JPS6149467A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPS6149467A
JPS6149467A JP59172065A JP17206584A JPS6149467A JP S6149467 A JPS6149467 A JP S6149467A JP 59172065 A JP59172065 A JP 59172065A JP 17206584 A JP17206584 A JP 17206584A JP S6149467 A JPS6149467 A JP S6149467A
Authority
JP
Japan
Prior art keywords
insulating film
light
receiving section
refractive index
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59172065A
Other languages
Japanese (ja)
Inventor
Toshihiro Kuriyama
俊寛 栗山
Shigenori Matsumoto
松本 茂則
Yoshimitsu Hiroshima
広島 義光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP59172065A priority Critical patent/JPS6149467A/en
Publication of JPS6149467A publication Critical patent/JPS6149467A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors

Abstract

PURPOSE:To introduce beams projected onto a light-receiving section effectively to the light-receiving section by forming a second insulating film having a refractive index larger than a first insulating film onto the first insulating film as an inter-layer insulating film. CONSTITUTION:A gate electrode and a P-N junction are formed to a semiconductor substrate 21, and a first inter-layer insulating film 27 is shaped. A second inter-layer insulating film 28 having a refractive index larger than the film 27 is grown, and a third inter-layer insulating film 29 is grown on the insulating film 28. When the refractive index of the film 27 is 1.45 and that of the film 28 2.0 on such constitution, the whole beams at an incident angle of 45 deg. or less are reflected as light C as a first approximation and can be condensed to a light- receiving section. Accordingly, the lowering of sensitivity can be inhibited, and false signals of a smear, etc. can be reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は固体撮像装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a solid-state imaging device.

従来例の構成とその問題点 近年、固体撮像装置特に2次元イメージセンサにおいて
、多画素化あるいは小型化によって単位画素の縮小が行
なわれる傾向にある。その時にまず問題となるのは、受
光部面積の縮小による感埠低下および信号電荷量の低下
が上げられる。そして、それは装置の構造が持っている
特性に影響されている。
Conventional configurations and their problems In recent years, in solid-state imaging devices, particularly in two-dimensional image sensors, there has been a tendency to reduce the size of unit pixels due to increased number of pixels or miniaturization. At this time, the first problem that arises is a decrease in sensitivity and a decrease in the amount of signal charge due to the reduction in the area of the light receiving section. And it is influenced by the characteristics of the structure of the device.

以下図面を参照しながら、上述したような従来の固体撮
像装置について説明する。第1図はインターライン型C
CD撮像装置(以下IL−CCDと呼ぶ)の受光部の模
式的断面図を示すものである。第1図において、(1)
は半導体基板、(2)は各画素間の分離領域、(3)は
受光部となるPN接合、(4)はゲート電極の連結部、
(5)は層間絶縁膜、(6)は受光部の空乏層端を表わ
している。
The conventional solid-state imaging device as described above will be described below with reference to the drawings. Figure 1 shows interline type C
1 is a schematic cross-sectional view of a light receiving section of a CD imaging device (hereinafter referred to as IL-CCD). In Figure 1, (1)
is a semiconductor substrate, (2) is a separation region between each pixel, (3) is a PN junction that becomes a light receiving part, (4) is a connection part of a gate electrode,
(5) represents the interlayer insulating film, and (6) represents the end of the depletion layer of the light receiving section.

このように構成されたIL−CCDの受光部の光信号電
荷蓄積について、以下その動作を説明する。まず、Aの
光のように、空乏層端(6)内に入射したものは、信号
電荷として蓄積される。しかしBの光のように、ゲート
電極の連結部(4)附近に入射した光はその部分のレン
ズ効果により進路が曲げられ、光信号電荷として蓄積さ
れなし)だけでなく、他の画素へ混入すると、種信号の
原因となり、信号線に混入するとスミアの原因となる。
The operation of accumulating optical signal charges in the light receiving section of the IL-CCD configured as described above will be described below. First, light that enters the depletion layer edge (6), such as light A, is accumulated as a signal charge. However, like the light in B, the light incident near the gate electrode connection part (4) has its path bent by the lens effect of that part, and is not only not accumulated as an optical signal charge, but also gets mixed into other pixels. This will cause a seed signal, and if it gets mixed into the signal line, it will cause a smear.

この割合は層間絶縁膜(5)の厚さが同じであれば。This ratio is the same if the thickness of the interlayer insulating film (5) is the same.

受光部の面積が小さくなる程、増大する。そのため、単
位画素の縮小にっ九で、基板より上の構造の改善への要
望が高まってきた。
It increases as the area of the light receiving section becomes smaller. Therefore, as unit pixels have become smaller, there has been an increasing demand for improvements in the structure above the substrate.

発明の目的 本発明は上記欠点に鑑み、受光部上に照射される光を有
効に受光部に導くことのできる固体撮像装置を提供する
ものである。
OBJECTS OF THE INVENTION In view of the above drawbacks, the present invention provides a solid-state imaging device that can effectively guide light irradiated onto a light receiving section to the light receiving section.

発明の構成 この目的を達成するために本発明の固体撮像装置は、受
光部上にゲート電極形成後、第1の層間絶縁膜を形成し
、さらに第1の絶縁膜よりも屈折率の犬なる第2の絶縁
膜を形成し、さらにその上に第3の絶縁膜を形成して構
成されており、これにより大なる集光効果をもたらすも
のである。
Structure of the Invention To achieve this object, the solid-state imaging device of the present invention is provided by forming a first interlayer insulating film after forming a gate electrode on a light receiving part, and further forming an interlayer insulating film having a refractive index lower than that of the first insulating film. It is constructed by forming a second insulating film and further forming a third insulating film thereon, thereby providing a large light focusing effect.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する6第2図は本発明の一実施例におけるIL−CO
Dの受光部の模式的断面図を示すものである。第2図に
おいて、(21)は半導体基板、(22)は各画素間の
分離領域、(23)は受光部となるPN接合、(24)
はゲート電極の連結部、(26)は受光部の空乏層端、
(27)は第1の層間絶縁膜、(28)は第1の層間絶
縁膜(27)より屈折率の大なる第2の眉間絶縁膜、(
29)は第3の層間絶縁膜である。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.6 Figure 2 shows an example of the IL-CO in an embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view of the light receiving section of FIG. In Figure 2, (21) is a semiconductor substrate, (22) is a separation region between each pixel, (23) is a PN junction that becomes a light receiving part, (24) is
is the connecting part of the gate electrode, (26) is the end of the depletion layer of the light receiving part,
(27) is the first interlayer insulating film, (28) is the second glabella insulating film having a higher refractive index than the first interlayer insulating film (27), (
29) is a third interlayer insulating film.

次に本発明の一製造方法について第3図を参照しながら
説明する。まず、ゲート電極およびPN接合形成後、第
1の層間絶縁膜(27)として、熱酸化法あるいはCV
D法により、酸化膜を1ooo人程度成長させる(第3
図(a))。次に、竿2の眉間絶縁膜(28)としてプ
ラズマSi3N4を10000人成長させ、その上にレ
ジスト(30)を3μm程度塗布する(第3図(b))
。そして、表面をリアクティブイオンエツチング(RI
 E)により第3図(c)のような平坦な形状に形成夕
る。そしてその上に第3の層間絶縁膜(29)として酸
化膜あるいはプラズマSi、N4を成長させる。
Next, one manufacturing method of the present invention will be explained with reference to FIG. First, after forming the gate electrode and the PN junction, the first interlayer insulating film (27) is formed by thermal oxidation or CV
By method D, an oxide film is grown by about 100 people (3rd step).
Figure (a)). Next, 10,000 layers of plasma Si3N4 are grown as the glabellar insulating film (28) of the rod 2, and a resist (30) is applied to a thickness of about 3 μm on top of it (Fig. 3(b)).
. Then, the surface was subjected to reactive ion etching (RI).
By E), it is formed into a flat shape as shown in FIG. 3(c). Then, an oxide film or plasma Si or N4 is grown as a third interlayer insulating film (29) thereon.

上記のような構成にした場合、Si酸化膜の屈折率を1
.45、プラズマ Si3N4の屈折率を2.0とする
と、第1近似として、入射角度45°以下の光は、すべ
て第2図のCの光のように反射されて、受光部へ集光さ
せることができる。これにより、従来例で問題となった
感度の低下を抑制することができ、また、スミア等の擬
信号を減少させることができる。
When the above configuration is used, the refractive index of the Si oxide film is set to 1.
.. 45. Plasma If the refractive index of Si3N4 is 2.0, then as a first approximation, all light with an incident angle of 45° or less is reflected like light C in Figure 2 and focused on the light receiving part. Can be done. As a result, it is possible to suppress the decrease in sensitivity that was a problem in the conventional example, and it is also possible to reduce false signals such as smear.

また、平坦化を行なったことにより、受光部上に垂直に
入射した光については、受光部へ達する光学的距離を等
しくすることができ、分光感度の設計を容易にすること
ができる。さらに、この平坦化により、オンチップフィ
ルタ形成も容易になることは明らかである。
Further, by flattening, it is possible to equalize the optical distance of light incident vertically onto the light receiving section to reach the light receiving section, and it is possible to facilitate the design of spectral sensitivity. Furthermore, it is clear that this planarization also facilitates on-chip filter formation.

なお、本実施例では、受光部はPN接合としたが、その
他の構造のものにも当然適用できる。
In this embodiment, the light receiving section is a PN junction, but it can of course be applied to other structures.

発明の効果 以上のように本発明は、眉間絶縁膜として、第1の絶縁
膜上に第1の絶縁膜より屈折率の大なる第2の絶縁膜を
形成することにより、感度の低下を抑制することができ
、またスミアなどを防止する等、その実用的効果は大な
るものがある。
Effects of the Invention As described above, the present invention suppresses a decrease in sensitivity by forming a second insulating film, which has a higher refractive index than the first insulating film, on the first insulating film as an insulating film between the eyebrows. It also has great practical effects, such as preventing smearing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のIL−CCDの受光部の模式的断面図、
第2図は本発明の一実施例におけるIL−CCDの受光
部の模式的断面図、第3図は本発明の一製造方法の工程
図である。 (21)・・・半導体基板、 (22)・・・各画素間
の分離領域、(23)・・ PN接合、(24)・・・
ゲート電極の連結部、(26)・・・受光部の空乏層端
、(27) (28) (29)・・・第1、第2およ
び第3の層間#!!縁膜、(30)・・・レジスト代理
人   森  本  義  弘 第S図
FIG. 1 is a schematic cross-sectional view of the light receiving section of a conventional IL-CCD.
FIG. 2 is a schematic cross-sectional view of a light receiving section of an IL-CCD in an embodiment of the present invention, and FIG. 3 is a process diagram of a manufacturing method of the present invention. (21)... Semiconductor substrate, (22)... Separation region between each pixel, (23)... PN junction, (24)...
Connecting portion of gate electrode, (26) . . . end of depletion layer of light receiving portion, (27) (28) (29) . . . first, second and third interlayer #! ! Membrane membrane, (30)...Resist agent Yoshihiro Morimoto Figure S

Claims (1)

【特許請求の範囲】[Claims] 1、半導体基板上に、光電変換装置が直線的あるいは平
面的に配列され、少なくともゲートとなりうる電極およ
び第1の層間絶縁膜が形成され、その上に前記第1の絶
縁膜よりも屈折率の大なる第2の絶縁膜が第1の層間絶
縁膜上に形成され、さらに、その上に第3の絶縁膜が形
成されている固体撮像装置。
1. Photoelectric conversion devices are arranged linearly or planarly on a semiconductor substrate, and at least an electrode that can serve as a gate and a first interlayer insulating film are formed, and a layer having a refractive index lower than that of the first insulating film is formed thereon. A solid-state imaging device in which a large second insulating film is formed on a first interlayer insulating film, and a third insulating film is further formed thereon.
JP59172065A 1984-08-17 1984-08-17 Solid-state image pickup device Pending JPS6149467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59172065A JPS6149467A (en) 1984-08-17 1984-08-17 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59172065A JPS6149467A (en) 1984-08-17 1984-08-17 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPS6149467A true JPS6149467A (en) 1986-03-11

Family

ID=15934882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59172065A Pending JPS6149467A (en) 1984-08-17 1984-08-17 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPS6149467A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280376A (en) * 1989-04-20 1990-11-16 Matsushita Electron Corp Solid-state image sensing device
US5585653A (en) * 1993-07-30 1996-12-17 Nec Corporation Solid-state photoelectric imaging device with reduced smearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02280376A (en) * 1989-04-20 1990-11-16 Matsushita Electron Corp Solid-state image sensing device
US5585653A (en) * 1993-07-30 1996-12-17 Nec Corporation Solid-state photoelectric imaging device with reduced smearing

Similar Documents

Publication Publication Date Title
US5585653A (en) Solid-state photoelectric imaging device with reduced smearing
US6737626B1 (en) Image sensors with underlying and lateral insulator structures
US20210233947A1 (en) Light attenuation layer fabrication method and structure for image sensor
US20070045685A1 (en) Method and apparatus providing integrated color pixel with buried sub-wavelength gratings in solid state imagers
CN113053933A (en) Method and structure for improving image sensor crosstalk
US7612318B2 (en) Complementary metal oxide semiconductor image sensor having cross talk prevention and method for fabricating the same
KR20190055766A (en) Light blocking layer for image sensor device
JP6892905B2 (en) Solid-state image sensor
CN109216388A (en) Enhance the pixel cell structure and forming method of imaging sensor near-infrared performance
US5237185A (en) Image pickup apparatus with different gate thicknesses
WO2017131009A1 (en) Solid-state imaging device
JP2000164839A (en) Solid camera device
JP2007088057A (en) Solid-state imaging element and manufacturing method thereof
US20230369364A1 (en) Optical blocking structures for black level correction pixels in an image sensor
JP2866328B2 (en) Solid-state imaging device
CN105762160B (en) Back-illuminated global pixel unit structure and preparation method thereof
CN111146221A (en) Wide-spectrum image sensor structure and forming method
JPS6149467A (en) Solid-state image pickup device
JP2005166919A (en) Solid-state imaging device and its manufacturing method
JP2825966B2 (en) Solid-state imaging device with micro lens
JPH05218371A (en) Solid-state image sensor
CN110061020A (en) Imaging sensor and forming method thereof, working method
JPS62134966A (en) Interline type ccd image pickup element
JP3481654B2 (en) Solid-state imaging device
JPH0590551A (en) Solid-state image pick-up device