2値以上の周波数
変調を行う光ヘテロゲイン通信方法において、光受信部
からの中間周波数信号の低い変調周波数成分と高い変調
周波数成分を独立に取り出して検波し、それぞれの検波
出力の強度比を変えて合成し、復調出力を取り出す事に
よや、光受信部で発生する高い変調周波数成分の雑音の
影響を低減し、高い受信感度が得られる。
(3-8) Effects of the Invention As described in detail above, in the present invention, in an optical heterogain communication method that performs binary or higher frequency modulation, the low modulation frequency component and the high modulation frequency component of the intermediate frequency signal from the optical receiver By extracting and detecting them independently, changing the intensity ratio of each detection output, and combining them to extract the demodulated output, the influence of noise of high modulation frequency components generated in the optical receiver can be reduced, and high reception can be achieved. Sensitivity can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例を説明するだめのブロッ
ク図、第2図(a) l (b) # (c) j (
d) j (e)は第1の実施例を説明するための周波
数特性図、第3図は本発明の第2の実施例を説明するだ
めのプロッり図、第4図(a) t (b) y (c
) y (d)は第2の実施例を説明するだめの周波数
特性図である。 図において、1・・・送信用光源、2・・・信号発生器
、3・・・変調信号、4・・・信号光、5・・・光伝送
路、6・・・光合波部、7・・・局部発振光源、8・・
・局部発振光、9・・・合波光、10・・・光検出器、
11・−・受信回路、12−・・中間周波数信号、13
.14・・・フィルタ、     医15.16・・・
包絡線検波器、17t18・・・検波出力、19・・・
電力合成器、20・・・復調出力、21・・・中間周波
数信号、22・・・方向性結合器、23・・・低周  
  大波のビート出力、24・・・高周波のビート出力
、25・・・低周波増幅器、26・・・高周波増幅器、
27ツ28・・・フィルタ、である。 71−2  図
FIG. 1 is a block diagram for explaining the first embodiment of the present invention, and FIG. 2 (a) l (b) # (c) j (
d) j (e) is a frequency characteristic diagram for explaining the first embodiment, FIG. 3 is a plot diagram for explaining the second embodiment of the present invention, and FIG. 4 (a) t ( b) y (c
)y(d) is a frequency characteristic diagram for explaining the second embodiment. In the figure, 1... Transmission light source, 2... Signal generator, 3... Modulated signal, 4... Signal light, 5... Optical transmission line, 6... Optical multiplexer, 7 ...Local oscillation light source, 8...
・Local oscillation light, 9... Combined light, 10... Photodetector,
11--Reception circuit, 12--Intermediate frequency signal, 13
.. 14...filter, medicine 15.16...
Envelope detector, 17t18...Detection output, 19...
Power combiner, 20... Demodulation output, 21... Intermediate frequency signal, 22... Directional coupler, 23... Low frequency
Big wave beat output, 24... High frequency beat output, 25... Low frequency amplifier, 26... High frequency amplifier,
27 28...filter. 71-2 Figure

Claims (1)

【特許請求の範囲】[Claims] 光送信部において、情報信号によや変調された信号光を
送信し、光合波部において伝送されてきた前記信号光を
局部発振光と合波し、この合波した光を光受信部で中間
周波数信号に変換し、復調部で前記中間周波数信号から
復調信号を取り出す光ヘテロダイン通信方法において、
前記光送信部における信号光の変調は、2値以上の周波
数変調によって行ない、前記復調部においては、前記中
間周波数信号中の変調周波数成分をそれぞれ独立に取り
出して検波し、それぞれの検波信号の信号対雑音比に応
じて、各検波信号の強度比を変えて、合成した後、復調
出力として取り出すことを特徴とする光ヘテロダイン通
信方法。
The optical transmitter transmits a signal light modulated by an information signal, the optical multiplexer multiplexes the transmitted signal light with local oscillation light, and the optical receiver intermediates the multiplexed light. In an optical heterodyne communication method in which the intermediate frequency signal is converted into a frequency signal and a demodulated signal is extracted from the intermediate frequency signal in a demodulation section,
Modulation of the signal light in the optical transmitter is performed by binary or higher frequency modulation, and in the demodulator, each modulated frequency component in the intermediate frequency signal is independently extracted and detected, and the signal of each detected signal is An optical heterodyne communication method characterized by changing the intensity ratio of each detected signal according to the noise ratio, synthesizing the signal, and then extracting the signal as a demodulated output.
JP59171093A 1984-08-17 1984-08-17 Optical heterodyne communicating method Pending JPS6149530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59171093A JPS6149530A (en) 1984-08-17 1984-08-17 Optical heterodyne communicating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59171093A JPS6149530A (en) 1984-08-17 1984-08-17 Optical heterodyne communicating method

Publications (1)

Publication Number Publication Date
JPS6149530A true JPS6149530A (en) 1986-03-11

Family

ID=15916854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59171093A Pending JPS6149530A (en) 1984-08-17 1984-08-17 Optical heterodyne communicating method

Country Status (1)

Country Link
JP (1) JPS6149530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0880788A1 (en) * 1995-05-19 1998-12-02 Jenkin A. Richard Optical transceiver
JP2017511032A (en) * 2014-02-07 2017-04-13 デンマークス テクニスケ ユニバーシテト Decode signals that combine amplitude and frequency modulation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0880788A1 (en) * 1995-05-19 1998-12-02 Jenkin A. Richard Optical transceiver
EP0880788A4 (en) * 1995-05-19 2000-01-12 Jenkin A Richard Optical transceiver
JP2017511032A (en) * 2014-02-07 2017-04-13 デンマークス テクニスケ ユニバーシテト Decode signals that combine amplitude and frequency modulation
US10516488B2 (en) 2014-02-07 2019-12-24 Danmarks Tekniske Universitet Decoding a combined amplitude modulated and frequency modulated signal

Similar Documents

Publication Publication Date Title
KR100305258B1 (en) optical transmission system, and optical transmitter and optical receiver used therein
US7149435B2 (en) Method and apparatus for transmitting high-frequency signals in optical communication system
JPS63500069A (en) Digital information transmission method and device
JPH04278737A (en) Coherent optical receiver
JP4332616B2 (en) Method and apparatus for signal processing of modulated light
JPS6149530A (en) Optical heterodyne communicating method
CN113660043B (en) Local oscillator CVQKD method and system for channelized reception
JP3863463B2 (en) Signal transmission method and signal transmission system
JP3168735B2 (en) Coherent optical transmission equipment
JPH0422253B2 (en)
JPH02120726A (en) Coherent light communication system
JPH04248721A (en) Balanced optical receiver
JPS61114624A (en) Optical heterodyne receiver
JPH0682853A (en) Optical frequency conversion system
JPS63198425A (en) Intermediate frequency stabilization method
JP2758227B2 (en) Optical heterodyne receiver
JP2001119350A (en) Light receiver, optical fiber transmission device, light fm characteristic measurement device and light fm characteristic measurement method
JP2000349560A (en) Voltage controlled oscillator, optical fm signal transmitter, optical fm signal receiver and optical fm signal transmission system
JPH05167535A (en) Optical communication method
JPH104386A (en) Optical homodyne detection communication system and equipment, and system and equipment for optical code division multiplex transmission using same
JPH04157822A (en) Optical communication system
JPH05260019A (en) Coherent scm optical transmission method and optical transmitter, optical receiver and optical transmission system used for executing the same
JPH052197A (en) Optical transmission system, light wavelength conversion system, and reception system
JPS63200631A (en) Optical communication method using optical heterodyne detection
JPS63257341A (en) Method and equipment for optical homodyne detection optical communication