JPS6149482A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS6149482A
JPS6149482A JP59172082A JP17208284A JPS6149482A JP S6149482 A JPS6149482 A JP S6149482A JP 59172082 A JP59172082 A JP 59172082A JP 17208284 A JP17208284 A JP 17208284A JP S6149482 A JPS6149482 A JP S6149482A
Authority
JP
Japan
Prior art keywords
light
electrode
receiving plate
substrate
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59172082A
Other languages
Japanese (ja)
Inventor
Yasuo Kishi
岸 靖雄
Takashi Shibuya
澁谷 尚
Torashirou Ueda
上田 とら四郎
Hitoshi Kishi
均 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59172082A priority Critical patent/JPS6149482A/en
Publication of JPS6149482A publication Critical patent/JPS6149482A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To avoid scattering of broken pieces of a light-receiving plate and a substrate of a photovoltaic device when broken by shock, by inserting a transparent bonding layer between a light-transmitting light-receiving plate which defines a light incident surface and a light-transmitting substrate, the bonding layer being adapted to bond them together. CONSTITUTION:A plurality of photoelectric conversion films 3 are formed on the reverse surface 2S1 of a light-transmitting substrate 2 made of light-transmitting glass, ceramic or the like. Each film 3 is formed from a laminated structure 10 consisting of a light-transmitting electrically conductive oxide electrode 7, an amorphous Si photoactive layer 8 and an Al rear electrode 9, these layers being laminated in that order from the reverse surface 2S1. An output electrode 13 is provided at one end of the electrode 7, and a connecting electrode 12 is provided within an adjacent spacing area 11 so as to extend from the other end of the electrode 9 to the electrode 7. Thereafter, the surface 2S2 of the substrate 2 is coated with a sheet-like transparent bonding layer 6, and a transparent light-receiving plate 5 of tempered glass is secured to the surface 2S2 through the bonding layer 6 so as to define a light incident surface. In this arrangment, the respective refractive indexes of the light-receiving plate 5, the bonding layer 6 and the substrate 2 are made uniform to enable light to pass therethrough to reach the film 3 in a satisfactory state.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は太陽光等の光エネルギを直接電気エネルギに変
換する光起電力装置に関し、主として所請太陽電池とし
て利用されろ。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a photovoltaic device that directly converts light energy such as sunlight into electrical energy, and is mainly used as a commissioned solar cell.

(ロ)従来の技術 支持基板に光照射により光電変換動作する光電変換膜を
直接形成せしめた光起電力装置は既に知られており、ま
た上記基板を透光性となすことによりこの基板を受光面
側とした光起電力装置も例えば米国特許第4,281,
208号に開示された如く現存する。上記透光性の基板
は実用的にはガラスが用いられ、iた研究所レベルでt
i特公昭59−6074号の如く焼結度を高くすること
によって透光性を得たセラミックも使用されている。
(b) Conventional technology A photovoltaic device in which a photoelectric conversion film that performs photoelectric conversion upon irradiation with light is directly formed on a supporting substrate is already known, and by making the substrate translucent, the substrate can receive light. A surface-side photovoltaic device is also disclosed, for example, in U.S. Pat. No. 4,281,
Existing as disclosed in No. 208. Glass is practically used for the above-mentioned light-transmitting substrate;
Ceramics that have been made translucent by increasing the degree of sintering are also used, as disclosed in Japanese Patent Publication No. 59-6074.

然し乍ら、上述の如き光起電力装置の光電変換膜は膜状
を呈するが故に、該変換膜を支持する支持基板は不可欠
な存在でアシ、また支持基板を受光面側としブヒ場合、
上記ガラス或いは透光性セラミックは有益な基板材料で
ある反面1両者共に衝撃による破壊危惧を有しており、
特に斯る光起電力装置(太陽電池)を組み込んだポケッ
トラジオ。
However, since the photoelectric conversion film of the above-mentioned photovoltaic device is in the form of a film, the support substrate that supports the conversion film is indispensable.
Although the above-mentioned glass or translucent ceramic is a useful substrate material, both have the risk of being destroyed by impact.
In particular, pocket radios incorporating such photovoltaic devices (solar cells).

腕時計、電車等の小屋民生機器に於いて上述の如き支持
基板が衝撃破壊され飛散すると危険である。
In consumer appliances such as wristwatches and trains, it is dangerous if the above-mentioned supporting substrates are damaged by impact and scattered.

(う 発明が解決しようとした問題点 本発明は斯る透光性の支持基板が衝撃付加されると破壊
し、その破片が飛散する点を解決しようとしたものであ
る。
Problems that the Invention Attempts to Solve The present invention attempts to solve the problem that such a transparent support substrate breaks when an impact is applied to it, and its fragments are scattered.

に)問題点を解決するための手段 本発明は上記問題点を解決するために、光電変換動作す
る光電変換膜を、一方の主面に於いて支持する透光性の
支持基板の他方の主面側を受光面側とし、その受光面側
に光屈折率が上記支持基板とほぼ等しい透明接着層を介
して透光性受光板を配置し之構成にある。また上記透光
性受光板は強化ガラスよりなっている□ (ホ)作 用 上述の如く透光性の受光面側に光屈折率が上記支持基板
とほぼ等しい透明接着層を介して透光性受光板を配置す
ることによって、上記透明接着層は仮に受光板が衝繋破
壊されたとしても斯る破壊による破片の飛散を防止する
(9)をする。更に上記受光板として強化ガラスを使用
すると、耐衝撃性そのものが上昇する。
B) Means for Solving the Problems In order to solve the above-mentioned problems, the present invention aims to solve the above-mentioned problems by using a light-transmitting support substrate that supports a photoelectric conversion film that performs photoelectric conversion on one main surface. The surface side is the light-receiving surface side, and a light-transmitting light-receiving plate is disposed on the light-receiving surface side with a transparent adhesive layer having an optical refractive index substantially equal to that of the support substrate. The light-transmitting light-receiving plate is made of tempered glass (e) Function: As described above, the light-transmitting light-receiving plate has a transparent adhesive layer on the light-transmitting light-receiving surface side having a light refractive index almost equal to that of the supporting substrate. By arranging the light-receiving plate, the transparent adhesive layer prevents fragments from scattering even if the light-receiving plate is damaged due to collision (9). Furthermore, when tempered glass is used as the light receiving plate, the impact resistance itself increases.

(へ)実 施 例 第1図は本発光起電力装置の分解斜視図1%2図は要部
の拡大断面図である。第1図及び第2図に於いて、(1
ンは太陽光等の光照射を受けると起電力を発生する光起
電力素子で、該素子(1)は透光性のガラス、セラミッ
ク等の支持基板【2)と、該基板(2)の一方の主面(
2111)側に被着形成された光電変換膜(3)と、該
光電変換膜(3)の上記基板(2」と反対側の主面を覆
うパッシベーション膜【4)と、から構成されている。
(f) Embodiment FIG. 1 is an exploded perspective view of the present light-emitting electromotive device. FIG. 1 is an enlarged cross-sectional view of the main parts. In Figures 1 and 2, (1
A photovoltaic element is a photovoltaic element that generates an electromotive force when exposed to sunlight or other light. One main surface (
2111) side, and a passivation film [4] covering the main surface of the photoelectric conversion film (3) on the side opposite to the substrate (2''). .

(51Fi上記光電変換膜(3) 1に支持する支持基
板(2)の他方の主面(2s2)側に配置され受光面と
して作用する透光性のガラス、セラミック等からなる受
光板、(6)は該受光板(5)と支持基板(2)との間
に配挿され両者を結合するシート状の透明接着層で、該
接着層(6)は支持基板(2)と受光板(5)の屈折率
とほぼ等しい屈折率を備えている。例えば上記支持基板
(2)及び受光板(5)として通常の窓ガラス用の所謂
板ガラスを使用すると、そのガラス材はソーダ石灰ガラ
スでる)約1.45〜160程度の屈折率を持ち、斯ろ
屈折率とほぼ等しい透明接着層(6)としては屈折本釣
1.48のポリビニルブチラール(PVB)やエチレン
ビニルアセテ−)(EVA)が存在する。斯るPVB及
びEVA共に厚み[11〜数IM程度のシート状のもの
が例えば米国デュポン社から市販されておシ、購入時白
濁している透明接着層(6)用シート材を支持基板(2
〕と受光板(5)との間に挟み込み、例えば1QTor
r以下の減圧状態に於いて加熱温度80〜170 ”C
圧力0,5〜5即/−の条件でホットプレスすることに
より、白濁していたシート材から気泡がxV気され透明
となった透明接着層「6)により受光板〔5ンと支持基
板(2)とが一体的に結合される。
(6 ) is a sheet-like transparent adhesive layer that is placed between the light receiving plate (5) and the supporting substrate (2) and bonding them together; ) has a refractive index that is approximately equal to the refractive index of ().For example, if so-called plate glass for ordinary window glass is used as the supporting substrate (2) and the light receiving plate (5), the glass material is soda lime glass). Polyvinyl butyral (PVB) and ethylene vinyl acetate (EVA) with a refractive index of 1.48 exist as transparent adhesive layers (6) that have a refractive index of about 1.45 to 160 and are almost equal to this refractive index. do. Both PVB and EVA are available in sheet form with a thickness of about 11 to several IM, for example, from DuPont in the United States.
] and the light receiving plate (5), for example, 1QTor.
Heating temperature 80-170"C under reduced pressure below r
By hot pressing at a pressure of 0.5 to 5/-, air bubbles were removed from the cloudy sheet material and the transparent adhesive layer 6) was bonded to the light receiving plate [5] and the supporting substrate ( 2) are integrally combined.

一方、一般に屈折率n1の物質からn2の物質へ光が垂
直に入射した場合、その界面に於いて生じる光反射率R
は、 R=() nl+n2 で表わされることは周知の通シである。従って。
On the other hand, in general, when light is incident perpendicularly from a substance with a refractive index n1 to a substance with a refractive index n2, the light reflectance R generated at the interface is
It is a well-known convention that R=()nl+n2. Therefore.

上記接着層(6)の屈折率が支持基板(2)及び受光板
(5)との屈折率とほぼ等しめために、光電変換膜]3
ノの入射面に至るまでに光が受光板(5)、透明接着層
(6)及び支持基板(2)の三層を透過しなければなら
ないにも拘らず、最初の大気と受光板(5)との界面に
於いて大きく反射する以外は夫々の界面rこ於けろ反射
は殆ど無視し得る。即ち、受光板(5)及び支持基板(
2)として最も一般的な窓用ガラス材を用いると、その
ガラス材の屈折率は約152であり、その中間に位置す
るPVB或いはEVAの屈折率が上述の如く約148で
るるから、光電変換膜(3)に到達するまで光が反射し
ようとした総合反射率RsH1でアシ、従来の如く支持
基板(2)に直接光が照射される場合の反射率R1が。
In order to make the refractive index of the adhesive layer (6) almost equal to the refractive index of the support substrate (2) and the light receiving plate (5), the photoelectric conversion film]3
Although the light must pass through three layers, the light receiving plate (5), the transparent adhesive layer (6), and the support substrate (2), before reaching the incident surface of the light receiving plate (5), the initial atmosphere and the light receiving plate (5) ) The reflections at each interface can be almost ignored, except for the large reflection at the interface with . That is, the light receiving plate (5) and the supporting substrate (
When using the most common window glass material as 2), the refractive index of the glass material is approximately 152, and the refractive index of PVB or EVA located in between is approximately 148 as mentioned above, so photoelectric conversion is difficult. The total reflectance RsH1 is the total reflectance of light that is reflected until it reaches the film (3), and the reflectance R1 is the reflectance R1 when the supporting substrate (2) is directly irradiated with light as in the conventional case.

であることからして、三層構造にすることによる反射率
の増加は0.0004に過ない。
Considering this, the increase in reflectance due to the three-layer structure is only 0.0004.

再び第2図を参照して光電変換膜(3)の具体的構成に
ついて説明を加える。支持基板(2)の一方の主面(2
81)、即ち光入射側から見て背面に設けられた光電変
換膜(3)は、電子ビーム蒸着法等にょシ選択形成或い
は全面に形成後フォトリングラフィ手法若しくはレーザ
スクライブ手法により複数個にバター二/グされた酸化
スズ、酸化インジウムスズ等の単層或いは積層構造の透
光性導電酸化物電極(以下TCO電極と呼ぶ)(7)と
、シラン等の反応ガス雰囲気中でのグロー放電によシ形
弐されたアモルファスシリコン系半導体の光氾一層(8
)と、アルミニウム等のオーミック性の背面電極(9)
と、の膜厚ミクロンオーダ乃至サブミクロンオーダの積
層構造体部を、それ等の隣接間隔部[11)Vc於いて
チタン或いは該チタンとアルミニウム更VcViチタン
の積層構成Vcめる結合電極α21を介して電気的に直
列関係になるべく接続している。上記結合電極0はアル
ミニウムからなる背面電極(9)が直接隣接間隔部αυ
に露出した隣りの積層構造体11GのTCO電極(7)
と接触すると、その接触界面に於いてTCO電極(7)
中の酸素が背面電極(9)材のアルミニr      
  ラムを酸化せしめて抵抗層を形成するのを防止する
ためのものであり、従って、斯る結合電極[+21の結
合面材は酸化しにくμものであればチタンに限る必要は
ない。
Referring again to FIG. 2, the specific structure of the photoelectric conversion film (3) will be explained. One main surface (2) of the support substrate (2)
81), that is, the photoelectric conversion film (3) provided on the back side when viewed from the light incident side is selectively formed using electron beam evaporation, or formed on the entire surface and then formed into multiple pieces using photolithography or laser scribing. A translucent conductive oxide electrode (hereinafter referred to as TCO electrode) (7) with a single layer or laminated structure made of tin oxide, indium tin oxide, etc., and a glow discharge in an atmosphere of a reactive gas such as silane. A single layer of light flooded amorphous silicon semiconductor (8
) and an ohmic back electrode such as aluminum (9)
and a laminated structure with a film thickness on the order of microns to submicrons, at their adjacent interval [11] Vc, through a coupling electrode α21 that includes a laminated structure Vc of titanium or titanium and aluminum, VcVi, and titanium. electrically connected in series as much as possible. The above-mentioned coupling electrode 0 has a back electrode (9) made of aluminum directly adjacent to the space αυ
TCO electrode (7) of the adjacent laminated structure 11G exposed to
When in contact with the TCO electrode (7) at the contact interface
The oxygen inside is the aluminum r of the back electrode (9) material.
This is to prevent the laminate from oxidizing and forming a resistance layer. Therefore, the bonding surface material of the bonding electrode [+21] need not be limited to titanium as long as it is resistant to oxidation.

上記アモルファスシリコン系の光活性層(8)は膜面に
平行なPin等の周知の半導体接合を備えており、受光
板(5)、透明接着層(6)、支持基板(2)及びTC
O電極(7)を経て光が照射されると、主に肉厚な1型
層に於いて自由状態の電子及び正孔の光キャリアが発生
して、斯る光キャリアがTCO電極(71及び背面電極
(9)に集電されることによって光起電力が発生する。
The amorphous silicon-based photoactive layer (8) is equipped with well-known semiconductor junctions such as pins parallel to the film surface, and includes a light receiving plate (5), a transparent adhesive layer (6), a support substrate (2) and a TC.
When light is irradiated through the O electrode (7), photocarriers of free electrons and holes are generated mainly in the thick type 1 layer, and these photocarriers are transferred to the TCO electrodes (71 and 71). Photovoltaic force is generated by collecting current to the back electrode (9).

そして発生した光起電力は結合電極1■を介して隣接し
た積層構造体曝の光起電力と相加され、その積層構造体
間の面積に孔列した出力が端子電極(13)から取り出
される。
The generated photovoltaic force is added to the photovoltaic force of the adjacent laminated structure exposed through the coupling electrode 1, and the output arranged in a row of holes in the area between the laminated structures is taken out from the terminal electrode (13). .

而して、この様な構造に於いて受光板(5)の光入射面
に衝撃が加えられろと、受光板(5)は破損しその破片
は飛散しようとしたが、透明接着層+61が破片の飛散
力を吸収するために斯る受光板(5)の破片は飛散する
に至らない。
In such a structure, when an impact is applied to the light incident surface of the light receiving plate (5), the light receiving plate (5) breaks and its fragments try to scatter, but the transparent adhesive layer +61 Since the scattering force of the fragments is absorbed, the fragments of the light receiving plate (5) are not scattered.

更VC%本発明光起電力装置[6りては受光板(5)と
して通常の同厚の板ガラスに比して約3〜8倍程度機械
的強度の太きh強化ガラスを使用することが可能となる
。即ち1強化ガラスとしては、通常の板ガラスを、軟化
温度付近(500〜700℃)まで均一に加熱した後、
これに均一に冷却ガスを吹き付けて急冷すると、すでに
冷却硬化した表層のために内部の収縮が妨げられ、引張
応力を生じ、その結果表層に圧縮応力が誘発されること
によって強化される風冷強化と、カリウム水溶液中に浸
漬することによって上記カリウムを表層に取り込ませて
化学的に強化する化学強化と、の2種類が存在する。斯
る2種類の強化ガラスの共通の欠点は強化後任意の形状
に切断加工できず、更には光電変換膜(3)のTCO電
極(7)の透明度を上昇せしめるために約300〜50
0℃付近まで加熱したシ、更には光活性層(8)として
上述の如きシランのグロー放電によりアモルファスシリ
コン系半導体膜を形成す(へ)く支持基板(2)を約2
00〜350℃程度に加熱しなければならず、この両者
の加熱により強化されていた強化ガラスは通常の板ガラ
スに戻ることでめる〇 従って、従来から加熱処理を必要とした光起電力装置の
支持基板として強化ガラスを用いたとしても製造後はた
だの板ガラスと同じ機械的強度しか備えておらず、また
仮に強化ガラスの状態でめったとしても10側×10備
〜40csX40国の大型基板にポケットラジオ、電卓
、腕時計等の小型民生機器に用いられる太陽電池全同時
に多数個作製したとして′ib%個々のモジュールに切
断加工を施すべく表層にスクライプ溝を形成すると、−
瞬にして内部応力のために粉砕するため−て、斯る機械
的強度が大きい強化ガラスを使用することができなかっ
たのである。
Furthermore, in the photovoltaic device of the present invention [6], it is possible to use thick tempered glass, which has a mechanical strength about 3 to 8 times that of ordinary plate glass of the same thickness, as the light receiving plate (5). It becomes possible. That is, as 1 tempered glass, after uniformly heating ordinary plate glass to around the softening temperature (500 to 700 ° C.),
When this is quenched by uniformly blowing cooling gas onto it, the internal contraction is inhibited by the surface layer that has already been cooled and hardened, creating tensile stress, which is strengthened by inducing compressive stress in the surface layer. There are two types: chemical strengthening, in which potassium is incorporated into the surface layer by immersing it in a potassium aqueous solution to chemically strengthen it. The common drawback of these two types of tempered glasses is that they cannot be cut into any shape after being strengthened, and furthermore, in order to increase the transparency of the TCO electrode (7) of the photoelectric conversion film (3), a
The support substrate (2) is heated to around 0°C, and then an amorphous silicon-based semiconductor film is formed by glow discharge of silane as described above as a photoactive layer (8).
Tempered glass, which had to be heated to temperatures between 00 and 350 degrees Celsius, can be strengthened by reverting to normal plate glass. Therefore, photovoltaic devices that conventionally required heat treatment are Even if tempered glass is used as a supporting substrate, it will only have the same mechanical strength as ordinary plate glass after manufacturing, and even if tempered glass is rarely used, it will not fit into a pocket on a large substrate of 10 sides x 10 to 40 cs x 40 countries. Assuming that a large number of solar cells for use in small consumer devices such as radios, calculators, and wristwatches are manufactured at the same time, if scribe grooves are formed on the surface layer to cut each individual module, -
Because the glass would instantly shatter due to internal stress, it was not possible to use tempered glass with such high mechanical strength.

また、受光板(5)として、強化ガラスの使用と同じ〈
従来200℃以上の加熱処理を必要としていた光起電力
装置では使用することのでき々かりた反射防止膜を備え
たものを利用することが可能となる。
Also, as the light receiving plate (5), it is the same as using tempered glass.
It becomes possible to use a photovoltaic device equipped with an antireflection film, which has conventionally required heat treatment at 200° C. or higher.

(ト」発明の効果 本発明光起電力装置は以上の説明から明らかな如く、光
入射面を形成する透光性受光板と透光性支持基板との間
に両者を接着せしめる透明接着層を配挿せしめることに
よって、該透明接着層は受光板の衝撃破壊による破片の
飛散を防止すべく作用するので、斯る破片の飛散による
危険性を回避することができると共rc%屈折率が王者
ともにほぼ等しいために、上記透明接着層を原因とした
光反射率の増加を実質的に無視することができ光電変換
効率の低下を招くことはない。
(G) Effects of the Invention As is clear from the above description, the photovoltaic device of the present invention has a transparent adhesive layer between the light-transmitting light-receiving plate forming the light incident surface and the light-transmitting support substrate to bond them together. By disposing the transparent adhesive layer, the transparent adhesive layer acts to prevent the scattering of fragments due to impact destruction of the light-receiving plate, thereby avoiding the danger of scattering of such fragments. Since both are substantially equal, the increase in light reflectance caused by the transparent adhesive layer can be substantially ignored and does not cause a decrease in photoelectric conversion efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明光起電力装置の分解斜視図、第2図は第
」図の要部拡大断面図、を夫々示している0 (2)・・・支持基板、(3)・・・光電変換膜、(5
)・・・受光板、(6)・・・透明接着層。
FIG. 1 is an exploded perspective view of the photovoltaic device of the present invention, and FIG. 2 is an enlarged cross-sectional view of the main parts of FIG. Photoelectric conversion film, (5
)...Light receiving plate, (6)...Transparent adhesive layer.

Claims (2)

【特許請求の範囲】[Claims] (1)光照射により光電変換動作する光電変換膜を、一
方の主面に於いて支持する透光性の支持基板の他方の主
面側を受光面側とし、その受光面側に光屈折率が上記支
持基板とほぼ等しい透明接着層を介して透光性受光板を
配置したことを特徴とした光起電力装置。
(1) A photoelectric conversion film that performs photoelectric conversion upon irradiation with light is supported on one main surface. A photovoltaic device characterized in that a light-transmitting light-receiving plate is disposed through a transparent adhesive layer having substantially the same thickness as the support substrate.
(2)上記透光性受光板は強化ガラスよりなることを特
徴とした特許請求の範囲第1項記載の光起電力装置。
(2) The photovoltaic device according to claim 1, wherein the light-transmitting light-receiving plate is made of tempered glass.
JP59172082A 1984-08-17 1984-08-17 Photovoltaic device Pending JPS6149482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59172082A JPS6149482A (en) 1984-08-17 1984-08-17 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59172082A JPS6149482A (en) 1984-08-17 1984-08-17 Photovoltaic device

Publications (1)

Publication Number Publication Date
JPS6149482A true JPS6149482A (en) 1986-03-11

Family

ID=15935200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59172082A Pending JPS6149482A (en) 1984-08-17 1984-08-17 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS6149482A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009442A1 (en) * 1993-09-30 1995-04-06 Canon Kabushiki Kaisha Solar cell module having surface coating material of three-layer structure
WO1996007956A1 (en) * 1994-09-08 1996-03-14 Citizen Watch Co., Ltd. Solar cell timepiece
WO1996012989A1 (en) * 1994-10-21 1996-05-02 Citizen Watch Co., Ltd. Dial for solar cell timepiece and production method thereof
WO1996031810A1 (en) * 1995-04-07 1996-10-10 Citizen Watch Co., Ltd. Dial of solar-cell timepiece
WO2006011522A1 (en) * 2004-07-28 2006-02-02 Sharp Kabushiki Kaisha Light emitting module and production method therefor
WO2006011525A1 (en) * 2004-07-28 2006-02-02 Sharp Kabushiki Kaisha Light-emitting module and light-emitting system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009442A1 (en) * 1993-09-30 1995-04-06 Canon Kabushiki Kaisha Solar cell module having surface coating material of three-layer structure
US5650019A (en) * 1993-09-30 1997-07-22 Canon Kabushiki Kaisha Solar cell module having a surface coating material of three-layered structure
WO1996007956A1 (en) * 1994-09-08 1996-03-14 Citizen Watch Co., Ltd. Solar cell timepiece
WO1996012989A1 (en) * 1994-10-21 1996-05-02 Citizen Watch Co., Ltd. Dial for solar cell timepiece and production method thereof
CN1065052C (en) * 1994-10-21 2001-04-25 西铁城钟表株式会社 Dial for solar cell timepiece and production method thereof
WO1996031810A1 (en) * 1995-04-07 1996-10-10 Citizen Watch Co., Ltd. Dial of solar-cell timepiece
US5912064A (en) * 1995-04-07 1999-06-15 Citizen Watch Co., Ltd. Dial plate for solar battery powered watch
WO2006011522A1 (en) * 2004-07-28 2006-02-02 Sharp Kabushiki Kaisha Light emitting module and production method therefor
WO2006011525A1 (en) * 2004-07-28 2006-02-02 Sharp Kabushiki Kaisha Light-emitting module and light-emitting system
US7641357B2 (en) 2004-07-28 2010-01-05 Sharp Kabushiki Kaisha Light-emitting module and light-emitting system

Similar Documents

Publication Publication Date Title
US5478402A (en) Solar cell modules and method of making same
US5476553A (en) Solar cell modules and method of making same
JP3866747B2 (en) Solar cell module
KR102018652B1 (en) Solar cell
JPH11312820A (en) Solar cell module and its manufacture
CN101771095B (en) Solar battery
JP5121365B2 (en) Solar cell module and manufacturing method thereof
JPS625671A (en) Manufacture of photovoltaic device
KR101621989B1 (en) Solar cell panel
TWI398007B (en) Lighting type solar module
JPH11298029A (en) Solar cell module and multilayer glass module
EP2141747B2 (en) Solar cell module
US20170018672A1 (en) High power solar cell module
KR101045860B1 (en) Solar cell panel
JP2006073707A (en) Solar cell module
KR20140109522A (en) Solar cell module
JP2002299666A (en) See-through-type thin-film solar cell module
US20170194525A1 (en) High power solar cell module
JP2002043594A (en) Optical transmission type thin film solar cell module
JPS6149482A (en) Photovoltaic device
JP2012109414A (en) Solar cell module
KR101405279B1 (en) solar cell module
JP3363367B2 (en) Cover glass structure for solar cell module
JP2001244486A (en) Solar battery module
JP2012089577A (en) Solar cell module