JPS6149432B2 - - Google Patents

Info

Publication number
JPS6149432B2
JPS6149432B2 JP58001427A JP142783A JPS6149432B2 JP S6149432 B2 JPS6149432 B2 JP S6149432B2 JP 58001427 A JP58001427 A JP 58001427A JP 142783 A JP142783 A JP 142783A JP S6149432 B2 JPS6149432 B2 JP S6149432B2
Authority
JP
Japan
Prior art keywords
parts
pigment
water
fibers
dyeing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58001427A
Other languages
Japanese (ja)
Other versions
JPS58203182A (en
Inventor
Goro Keino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsui Shikiso Chemical Co Ltd
Original Assignee
Matsui Shikiso Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsui Shikiso Chemical Co Ltd filed Critical Matsui Shikiso Chemical Co Ltd
Priority to JP58001427A priority Critical patent/JPS58203182A/en
Publication of JPS58203182A publication Critical patent/JPS58203182A/en
Publication of JPS6149432B2 publication Critical patent/JPS6149432B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coloring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、粒子径0.05μ以下の水不溶性アゾ顔
料微粒子の水分散物を用いた染色及び捺染方法に
関するもので、その主なる目的は、ポリエステル
系合成繊維と他の繊維との混合物を、同一色素に
て、すぐれた堅牢度を有して、鮮明で且つ均一に
染色或いは捺染することにある。 従来、ポリエステル系合成繊維と天然繊維また
は他の合成繊維との混紡、交織、交編物など、例
えば、ポリエステル繊維と木綿またはビスコース
レーヨンとの混合物の場合、ポリエステル繊維側
の染色のために分散染料が用いられ、木綿などの
繊維側には直接染料、反応性染料、建築染料また
はナフトール染料が用いられていた。またポリエ
ステル繊維と羊毛またはナイロン系合成繊維との
混合物の場合には、分散染料及び酸性染料または
含金属錯塩染料が用いられていた。 而して、繊維及び染料の性質に対応せる染色方
法または捺染方法が用いられていたのである。 これらの数種類の異染料を用いて異種繊維から
なる混紡、交織物などを染色または捺染するに
は、実用上多くの問題点がある。例えば、染料の
固着方法が複雑となり、分解、染着不十分などの
ため再現性に劣り管理が難かしいこと、異種染料
の色調の均一性が得られ難く、且つ不鮮明である
こと、各混用率に応じて異染料の配合比を変動さ
せる煩雑さがあること、特に捺染では混用率に無
関係に過剰の染料(合計で約2倍)を必要とする
こと、他繊維側へ汚染して白場汚染、耐光性劣化
などの不都合な問題を発生させる等の欠点があつ
た。 一方、顔料樹脂染色法によれば、同一色素にて
一回の着色操作で、同時に同色に着色することが
できるが、使用する顔料の分散粒子径は、0.5乃
至5μが限界で、粗大である。従つて色相も不鮮
明で、且つ到底繊維微細組織内部には侵入し得な
いため、合成樹脂、就中、比較的柔軟な皮膜を形
成するもの、例えば、ポリアクリル酸エステルの
エマルジヨンを当該顔料の接着剤として使用す
る。しかし、この場合は、少なからず繊維の風合
を害し、製品価値を著るしく低下させ特に濃色調
の場合にその欠点が顕著であるという結果となつ
ていた。 また、通常の水不溶性有機色素(アゾ系及びア
ンスラキノン系を含めて)を以て、水及び水溶性
有機溶剤と共に高温下で繊維素繊維を処理して染
色する方法も公知であるが、染色工程中の水分管
理の困難さ、極めて特定の低分子量の有機色素の
みから選択しなければならないこと、概ね色素に
対して十数倍という異常に多量の水溶性有機溶剤
が必要で、そのため鮮鋭度の低下、白場汚染、低
染着収率、水洗工程に於ける不経済と公害発生を
招来する等の諸欠点が有り、工業的には実施困難
とされる。 本発明者は、斯かる問題点を解決すべく種々検
討の結果、水不溶性アゾ有機顔料において粒子径
が0.01μ以下の超微細のものは、木綿、レーヨ
ン、アセテートなどの繊維素繊維及び同系繊維に
対して著るしき直接性を生じ、容易に繊維微細組
織内に侵入し、且つ好収率で染着すること、しか
も、該有機顔料が高融点のため熱昇華し難く、分
散染料的挙動を呈しなかつたものすら、顕著に合
成繊維、特にポリエステル系繊維並びにナイロン
系繊維に親和し、高温時容易に溶解染着すること
を見出したのである。 ところで従来、顔料粒子水分散物の製造方法と
しては、ジアゾ化合物とカツプリング成分とを混
合しカツプリングさせて顔料を沈澱させ、これを
別してのち、分散剤と共にミルを用いて水中に
分散させることを行われていた。しかるに、この
方法では過、水洗、脱水などの工程と共に長期
間の分散工程を要しても、顔料粒子径は0.05μ以
下にはならず、二次凝集せる水不溶性有機顔料が
水中に分散剤乃至水溶性有機溶剤にて安定に且つ
高濃度に細分化することは、殆んど不可能とされ
ている。 この改良方法として、例えば、大過剰の非イオ
ン性分散剤の存在下(特に高E.O.付加物)にて
ジアゾ化物とカツプリング剤をカツプリングさせ
る方法が知られているが、この方法は通常の機械
的手段による粉砕法に比して、かなり均質に微細
粒子を得ることができるものの、分散剤のみでは
懸濁状のカツプリング状態でしかなく、0.5〜0.1
μ程度が限界であり、根本的には単分子状に近似
する微細な顔料粒子は得られない。 本発明者は、0.05μ以下の粒子径で高濃度且つ
均等な水不溶性有機顔料の水分散物を得るため、
種々研究の結果本発明方法を完成したのである。 次に本発明の構成について説明する。 本発明は、ポリエチレングリコール型非イオン
界面活性剤、尿素及び水溶性有機溶剤の混合水溶
液中にて、芳香族アミン類のジアゾ化合物と、フ
エノール類、アミン類、活性メチレン化合物の如
きカツプリング成分とを、カツプリングさせて得
られた粒子径0.05μ以下の水不溶性顔料の微粒子
水分散物を用いて、天然繊維、再生繊維、半合成
繊維及び合成繊維またはこれらの混合物を、染色
または捺染することを特徴とする染色及び捺染方
法である。 本発明に用いられるポリエチレングリコール型
非イオン界面活性剤としては、高級アルコールエ
チレンオキサイド付加物、アルキルフエノールエ
チレンオキサイド付加物、脂肪酸エチレンオキサ
イド付加物、脂肪酸アマイドエチレンオキサイド
付加物、高級アルキルアミンエチレンオキサイド
付加物、多価アルコールエチレンオキサイド付加
物、油脂エチレンオキサイド付加物、ポリプロピ
レングリコールエチレンオキサイド付加物等が挙
げられ、粒子径0.05μ以下の顔料一次微粒子乃至
単分子の水中での安定な分散保持のためには不可
欠の成分であり、且つカツプリング直後の生成顔
料単分子同士の多大なる凝集力を遮断する作用を
なす。而して、その使用量は、目的とする顔料の
構造に応じて、生成顔料1重量部に対して、適宜
0.2乃至4重量部、就中、1乃至2重量部にする
ことが望ましい。即ち、経済的に高濃度の顔料微
粒子水分散物を得るためには、概ね、顔料濃度が
8乃至20%が望ましいが、その顔料濃度に応じて
増減させ、該微細粒子の水和物に起因する著るし
き粘度上昇(表面積の顕著なる増大によるも
の。)との関係で考慮される。また後述する尿素
及び水溶性有機溶媒との配合比が重要であり、そ
れらの増加は一般に非イオン界面活性剤の配合量
を減少させ得る。更に顔料構造上、親水性基、特
にアシルアマイド基、アルコキシ基、を含むもの
は、非イオン界面活性剤を減少させることが望ま
しく、逆にニトロ基、ハロゲン基を含むものは、
之を増加させる必要がある。 それにしても、ポリエチレングリコール型非イ
オン界面活性剤の使用量が0.2重量部以下の場合
には、分散状態が不安定となり二次凝集を起し、
最早いかなる手段にても、一次粒子乃至単分子に
することは至難である。また4重量部以上では、
該界面活性剤自体の水和による粘度上昇を起し、
撹拌操作を困難とし、且つ、繊維内部での凝集力
を妨害し、染着率を低下させる傾向を示す。 尚、該界面活性剤は、低起泡性のものが好まし
く、エチレンオキサイド付加モル数は、15乃至
100モルの範囲が選択される。 次に、尿素は、0.05μ以下の顔料一次粒子乃至
単分子の水中における広大な表面積に起因する高
粘度水和状態を緩和し、粘度低下を促進させると
共に、適度のヒドロトロピイ作用を付与させるた
めに必要であるが、最も重要な作用は、ポリエチ
レングリコール系非イオン界面活性剤がフエノー
ル類の強アルカリ水溶液中で不安定な懸濁状態で
存在し、凝集物のままでカツプリングすることを
防止すること、即ち、懸濁を解消し均一な溶液状
態を得る点にある。この作用は、恐らく、緩衝的
に強酸、強アルカリを中和するとともに該界面活
性剤及びカツプリング成分を水中に真溶液として
安定に保持させることによるものと考えられる。
なお、尿素は、繊維の染色時に水分保持を高め、
発色を鮮明とする効果をも有する。 尿素の使用量は、生成顔料1重量部に対して
0.2乃至4重量部が好適であるが、一般的にその
範囲で多く使用される程効果的である。 本発明において、ポリエチレングリコール型非
イオン界面活性剤及び尿素とともに使用される水
溶性有機溶剤としては、エチルアルコール、イソ
プロピルアルコールの如きアルコール類、エチレ
ングリコール、ジエチレングリコール、ポリエチ
レングリコールの如きグリコール類、グリセリ
ン、ペンタエリスリトールの如き多価アルコー
ル、メチルセロソルブ、アミノアルコール、チオ
ジエチレングリコール、ジメチルホルムアミド、
ヂメチルスルフオキサイド、N−メチルピロリド
ン等が挙げられ、これらは、ジアゾ化物を安定化
させること、カツプリング剤を溶解させること、
カツプリングして得られた顔料を直後に微粒子化
乃至溶解させ且つ該顔料粒子を安定に分散させる
こと、該顔料が繊維に染着する場合の均染剤或い
は促染剤として作用すること等の効果を有する。 而して、該水溶性有機溶剤は、生成顔料1重量
部に対して0.2乃至4重量部を用いるのが適当
で、一般に顔料構造上からして特に、アセトアセ
チル基を有するものには多く配合して好結果を生
ずるが、概ね、生成顔料に対して0.5乃至1重量
部の範囲が最も適当である。 以上のポリエチレングリコール型非イオン界面
活性剤、尿素及び水溶性有機溶剤は、本発明に用
いる粒子径0.05μ以下の顔料微粒子水分散物の製
造に不可欠のものであるが、これらによつて斯か
る超微細なる顔料粒子乃至単分子が得られる理由
は必らずしも明らかでないが、恐らく、全く相違
する安定系のジアゾ成分及びカツプリング成分の
相互が、カツプリング反応系中で極めて急速に結
合して生長・凝集することを抑制し、多層に亘る
カプセル膜類似の被覆作用を呈して単分子各々を
分離するためと考えられる。特に非イオン界面活
性剤単独系では、カツプリング直後の極微細系中
で著るしく発熱し、必然的に分散能力が破壊し、
従つて顔料単分子が凝集することを、特に尿素及
び水溶性有機溶剤が未然に防止していると解釈さ
れる。 要するに本発明における顔料微粒子水分散物
は、上記の3成分の協奏作用に因つてのみ得られ
るものである。 次に、ここで用いられる芳香族アミン類として
は、スルフオン酸基及びカルボキシル基の如き水
溶性基を含有しないものが好ましく、例えば、ハ
ロゲン置換アニリン類、ニトロ置換トルイジン
類、カルバミド置換アニシジン類、置換ベンチヂ
ン類等が挙げられ、具体的には、パラニトロオル
ソトルイジン、2・5ジクロルアニリン、ジアニ
シジン、ジクロルベンチヂン、アミノアンスラキ
ノン、ナフチルアミン、メタカルバミドオルソア
ニシジン等の如き通常の水不溶性アゾ色素中間物
が使用され、色相、堅牢度、染着率、鮮明度、等
を考慮して選択される。芳香族アミンのジアゾ化
反応は、常法により行われるが、ポリエチレング
リコール型非イオン界面活性剤及び水溶性有機溶
剤の存在下に行つても良く、特に、難水溶性ジア
ゾ化合物の場合は溶解状態で得られるため望まし
い。しかし尿素の配合は、ジアゾ化後にすること
が必要である。また、芳香族アミンのジアゾ化物
として、ジアゾ化物と塩化亜鉛、弗化硼素等との
複塩形式の安定化ジアゾ化物を用いても良く、例
えば、アミノジフエニルアミン類のジアゾ化物、
ブラツクKソルトなどが使用される。 また、ジアゾ化合物にカツプリングする成分と
しては、フエノール、ナフトール、及びそれらの
誘導体、アミン類、アミン誘導体、フエニルピラ
ソロン類、イミダゾール類、トリアゾール類など
のうちから選択し、例えば、サリチル酸アニライ
ド、β−ナフトール、β−ヒドロキシナフトイツ
クアシドアニライド、β−ヒドロキシナフトイツ
クアシドアマイド、メタアセチルアミノアニリ
ン、レゾルシンエチレングリコールエーテル、4
メトキシ1ナフトール、アセトアセトアニライ
ド、フエニルメチルピラゾロン、ベンズイミダゾ
ール、4ヒドロキシベンズトリアゾールなどが挙
げられる。 これらのカツプリング成分と前記のジアゾ成分
との組合せにより、黄〜橙〜赤〜紫〜紺〜黒〜緑
に及ぶ色相を殆んどを占める水分散物が得られ
る。 本発明におけるカツプリング反応は、ジアゾ化
物とカツプリング成分とのカツプリング化と同時
またはその直後に、微粒子化及び得られた微細粒
子乃至単分子状色素の分散化が行われるため、急
激な発熱及び粘度上昇をともない、該顔料濃度の
高い場合には屡々局部的発熱を起し、目的の粒子
径が得られないことがある。従つて本発明のカツ
プリング反応を円滑に行わしめるためには、反応
時の温度、PH、各成分濃度、混合方法及び撹拌方
式等の反応条件に特に留意する必要がある。 この場合において、特に顔料含有濃度に関して
は、8乃至20%が好ましい。何故ならば8%以下
では経済性に劣り、且つまた顔料粒子同士の自由
運動を促すため凝集しやすく、多量の界面活性剤
等を必要とする、一方、20%以上では想像以上の
高粘度化を来たし、撹拌不能に陥り、全系の凝固
に至りやすく不適当である。 斯くして得られた粒子径0.05μ以下のアゾ顔料
微粒子の水分散物を用いて、染色液または捺染糊
を作成する。 尚、染色液または捺染糊には、必要に応じてPH
調節剤、均染剤、促進剤、増粘剤、金属イオン封
鎖剤などを添加併用することもでき、また合成ゴ
ムラテツクス、ポリアクリル酸エステルエマルジ
ヨン、メチロール化メラミン、メチロール化尿
素、ホルマリンなどを添加併用することができ
る。 本発明における顔料微粒子水分散液は低温度−
15乃至−20℃長時間の保存に耐えるが、高温時、
60乃至80℃以上では微細粒子が会合しやすく、従
つて二次凝集を起し染着性を害する虞れがあり注
意を要する。また、カツプリング後約25時間で極
めて安定な状態となるから、カツプリング直後か
ら約24時間を経過するまでは、原則的に水にて該
分散液を希釈してはならない。 次に、本発明においては、該分散液を用いて染
色液又は捺染糊を調合し、公知の浸染法または捺
染法により繊維に処理される。その後、必要なら
ば、水洗、ソーピングが行われる。 本発明において対象とする繊維は、木綿、麻、
絹、羊毛等の天然繊維、レーヨン、キユプラ、ポ
リノジツク、アセテート等の再生または半合成繊
維、ポリエステル、ナイロン、ポリアクリル、ポ
リビニル等の合成繊維を挙げることができ、これ
らの繊維により構成される糸、織物、編物、また
は混紡糸、混紡布、交織布等が加工の対象とな
り、就中、木綿及びポリエステル系繊維及びこれ
らの混用布帛に対しては極めて有効であり、混紡
または交織物、殊に化学的・物理的性質を異にす
る繊維混合物を、同一色素にて一回の着色操作に
より同時に同色に均一・鮮明に着色できる点に本
発明の特段の効果がある。而して、之は、一次粒
子乃至単分子状態に近似する粒子径の有機顔料微
粒子が強大な凝集力から開放されて容易に効率良
く繊維微細組織内に侵入し吸着又は溶解して拡散
すると共に、再び内部で二次凝集するからである
と考えられる。 次に本発明の効果を列挙する。 (1) 本発明によれば、天然繊維、再生繊維、半合
成繊維及び合成繊維に対して、公知の各種の染
色法または捺染法にてそれぞれ染色または捺染
することができる。 (2) 本発明によれば、混紡糸、混紡布、交織布の
如き繊維混合物を、同一色素にて一回の着色操
作により同時に同色に均一・鮮明に染色または
捺染することができる。 (3) 本発明によれば、アゾ系染顔料の常法での製
造時において必要な過、分散、排水処理等の
工程が不必要となり、また製造時間が著るしく
短縮され、生産効率が高い。 (4) 本発明の顔料粒子水分散液は、顔料樹脂染色
法、顔料樹脂捺染法に適用することができ、従
来の顔料を用いた場合と比較して、併用接着剤
の使用量を大幅に減少させることができる。ま
た鮮明度及び着色力を向上させ、更に加工物の
風合が著るしく良好となる。 (5) 本発明の顔料微粒子水分散液は、従来の顔料
の如き保存中の沈降、凝固を起すことなく極め
て安定であり、且つ、水溶性有機溶剤及び尿素
が、顔料微粒子を繊維に染着させる場合の均染
及び促染効果を発揮する。 実施例 1 4−ベンヂルスルフオニルオルソアニシジン
160重量部(以下、重量部を部と略す)、塩酸155
部、リポノツクスLCR(商品名)180部及びエチ
レングリコール70部にて十分に練り、更に水400
部にて希釈し、撹拌下、液温10℃以下にて40%亜
硝酸ソーダ水溶液120部を30分を要して添加し、
更に40分間でジアゾ化を終了し、尿素50部を加え
て0℃に保存する。別に、ベータヒドロキシナフ
トエ酸パラアニシジド180部、苛性ソーダ20%水
溶液144部、尿素80部、リポノツクスLCR210
部、エチレングリコール100部及び水150部を均一
透明に溶解しておき、同様に0℃に保ちつつ、先
のジアゾ化粘稠液を加え、カツプリングを行な
い、赤色の顔料微粒子(粒子径0.008〜0.05μ)
水分散物を得た(粘度8000c.p.s)。 得られた赤色の顔料微粒子水分散物10部、デモ
ールN(商品名、アニオン分散剤)2部、アルギ
ン酸ソーダ1部及び水87部を混合して、木綿ブロ
ード布をパデイングし、マングルにて搾液し、乾
燥後、180℃、2分間熱処理を行ない、ソーピン
グ、水洗、乾燥して、鮮明な朱色に無地染せる木
綿ブロード布の染色物を得た。この染色物の洗濯
堅牢度は5級、摩擦堅牢度は5級、耐光堅牢度も
5〜6級であつた。 一方比較のために、前記実施例1中の尿素を除
きたるものにて同様のカツプリングを行つたとこ
ろ、カツプリング成分が二層分離せる油状の状態
にあり、全くカツプリング適性を欠いているた
め、全量の約2倍の水にて希釈せるものを用いて
カツプリングを行つたが、得られた粒子径は3〜
0.5μの粗大なものであり、これを同様に木綿ブ
ロード布に染色処理するに、パステル調の着色物
となり、且つソーピングにて殆んど脱色し、全く
染着しなかつた。 更に比較のために、前記実施例1中の尿素及び
エチレングリコールを除きたるものにて常法のカ
ツプリングを実施するに、カツプリング成分の
2.5倍の水を加えねばならず、且つ極めて高粘度
のため撹拌が困難であつた(粘度200000以上で測
定不能)。而して得たる顔料の粒子径は約0.5〜
1.0μであり、前記同様に染色処理せるに、殆ん
ど不染着であつた。更に、染色液中に、エチレン
グリコール及び尿素を計算量配合して、同様の熱
処理を行つたが全く効果が無く、処理温度を230
℃としたときかなり着色が向上したが、木綿ブロ
ードが著るしく褐変し、且つ、強度が低下した。 実施例 2 ダイアニシジン70部、塩酸155部、グリセリン
100部、ノイゲンET−170(商品名)40部及び水
360部を混合し、−5℃にて40%亜硝酸ソーダ水溶
液200部を除々に添加してジアゾ化を行ない、
後、尿素40部及びスルフアミン酸少量を加え、ジ
アゾ化褐色透明溶液を得た。別に、アセトアセト
オルソトルトダイド132部、苛性ソーダ水溶液145
部、グリセリン50部、ノイゲンET−170を50部、
尿素82部及び水600部を混合して無色透明液とし
て、−2℃において、上記のジアゾ化液を混合し
てカツプリングさせ、橙色の顔料微粒子(粒子径
0.01μ以下)水分散物を得た(粘度2000c.p.s.)。 得られた橙色の水分散物2部を水98部中に溶解
させて染色液を得、この染色液を用いてアセテー
トシヤンタン布を50〜80℃にて40分間浸染し、次
いでソーピング、水洗、乾燥を施し、鮮明な橙黄
色に無地染したアセテートシヤンタン布の染色物
を得た。 また、得られた橙色の水分散物5部、ヨドゾー
ルMR−96(商品名、ポリアクリル酸エステルエ
マルジヨン、樹脂分38%)5部、ミネラルスピリ
ツト40部、水40部及び乳化剤5部を混合、撹拌し
て、水中油滴型乳化物の顔料樹脂捺染糊を得、こ
れを用いて、ポリエステル、木綿混紡ブロード布
をスクリーン捺染し、200℃で2分間熱処理して
鮮明な深い橙色の模様を表わす捺染物を得た。 アセテート布及びポリエステル・木綿混紡布
に、洗濯堅牢度4〜5級、ドライクリーニング堅
牢度5級、耐光堅牢度4級であり、且つ捺染物の
風合いは良好であつた。 尚、比較のために、ポリエステル・木綿ブロー
ド布に対して、従来のカツプリング法により製造
せる分散顔料の同構造のものたるマツミンネオカ
ラーオレンヂMGD(商品名、粒子径2〜0.8μ)
を用いたところ、実施例2に使用した樹脂の4倍
を要し、洗濯堅牢度は3〜4級、しかも風合は著
るしく劣り、且つパステル調で明るいが繊維自体
の光択が消失してた。しかし、耐光性は実施例と
同一であつた。 実施例 3 オルソニトロパラクロルアニリン90部、塩酸
155部、酢酸10部、ポリエチレングリコール#200
(商品名)20部、エマルゲン985(商品名)60部及
び水350部を混合し、0〜5℃にて40%亜硝酸ソ
ーダ水溶液95部にてジアゾ化を行ない、淡褐色透
明液となし、別に、アセトアセトアニリド100
部、苛性ソーダ20%水溶液120部、ポリエチレン
グリコール30部、ジメチルホルムアミド100部、
尿素60部及び水790部を混合、無色透明に溶解せ
るカップリング液を0℃に保ち、前記のジアゾ化
液を撹拌下混合してカツプリングさせ、更に第一
燐酸ソーダ及び重炭酸ソーダを介10部添加して中
和し、黄褐色の顔料微粒子(粒子径0.01μ以下)
水分散物を得た(粘度2000c.p.s)。 得られた黄褐色の水分散物5部及びエーテル化
ローカストビーンガム7%水溶液95部を混合して
捺染糊を得、ポリエステルニツト布にスクリーン
捺染にて摸様を印捺し、130℃にて30分間高圧蒸
熱処理を行ない、ソーピング、水洗、乾燥して、
鮮帯緑黄色の模様着色ポリエステルニツト布を得
た。 該捺染物の耐光性は5〜6級、耐洗濯堅牢度は
5級、摩擦堅牢度5級であつた。尚、前記実施例
中の尿素及びポリエチレングリコールを除いたカ
ツプリング処理物は粒子径2〜1μであり、同一
染色処理にて、かなり染色するが、反射率測定の
結果38%しか染着せず、染色時間を2倍とせるも
のが42%になる程度であつた。しかし、染色物の
諸堅牢度は、殆んど実施例と同一で良好である。 実施例 4 アルフアアミノアンスラキノンのジアゾ化物を
塩化亜鉛で複塩としたフアストレツドソルトAL
(商品名)336部、氷酢酸36部、リポノツクス
NCT(商品名)240部、尿素50部、水670部を注
意深く加温して均一透明褐色液となし、別にベー
タナフチルアミン54部を氷酢酸108部、リポノツ
クスNOT60部、ポリエチレングリコール400(商
品名)60部、リポノツクスLCR(商品名)40
部、及び水346部を混合して透明褐色液を作り、
よく撹拌し乍ら0〜−2℃で上記ジアゾ化液を添
加してカツプリングさせ、黄橙色の顔料微粒子
(粒子径0.05μ以下)水分散物を得た(粘度
10500c.p.s)。得られた黄橙色の水分散物5部及
びエーテル化ローカストビーンガム7%水溶液94
部、メタニトロベンゼンスルフオン酸ソーダ1部
を混合して捺染糊を得、これを用いて、ポリエス
テル・木綿混紡(65:35の混用率)ブロード布に
スクリーン捺染法にて模様を印捺し、180℃にて
10分間高温蒸熱を施こし、ソーピング、水洗、乾
燥して、鮮黄橙色の模様着色せるポリエステル・
木綿混紡ブロード布の捺染物を得た。 この捺染物の洗濯堅牢度は5級、摩擦堅牢度は
5級、耐光堅牢度5級であり、且つポリエステル
側及び木綿側が均一に同色相で染着されていた。 尚、前記実施例中の尿素及び水溶性有機溶剤を
除くものから得たる顔料粒子は極めて粗く、三本
ロールミルにて微粉砕してもなお2μ程度以下に
ならず、且つ同様の染色処理をすれど木綿サイド
は全く染着せず白色のまま残り霜降り調の捺染物
であつた。 実施例 5 4アミノ1ベンゾイルアミノ3・6ジエトキシ
ベンゼン140部、塩酸110部及び水400部を混合
し、15℃にて40%亜硝酸ソーダ水溶液110℃を添
加して帯緑黄褐色透明なジアゾ化液を得、それを
−5℃に冷却して保ち、別に、ベータヒドロキシ
ナフトエ酸オルソトルイジド120部、苛性ソーダ
水溶液160部、エマルジツト#49(商品名)50%
水溶液200部、尿素60部、トリエチレングリコー
ル60部及び水400部を混合溶解して得たカツプリ
ング液を−5℃に保ち、前記ジアゾ化物の粘調液
を添加してカツプリングさせ、青色の顔料微粒子
(粒子径0.02〜0.01μ)水分散液を得た。得られ
た水分散物10部、尿素2部、エチレングリコール
2部及び水86部にてパデイング液を作り、ナイロ
ンタフタ布を常温にて浸漬し、乾燥後、180℃で
12分間高温蒸熱し、ソーピング、乾燥をなし、鮮
明帯赤青色無地染めせるナイロンタフタ布を得
た。 染色物の耐洗濯堅牢度は4級、耐光堅牢度は5
級であつた。一方、本実施例において水溶性有機
溶剤及び尿素をそれぞれ除いたもの及び両者を除
いたものについて実験し、その性能を表1に表示
する。
The present invention relates to a dyeing and printing method using an aqueous dispersion of water-insoluble azo pigment particles with a particle size of 0.05μ or less, and its main purpose is to dye a mixture of polyester synthetic fibers and other fibers in the same The objective is to dye or print vividly and uniformly with dyes that have excellent fastness. Conventionally, in the case of blended, interwoven, or interwoven fabrics of polyester synthetic fibers and natural fibers or other synthetic fibers, for example, in the case of mixtures of polyester fibers and cotton or viscose rayon, disperse dyes have been used to dye the polyester fiber side. were used, and direct dyes, reactive dyes, architectural dyes, or naphthol dyes were used on the fiber side, such as cotton. Further, in the case of a mixture of polyester fiber and wool or nylon synthetic fiber, disperse dyes, acid dyes, or metal-containing complex salt dyes have been used. Therefore, dyeing or printing methods were used that matched the properties of the fibers and dyes. There are many practical problems when dyeing or printing blended fabrics, mixed fabrics, etc. made of different types of fibers using these several types of different dyes. For example, the dye fixation method is complicated, and reproducibility is poor due to decomposition and insufficient dyeing, making management difficult; the color tone of different dyes is difficult to obtain uniformity and is unclear; and the mixing ratio of each dye. There is the complexity of changing the blending ratio of different dyes depending on the mixing ratio, especially in textile printing, which requires an excessive amount of dye (approximately twice the amount in total) regardless of the blending ratio, and the fact that it contaminates other fibers and causes white spots. It had drawbacks such as causing inconvenient problems such as contamination and deterioration of light resistance. On the other hand, according to the pigment resin dyeing method, it is possible to simultaneously dye the same color in one coloring operation using the same dye, but the dispersed particle size of the pigment used is limited to 0.5 to 5μ, which is coarse. . Therefore, the hue is unclear and it is impossible to penetrate into the inside of the fiber microstructure, so synthetic resins, especially those that form a relatively flexible film, such as emulsion of polyacrylic ester, are used to adhere the pigment. used as an agent. However, in this case, the texture of the fibers is not a little affected and the value of the product is significantly lowered, and this drawback is particularly noticeable in the case of dark colors. Additionally, a method is known in which cellulose fibers are treated and dyed with ordinary water-insoluble organic dyes (including azo and anthraquinone dyes) together with water and water-soluble organic solvents at high temperatures; Difficulties in moisture management, the need to select only from very specific low molecular weight organic dyes, and the need for an abnormally large amount of water-soluble organic solvent, roughly ten times as large as the dye, resulting in a decrease in sharpness. It is difficult to implement industrially because it has various disadvantages such as white field contamination, low dyeing yield, uneconomical washing process and pollution generation. As a result of various studies to solve such problems, the present inventor found that ultrafine water-insoluble azo organic pigments with a particle size of 0.01μ or less are suitable for cellulose fibers such as cotton, rayon, acetate, and similar fibers. The organic pigment has a remarkable directness, easily penetrates into the fiber microstructure, and can be dyed with a good yield.Moreover, because the organic pigment has a high melting point, it is difficult to thermally sublimate, and it behaves like a disperse dye. They have found that even those that do not exhibit this property have a remarkable affinity for synthetic fibers, especially polyester fibers and nylon fibers, and are easily dissolved and dyed at high temperatures. Conventionally, a method for producing an aqueous dispersion of pigment particles has been to mix a diazo compound and a coupling component, couple them to precipitate the pigment, separate it, and then disperse it in water together with a dispersant using a mill. I was worried. However, even though this method requires a long dispersion process as well as processes such as filtration, washing, and dehydration, the pigment particle size does not become less than 0.05 μm, and the water-insoluble organic pigments that undergo secondary aggregation are absorbed by the dispersant in the water. It is said that it is almost impossible to stably and finely subdivide it in a high concentration using a water-soluble organic solvent. As a method for improving this, for example, a method is known in which a diazotide and a coupling agent are coupled in the presence of a large excess of a nonionic dispersant (especially a high EO adduct). Although it is possible to obtain fine particles in a much more homogeneous manner compared to the pulverization method using other methods, using a dispersant alone results in only a suspended coupling state, and the 0.5 to 0.1
The limit is approximately μ, and fundamentally it is impossible to obtain fine pigment particles that approximate a monomolecular shape. In order to obtain a highly concentrated and uniform aqueous dispersion of a water-insoluble organic pigment with a particle size of 0.05μ or less,
As a result of various studies, the method of the present invention was completed. Next, the configuration of the present invention will be explained. The present invention combines a diazo compound of aromatic amines and a coupling component such as a phenol, an amine, or an active methylene compound in a mixed aqueous solution of a polyethylene glycol type nonionic surfactant, urea, and a water-soluble organic solvent. , natural fibers, regenerated fibers, semi-synthetic fibers, synthetic fibers, or mixtures thereof are dyed or printed using a fine particle aqueous dispersion of a water-insoluble pigment with a particle size of 0.05μ or less obtained by coupling. This is a dyeing and printing method. The polyethylene glycol type nonionic surfactants used in the present invention include higher alcohol ethylene oxide adducts, alkylphenol ethylene oxide adducts, fatty acid ethylene oxide adducts, fatty acid amide ethylene oxide adducts, and higher alkylamine ethylene oxide adducts. , polyhydric alcohol ethylene oxide adducts, fat and oil ethylene oxide adducts, polypropylene glycol ethylene oxide adducts, etc. For stable dispersion and maintenance of pigment primary fine particles or single molecules with a particle size of 0.05μ or less in water, It is an essential component and acts to block the large cohesive force between pigment monomolecules produced immediately after coupling. Therefore, the amount used is determined as appropriate depending on the structure of the target pigment, based on 1 part by weight of the produced pigment.
The amount is preferably 0.2 to 4 parts by weight, particularly 1 to 2 parts by weight. That is, in order to economically obtain a pigment fine particle aqueous dispersion with a high concentration, it is generally desirable that the pigment concentration be 8 to 20%, but it may be increased or decreased depending on the pigment concentration, and This is considered in relation to the significant increase in viscosity (due to the significant increase in surface area). Furthermore, the blending ratio of urea and water-soluble organic solvent, which will be described later, is important, and increasing these ratios can generally reduce the blending amount of the nonionic surfactant. Furthermore, due to the structure of the pigment, it is desirable to reduce the amount of nonionic surfactants in pigments that contain hydrophilic groups, especially acylamide groups and alkoxy groups, while pigments that contain nitro and halogen groups,
It is necessary to increase this. Even so, if the amount of polyethylene glycol type nonionic surfactant used is less than 0.2 parts by weight, the dispersion state becomes unstable and secondary aggregation occurs.
It is extremely difficult to convert them into primary particles or single molecules by any means. In addition, at 4 parts by weight or more,
The viscosity increases due to hydration of the surfactant itself,
It tends to make stirring operations difficult, interfere with the cohesive force inside the fibers, and lower the dyeing rate. The surfactant is preferably one with low foaming properties, and the number of moles of ethylene oxide added is 15 to 1.
A range of 100 moles is selected. Next, urea is used to alleviate the high viscosity hydration state caused by the vast surface area of pigment primary particles or single molecules of 0.05μ or less in water, promote viscosity reduction, and impart an appropriate hydrotropic effect. Although necessary, the most important action is to prevent the polyethylene glycol nonionic surfactant from existing in an unstable suspended state in a strongly alkaline aqueous solution of phenols and from coupling together as aggregates. That is, the point is to eliminate suspension and obtain a uniform solution state. This effect is probably due to the fact that it neutralizes strong acids and strong alkalis as a buffer and stably maintains the surfactant and coupling component as a true solution in water.
In addition, urea increases moisture retention when dyeing fibers,
It also has the effect of making color development more vivid. The amount of urea used is per 1 part by weight of the pigment produced.
A preferable amount is 0.2 to 4 parts by weight, but generally the more it is used within that range, the more effective it is. In the present invention, water-soluble organic solvents used together with the polyethylene glycol type nonionic surfactant and urea include alcohols such as ethyl alcohol and isopropyl alcohol, glycols such as ethylene glycol, diethylene glycol, and polyethylene glycol, glycerin, and pentyl alcohol. Polyhydric alcohols such as erythritol, methyl cellosolve, amino alcohols, thiodiethylene glycol, dimethylformamide,
Examples include dimethyl sulfoxide, N-methylpyrrolidone, etc., which are used to stabilize diazotized products, dissolve coupling agents,
Effects such as making the pigment obtained by coupling into fine particles or dissolving it immediately and stably dispersing the pigment particles, and acting as a leveling agent or dye accelerating agent when dyeing fibers. has. Therefore, it is appropriate to use the water-soluble organic solvent in an amount of 0.2 to 4 parts by weight per 1 part by weight of the produced pigment. However, in general, a range of 0.5 to 1 part by weight based on the pigment produced is most suitable. The polyethylene glycol type nonionic surfactant, urea, and water-soluble organic solvent described above are essential for producing the aqueous dispersion of fine pigment particles with a particle size of 0.05μ or less used in the present invention. The reason why ultrafine pigment particles or single molecules are obtained is not necessarily clear, but it is probably because the diazo component and coupling component of completely different stable systems combine extremely rapidly in the coupling reaction system. This is thought to be due to the fact that it suppresses growth and aggregation, exhibits a covering action similar to a multilayered capsule membrane, and separates each single molecule. In particular, when a nonionic surfactant is used alone, a significant amount of heat is generated in the ultrafine system immediately after coupling, which inevitably destroys the dispersion ability.
Therefore, it is interpreted that urea and the water-soluble organic solvent in particular prevent the pigment monomolecules from aggregating. In short, the aqueous dispersion of pigment fine particles in the present invention is obtained only due to the concerted action of the three components mentioned above. Next, the aromatic amines used here are preferably those that do not contain water-soluble groups such as sulfonic acid groups and carboxyl groups, such as halogen-substituted anilines, nitro-substituted toluidines, carbamide-substituted anisidines, substituted Specific examples include common water-insoluble azo dyes such as paranitroorthotoluidine, 2.5-dichloroaniline, dianisidine, dichlorobenzidine, aminoanthraquinone, naphthylamine, methacarbamide orthoanisidine, etc. Intermediates are used and are selected taking into consideration hue, fastness, dyeing rate, sharpness, etc. The diazotization reaction of aromatic amines is carried out by a conventional method, but it may also be carried out in the presence of a polyethylene glycol type nonionic surfactant and a water-soluble organic solvent. In particular, in the case of poorly water-soluble diazo compounds, the reaction is carried out in a dissolved state. It is desirable because it can be obtained with However, it is necessary to incorporate urea after diazotization. Further, as the diazotide of aromatic amine, a stabilized diazotide in the form of a double salt of a diazotide and zinc chloride, boron fluoride, etc. may be used, such as a diazotide of aminodiphenylamines,
Black K salt etc. are used. In addition, the component to be coupled to the diazo compound is selected from phenol, naphthol, derivatives thereof, amines, amine derivatives, phenylpyrasolones, imidazoles, triazoles, etc., such as salicylic acid anilide, β - Naphthol, β-hydroxynaphthoic acid anilide, β-hydroxynaphthoic acid amide, metaacetylaminoaniline, resorcin ethylene glycol ether, 4
Examples include methoxy-1 naphthol, acetoacetanilide, phenylmethylpyrazolone, benzimidazole, and 4-hydroxybenztriazole. By combining these coupling components and the diazo component, an aqueous dispersion having a hue ranging from yellow to orange to red to purple to navy blue to black to green can be obtained. In the coupling reaction in the present invention, the formation of fine particles and the dispersion of the resulting fine particles or monomolecular dye are performed simultaneously with or immediately after the coupling of the diazotide and the coupling component, resulting in rapid heat generation and viscosity increase. However, when the pigment concentration is high, local heat generation often occurs, and the desired particle size may not be obtained. Therefore, in order to carry out the coupling reaction of the present invention smoothly, it is necessary to pay particular attention to reaction conditions such as temperature, pH, concentration of each component, mixing method, and stirring method during the reaction. In this case, in particular with respect to the pigment content concentration, 8 to 20% is preferred. This is because if it is less than 8%, it is less economical, and because it promotes free movement between pigment particles, it tends to aggregate, requiring a large amount of surfactant, etc. On the other hand, if it is more than 20%, the viscosity becomes higher than expected. This is unsuitable because it tends to cause agitation and cause the entire system to solidify. Using the thus obtained aqueous dispersion of fine azo pigment particles with a particle size of 0.05 μm or less, a dyeing liquid or a printing paste is prepared. In addition, the dyeing liquid or printing paste may contain PH if necessary.
Regulators, leveling agents, accelerators, thickeners, sequestering agents, etc. can be added and used together, and synthetic rubber latex, polyacrylic acid ester emulsion, methylolated melamine, methylolated urea, formalin, etc. can also be added. Can be used together. The aqueous dispersion of pigment fine particles in the present invention has a low temperature
It can withstand long-term storage at 15 to -20℃, but at high temperatures,
At temperatures above 60 to 80°C, fine particles tend to aggregate, which may cause secondary aggregation and impair dyeability, so care must be taken. Furthermore, since it becomes extremely stable about 25 hours after coupling, the dispersion should not be diluted with water until about 24 hours have passed immediately after coupling. Next, in the present invention, a dyeing solution or a printing paste is prepared using the dispersion, and the dye is processed into fibers by a known dyeing method or printing method. Then, if necessary, washing and soaping are performed. The fibers targeted in the present invention include cotton, linen,
Examples include natural fibers such as silk and wool, recycled or semi-synthetic fibers such as rayon, Kyupra, polynosic, and acetate, and synthetic fibers such as polyester, nylon, polyacrylic, and polyvinyl, and yarns made of these fibers, Woven fabrics, knitted fabrics, blended yarns, blended fabrics, mixed woven fabrics, etc. can be processed, and it is especially effective for cotton and polyester fibers and fabrics made of these blends. A special effect of the present invention is that fiber mixtures having different physical and physical properties can be uniformly and vividly colored in the same color at the same time by a single coloring operation using the same dye. Therefore, organic pigment fine particles with a particle size that approximates a primary particle or monomolecular state are released from a strong cohesive force, easily and efficiently penetrate into the fiber microstructure, adsorb or dissolve, and diffuse. This is thought to be due to the secondary aggregation occurring again inside. Next, the effects of the present invention will be listed. (1) According to the present invention, natural fibers, regenerated fibers, semi-synthetic fibers, and synthetic fibers can be dyed or printed using various known dyeing methods or printing methods, respectively. (2) According to the present invention, fiber mixtures such as blended yarns, blended fabrics, and mixed-woven fabrics can be uniformly and vividly dyed or printed in the same color at the same time by a single coloring operation using the same dye. (3) According to the present invention, the steps such as filtration, dispersion, and wastewater treatment that are required in the conventional production of azo dyes and pigments are no longer necessary, and the production time is significantly shortened, increasing production efficiency. expensive. (4) The pigment particle aqueous dispersion of the present invention can be applied to pigment resin dyeing methods and pigment resin printing methods, and significantly reduces the amount of adhesive used in combination compared to cases where conventional pigments are used. can be reduced. In addition, the clarity and coloring power are improved, and the texture of the processed product is significantly improved. (5) The pigment fine particle aqueous dispersion of the present invention is extremely stable without sedimentation or coagulation during storage unlike conventional pigments, and the water-soluble organic solvent and urea do not cause pigment fine particles to dye fibers. Demonstrates level dyeing and accelerated dyeing effects when dyeing. Example 1 4-Benzylsulfonyl orthoanisidine
160 parts by weight (hereinafter, parts by weight are abbreviated as parts), 155 parts by weight of hydrochloric acid
Thoroughly knead with 180 parts of Liponox LCR (trade name) and 70 parts of ethylene glycol, and then add 400 parts of water.
120 parts of a 40% sodium nitrite aqueous solution was added over 30 minutes under stirring at a temperature of 10°C or less.
Diazotization is completed in a further 40 minutes, 50 parts of urea is added, and the mixture is stored at 0°C. Separately, 180 parts of beta-hydroxynaphthoic acid paraanisidide, 144 parts of 20% caustic soda aqueous solution, 80 parts of urea, Liponox LCR210
100 parts of ethylene glycol and 150 parts of water are uniformly and transparently dissolved, and while keeping the same temperature at 0°C, the diazotized viscous liquid is added and coupled to form red pigment fine particles (particle size 0.008~ 0.05μ)
An aqueous dispersion was obtained (viscosity 8000c.ps). 10 parts of the obtained red pigment fine particle aqueous dispersion, 2 parts of Demol N (trade name, anionic dispersant), 1 part of sodium alginate, and 87 parts of water were mixed, padded with cotton broadcloth, and squeezed with a mangle. After draining and drying, heat treatment was performed at 180° C. for 2 minutes, soaping, washing with water, and drying to obtain a plain dyed cotton broad cloth in bright vermilion. The washing fastness of this dyed product was 5th grade, the rubbing fastness was 5th grade, and the light fastness was also 5th to 6th grade. On the other hand, for comparison, when similar coupling was performed using the same sample as in Example 1 except for urea, the coupling component was in an oily state that could be separated into two layers, and it lacked coupling suitability at all. Coupling was performed using a material that can be diluted with approximately twice the amount of water, but the resulting particle size was 3 to 3.
It was a coarse product of 0.5 μm in size, and when it was similarly dyed on cotton broadcloth, it became a pastel colored product, and most of the color was bleached by soaping, and no dyeing occurred at all. Furthermore, for comparison, when coupling was carried out in a conventional manner using those in Example 1 except for urea and ethylene glycol, the coupling components were
2.5 times as much water had to be added, and the extremely high viscosity made stirring difficult (unmeasurable at viscosity of 200,000 or more). The particle size of the pigment thus obtained is approximately 0.5~
It was 1.0μ, and was almost non-dyed even though it was dyed in the same manner as above. Furthermore, we added calculated amounts of ethylene glycol and urea to the dyeing solution and performed the same heat treatment, but there was no effect at all, and the treatment temperature was lowered to 230℃.
When the temperature was lowered to °C, the coloration was considerably improved, but the cotton broadwood was significantly browned and the strength was decreased. Example 2 70 parts of dianisidine, 155 parts of hydrochloric acid, glycerin
100 copies, 40 copies of Neugen ET-170 (product name) and water
360 parts were mixed, and diazotization was carried out by gradually adding 200 parts of a 40% sodium nitrite aqueous solution at -5°C.
Thereafter, 40 parts of urea and a small amount of sulfamic acid were added to obtain a brown transparent diazotized solution. Separately, 132 parts of acetoacetoorthotortodide, 145 parts of caustic soda aqueous solution
part, 50 parts of glycerin, 50 parts of Neugen ET-170,
82 parts of urea and 600 parts of water were mixed to form a colorless transparent liquid, and the above diazotized liquid was mixed and coupled at -2°C to form orange pigment fine particles (particle size
(0.01 μ or less) an aqueous dispersion was obtained (viscosity 2000 c.ps). Two parts of the obtained orange aqueous dispersion were dissolved in 98 parts of water to obtain a dyeing solution, and this dyeing solution was used to dye an acetate shantane cloth for 40 minutes at 50 to 80°C, followed by soaping and washing with water. , and drying to obtain a plain dyed acetate shantane cloth dyed in a clear orange-yellow color. In addition, 5 parts of the obtained orange aqueous dispersion, 5 parts of Yodozol MR-96 (trade name, polyacrylic acid ester emulsion, resin content 38%), 40 parts of mineral spirits, 40 parts of water, and 5 parts of emulsifier were added. By mixing and stirring, a pigment resin printing paste of an oil-in-water emulsion was obtained.Using this, polyester and cotton blended broadcloth was screen printed, and heat treated at 200℃ for 2 minutes to create a clear deep orange pattern. A printed product was obtained. The acetate cloth and the polyester/cotton blend fabric had a washing fastness of 4th to 5th grade, a dry cleaning fastness of 5th grade, a light fastness of 4th grade, and the prints had a good texture. For comparison, Matsumin Neo Color Orange MGD (trade name, particle size 2 to 0.8μ), which has the same structure of a dispersed pigment produced by the conventional coupling method on polyester/cotton broadcloth, was used.
When using the resin, it required four times the amount of resin used in Example 2, the washing fastness was 3rd to 4th grade, and the texture was significantly inferior, and although it was pastel-like and bright, the fiber itself lost its photoselectivity. I was doing it. However, the light resistance was the same as in the example. Example 3 90 parts of orthonitroparachloroaniline, hydrochloric acid
155 parts, acetic acid 10 parts, polyethylene glycol #200
(Product name) 20 parts, Emulgen 985 (Product name) 60 parts and 350 parts of water were mixed and diazotized with 95 parts of a 40% sodium nitrite aqueous solution at 0 to 5°C to form a pale brown transparent liquid. , separately, acetoacetanilide 100
parts, 120 parts of 20% caustic soda aqueous solution, 30 parts of polyethylene glycol, 100 parts of dimethylformamide,
Mix 60 parts of urea and 790 parts of water, maintain the colorless and transparent coupling liquid at 0°C, mix and couple the diazotized liquid with stirring, and further add 10 parts of sodium monophosphate and sodium bicarbonate. and neutralize it to produce fine yellowish-brown pigment particles (particle size 0.01μ or less).
An aqueous dispersion was obtained (viscosity 2000 c.ps). A printing paste was obtained by mixing 5 parts of the obtained yellow-brown aqueous dispersion and 95 parts of a 7% aqueous solution of etherified locust bean gum, and a pattern was printed on a polyester knit cloth by screen printing. After high-pressure steaming for minutes, soaping, washing, and drying,
A colored polyester knit cloth with a bright green-yellow pattern was obtained. The print had a light resistance of 5th to 6th grade, a washing fastness of 5th grade, and a rub fastness of 5th grade. Incidentally, the coupling treated product excluding urea and polyethylene glycol in the above example has a particle size of 2 to 1 μm, and is considerably stained by the same dyeing process, but as a result of reflectance measurement, only 38% was dyed. Only 42% of the respondents were able to double the time. However, the various fastnesses of the dyed product are almost the same as those of the examples and are good. Example 4 Fast-stretched salt AL containing a diazotide of alpha-aminoanthraquinone as a double salt with zinc chloride
(Product name) 336 parts, glacial acetic acid 36 parts, Liponox
Carefully heat 240 parts of NCT (trade name), 50 parts of urea, and 670 parts of water to make a homogeneous transparent brown liquid, and separately add 54 parts of beta-naphthylamine to 108 parts of glacial acetic acid, 60 parts of Liponox NOT, and 400 parts of polyethylene glycol (trade name). 60 copies, Liponox LCR (product name) 40
1 part and 346 parts of water to make a clear brown liquid,
The above diazotized solution was added and coupled at 0 to -2°C while stirring well to obtain an aqueous dispersion of yellow-orange pigment fine particles (particle size: 0.05μ or less) (viscosity:
10500c.ps). 5 parts of the resulting yellow-orange aqueous dispersion and etherified locust bean gum 7% aqueous solution 94
1 part and 1 part of sodium metanitrobenzene sulfonate to obtain a printing paste, and using this, a pattern was printed on a polyester/cotton blend (mixing ratio of 65:35) broad cloth using the screen printing method. at °C
Polyester that is heated at high temperature for 10 minutes, soaped, washed, and dried to create a bright yellow-orange pattern.
A printed cotton blend broadcloth was obtained. The washing fastness of this print was 5th grade, the rubbing fastness was 5th grade, and the light fastness was 5th grade, and the polyester side and cotton side were uniformly dyed in the same hue. In addition, the pigment particles obtained from those excluding urea and water-soluble organic solvents in the above examples were extremely coarse, and even after being finely pulverized in a three-roll mill, they did not become smaller than about 2 μm, and even after the same dyeing process. The cotton side was not dyed at all and remained white, giving it a marbled print. Example 5 140 parts of 4-amino-1-benzoylamino-3,6-diethoxybenzene, 110 parts of hydrochloric acid and 400 parts of water were mixed, and a 40% sodium nitrite aqueous solution was added at 110°C at 15°C to form a greenish yellow-brown transparent mixture. Obtain the diazotized solution, cool it to -5°C and keep it, and separately add 120 parts of beta-hydroxynaphthoic acid orthotruidide, 160 parts of caustic soda aqueous solution, and 50% emulsion #49 (trade name).
A coupling liquid obtained by mixing and dissolving 200 parts of an aqueous solution, 60 parts of urea, 60 parts of triethylene glycol, and 400 parts of water is kept at -5°C, and the viscous liquid of the diazotide is added thereto for coupling. An aqueous dispersion of fine particles (particle size 0.02 to 0.01 μ) was obtained. A padding solution was made with 10 parts of the obtained aqueous dispersion, 2 parts of urea, 2 parts of ethylene glycol, and 86 parts of water, and a nylon taffeta cloth was soaked at room temperature, dried, and then heated to 180°C.
The fabric was steamed at high temperature for 12 minutes, soaped, and dried to obtain a nylon taffeta fabric dyed with a bright reddish blue color. Washing fastness of the dyed product is grade 4, and light fastness is grade 5.
It was classy. On the other hand, in this example, experiments were conducted on samples in which the water-soluble organic solvent and urea were removed, and those in which both were removed, and their performances are shown in Table 1.

【表】【table】

【表】 註、染着性は、最も良好なるものより順に、
◎、△、×と表示する。
上記表1よりして、本実施例が優れている事は
極めて明白である。 尚、表1中の非イオン界面活性剤のみにて得た
るものは、ナイロンタフタ布上にスペツク状に凝
集せるものが斑紋として部分的に観察されたが、
ソーピングにては完全に脱落したため淡く着色し
たにすぎない。 付言すれば以上実施例中の等級は、JIS規格に
準じ、耐光性は、L−0801に基いて表示した。
[Table] Note: The dyeing properties are ranked in order from the best to the best.
Displayed as ◎, △, and ×.
From Table 1 above, it is extremely clear that this example is superior. In addition, in the case of the nonionic surfactant in Table 1, speck-like agglomeration was partially observed on the nylon taffeta cloth, but
When soaping, it completely came off, so it was only lightly colored. In addition, the grades in the examples above were expressed in accordance with JIS standards, and the light resistance was expressed based on L-0801.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエチレングリコール型非イオン界面活性
剤、尿素及び水溶性有機溶剤の混合水溶液中に
て、芳香族アミン類のジアゾ化物と、フエノール
類、アミン類、活性メチレン化合物の如きカツプ
リング成分とを、カツプリングさせて得られた粒
子径0.05μ以下の顔料微粒子水分散物を用いて、
天然繊維、再生繊維、半合成繊維、合成繊維また
はこれらの混合物を、染色または捺染することを
特微とする、染色及び捺染方法。
1. Coupling a diazotized aromatic amine with a coupling component such as a phenol, an amine, or an active methylene compound in a mixed aqueous solution of a polyethylene glycol type nonionic surfactant, urea, and a water-soluble organic solvent. Using the aqueous dispersion of pigment fine particles with a particle size of 0.05μ or less obtained by
A dyeing and printing method characterized by dyeing or printing natural fibers, recycled fibers, semi-synthetic fibers, synthetic fibers, or mixtures thereof.
JP58001427A 1983-01-08 1983-01-08 Dyeing and printing method Granted JPS58203182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58001427A JPS58203182A (en) 1983-01-08 1983-01-08 Dyeing and printing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58001427A JPS58203182A (en) 1983-01-08 1983-01-08 Dyeing and printing method

Publications (2)

Publication Number Publication Date
JPS58203182A JPS58203182A (en) 1983-11-26
JPS6149432B2 true JPS6149432B2 (en) 1986-10-29

Family

ID=11501154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58001427A Granted JPS58203182A (en) 1983-01-08 1983-01-08 Dyeing and printing method

Country Status (1)

Country Link
JP (1) JPS58203182A (en)

Also Published As

Publication number Publication date
JPS58203182A (en) 1983-11-26

Similar Documents

Publication Publication Date Title
KR100395145B1 (en) Dyeing of disperse dye compositions and hydrophobic materials using them
US4115055A (en) Mixture of water-insoluble monoazo dyestuffs for coloring textile materials consisting at least partly of linear, aromatic polyesters
DE1619357C3 (en) Use of highly concentrated, stable, water-miscible, sulfonic acid group-free 1: 2 chromium or cobalt complexes of azo dyes containing stock solutions for the preparation of dye baths or printing pastes
JPH09176509A (en) Colored composition high in light resistance and coloring of hydrophobic material using the same
US3955919A (en) Dyestuff mixtures and process for dyeing polyester fiber therewith
CN112574594B (en) Disperse yellow-orange dye composition and product thereof
JP3311170B2 (en) Orange disperse dye composition and method for dyeing hydrophobic fiber material using the same
US3265460A (en) Dyeing of synthetic fibers
JP3310471B2 (en) Red disperse dye composition and method for dyeing hydrophobic fiber material using the same
JPH0841364A (en) Water-insoluble red monoazo dye, its production, and dyeing or printing method using the same
US2833613A (en) Process for dyeing polyester fiber
JPS6149432B2 (en)
JP3335484B2 (en) Orange disperse dye composition and method for dyeing hydrophobic fiber material using the same
JP3310470B2 (en) Red disperse dye composition and method for dyeing hydrophobic fiber material using the same
JPH0238465A (en) Multi-component mixture of blue azo disperse dye for dyeing synthetic fiber
US3642424A (en) Process for dyeing textile material of mixtures of polyester and cellulose fibers
US3266863A (en) Method of decorating polyester textile fabrics and composition therefor
JPH10330641A (en) Dye composition and dyeing of hydrophobic fiber using the same
DE2637776C3 (en) Monoazo dyes, process for their preparation and their use for dyeing
JP2767564B2 (en) Dye composition and method for dyeing hydrophobic fiber material using the same
US3241907A (en) Process for the dyeing of cellulose esters
US3264052A (en) Process for dyeing polyester fibers
JPS61143468A (en) Dye mixture, its production and dyeing or printing of hydrophobic fiber
JPH05271561A (en) Monoazo dyestuff and mixture containing the same
JP3388625B2 (en) Disperse dye composition and method for dyeing hydrophobic fiber material using the same