JPS6149400B2 - - Google Patents

Info

Publication number
JPS6149400B2
JPS6149400B2 JP14143183A JP14143183A JPS6149400B2 JP S6149400 B2 JPS6149400 B2 JP S6149400B2 JP 14143183 A JP14143183 A JP 14143183A JP 14143183 A JP14143183 A JP 14143183A JP S6149400 B2 JPS6149400 B2 JP S6149400B2
Authority
JP
Japan
Prior art keywords
alumite
film
cracks
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14143183A
Other languages
Japanese (ja)
Other versions
JPS6033392A (en
Inventor
Akira Terada
Koichi Yoshida
Yoshio Hirayama
Yasuo Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Light Metal Co Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd, Nippon Telegraph and Telephone Corp filed Critical Nippon Light Metal Co Ltd
Priority to JP14143183A priority Critical patent/JPS6033392A/en
Publication of JPS6033392A publication Critical patent/JPS6033392A/en
Publication of JPS6149400B2 publication Critical patent/JPS6149400B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrochemical Coating By Surface Reaction (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気デイスク等、磁気記録媒体用アル
マイト基板の製造方法に関し、詳しくは実質的に
黒点欠陥がなく、機械強度にすぐれ、さらに耐熱
性にもすぐれた磁気記録媒体用アルマイト基板の
製造方法に関するものである。 磁気デイスク等の磁気記録媒体基板には表面に
アルマイト層を形成したアルミニウムまたはアル
ミニウム合金材(以下アルマイト基板と呼ぶ)が
用いられている。 このようにアルマイト基板が用いられる理由と
してはアルマイトがアルマイト合金より硬質で耐
摩耗性にすぐれ、また研摩性も良好なため高精度
の平滑面が得られ易く、容易にその表面に薄膜の
磁性層を形成させることができるからである。と
ころでこのアルマイト基板にも以下に示すような
欠点があり、これが磁性記録媒体の高記録密度化
の妨げとなつている。 その1つは、黒点欠陥と呼ばれるものでアルミ
ニウムまたはアルミニウム合金基材中に存在する
鉄、珪素等の不純物が金属間化合物として晶出
し、これが基材表面に点在していてアルマイト処
理に際してこの部分が極く微少なアルマイト皮膜
欠落部となるものであつて、この欠落部は当初は
サブミクロンのオーダーの極く微少なものである
が、アルマイト皮膜の成長と共に拡大し、5μm
以上の皮膜厚のアルマイト層にあつては5〜10μ
mのピツト状微少欠陥を示すので、この数が多い
程磁気記録媒体における信号エラーが多くなり好
ましくない。 また、アルマイト基板を高密度磁気記録媒体と
する場合にはアルマイト基板上にα―Fe2O3また
はFe3O4の薄膜をスパツタリングその他の方法に
より被着させ、その後300〜400℃に加熱処理して
γ―Fe2O3化することが行なわれるが、このよう
な高温加熱を行なつた場合、アルマイト膜に亀裂
を生じ、このため製品不良を起し易いことであ
る。これはアルミニウム基材とアルマイト層の熱
膨張係数の差に基づくもので、このためアルマイ
ト層の膜厚を1〜3μm程度と極端に薄くしかつ
処理温度を310℃程度以下にして亀裂発生を回避
しなければならない。しかしこのように薄いアル
マイト層では実質的にアルマイトの硬質性を生か
すことができず、磁気記録媒体の耐ヘツドクラツ
シユ性低下の原因となり、また温度が不十分でγ
―Fe2O3形成が遅く好ましいもではなかつた。 従つてアルマイト層が厚く、しかも高温加熱に
より亀裂の発生しないアルマイト基板の開発が望
まれていた。 発明者らは上記欠点を解決すべく鋭意研究した
結果、アルマイト処理溶液としてクロム酸溶液を
使用し、定電圧法によつてアルマイト処理を行な
つた場合にはアルマイト皮膜の黒点欠陥の防止と
アルマイト層の厚肉化と耐熱性の向上にかなりの
効果があることが判つた。しかしこの方法にも限
界があり、アルマイト皮膜が10μm程度までは耐
熱性がよいが、それ以上の膜厚では加熱時にアル
マイト層にクラツクを生じるので、実用上有利な
10μm以上のアルマイト層をもつ基板の製造には
問題があつた。 本発明は10μm以下の膜厚では勿論のこと、10
μm以下のアルマイト皮膜をもつ場合にも適用出
来る耐熱性にすぐれたアルマイト基板の製造方法
であつて、アルマイト処理に際してクロム酸溶液
中で定電圧法によりアルマイト皮膜を形成したの
ち、Sn塩を含む電解溶液中で電圧を印加して2
次電解処理を施すことによつて黒点発生の防止と
加熱時にクラツク発生のないアルマイト基板を製
造することを目的とする。 即ち、本発明はアルミニウムまたはアルミニウ
ム合金基材に重量で1.5〜15%濃度のクロム酸溶
液を使用して定電圧法にて60Vより高い電圧、好
ましくは70〜100Vの電圧でアルマイト処理を施
したのち、常法により水洗等を洗浄を行なつてか
らSn塩を含有する電解溶液中で2次電解処理を
施すことによつてアルマイト層の微細孔中にSn
を析出させると共に、アルマイト微細孔底部のバ
リヤー層に無数の微細クラツクを発生させるもの
であつて、この微細クラツクが磁性膜生成のため
の加熱に際してアルマイト層に磁気記録媒体とし
て不都合な程度の大きさのクラツクの発生を防止
させるものである。 使用するアルマイト処理条件としては従来のブ
ツサード法と同様で、クロム酸溶液の濃度1.5〜
15重量%、液温35〜50℃中の定電圧であるが、電
圧はブツサード法の40Vより高く60Vを超え、好
ましくは70〜100Vの間でアルマイト処理を行な
う。その際、クロム酸電解液中の導電性を高める
ため少量の硫酸を加えてもよい。 アルマイト処理後基材を電解槽から取り出し、
常法により水洗し、必要に応じて純水で洗浄して
もよい。その後、Sn塩を含んだ電解溶液中で2
次電解する。2次電解の電解溶液はSnをアルマ
イト層微細孔中に析出する塩類ならばよく、例え
ば硫酸第一錫を用い、濃度3〜15g/に鉱酸、
有機酸等を加えPH0.5〜2程度に調整し、温度を
20〜30℃とすれば好便に使用することができる。
また酒石酸をキレート剤として加えて弱酸〜中性
のSn塩含有溶液として用いることも出来る。既
にクロム酸アルマイト層を形成したアルマイト基
板を上記溶液中に浸し、交流または交流に準じる
波形を用いて20秒〜10分間程度、好ましくは30秒
〜8分間電解溶液中に通電する。 以上の処理により得られるアルマイト基板は微
少黒点がほとんどなく、10μm以上の皮膜厚さで
も耐熱性がすぐれており、さらにその皮膜上に被
着させたα―Fe2O3薄膜をγ―Fe2O3薄膜とする
ための加熱処理を施してもクラツク発生が起らな
いものである。 次に本発明を完成するに当つて発明者らの行な
つた実験について述べる。 第1表はアルミウム合金材(A1―3重量%Mg
合金)を、液温40℃に保存した5重量%クロム酸
溶液中で直流定電圧法によりアルマイト処理した
場合の電圧とアルマイト基板における黒点発生の
様子、350℃、2時間加熱でのクラツク発生状況
および耐ヘツドクラツシユ性に関する皮膜硬度を
各々示す。その際のアルマイト皮膜の厚さは5μ
mおよび15μmである。 また、第1表において、黒点の評価は顕微鏡視
野(0.36mm2)で行い、〇は2.5μm以下、△は3.5
μm以下、×は5μm以下の黒点が1個以下であ
ることを示し、クラツクの評価は加熱処理後のア
ルマイト基板を顕微鏡観察したもので、〇はクラ
ツクが全くないもの、△は部分的にクラツクが生
じたもの、×は全面にクラツクが生じたものを示
し、さらに、硬度の評価は微少硬度計を使用した
結果で、〇は、250Hv以上、△は200〜250Hv、×
は200Hv以下を示すものである。なお、黒点、ク
ラツク、硬度についての測定についての測定試料
は皮膜表面を2μm研削したものについて行なつ
た。
The present invention relates to a method of manufacturing an alumite substrate for magnetic recording media such as magnetic disks, and more particularly, to a method of manufacturing an alumite substrate for magnetic recording media that is substantially free of black spot defects, has excellent mechanical strength, and has excellent heat resistance. It is something. 2. Description of the Related Art Aluminum or aluminum alloy materials (hereinafter referred to as alumite substrates) with an alumite layer formed on the surface are used for magnetic recording medium substrates such as magnetic disks. The reason why alumite substrates are used in this way is that alumite is harder and has better wear resistance than alumite alloys, and also has good abrasiveness, so it is easy to obtain a highly precise smooth surface, and it is easy to coat the surface with a thin magnetic layer. This is because it is possible to form . By the way, this alumite substrate also has the following drawbacks, and these are obstacles to increasing the recording density of magnetic recording media. One of them is called black spot defects, where impurities such as iron and silicon present in the aluminum or aluminum alloy base material crystallize as intermetallic compounds, which are scattered on the surface of the base material and are removed during alumite treatment. This is an extremely small missing part of the alumite film. Initially, this missing part is extremely small on the order of submicrons, but as the alumite film grows, it expands to a size of 5 μm.
For alumite layers with a film thickness of 5 to 10μ
m pit-like minute defects, so the larger the number, the more signal errors occur in the magnetic recording medium, which is undesirable. In addition, when using an alumite substrate as a high-density magnetic recording medium, a thin film of α-Fe 2 O 3 or Fe 3 O 4 is deposited on the alumite substrate by sputtering or other methods, and then heat-treated at 300 to 400°C. However, when such high - temperature heating is performed, cracks occur in the alumite film, which tends to cause product defects. This is based on the difference in the coefficient of thermal expansion between the aluminum base material and the alumite layer. Therefore, the thickness of the alumite layer must be extremely thin, approximately 1 to 3 μm, and the processing temperature must be approximately 310°C or lower to avoid cracking. Must. However, with such a thin alumite layer, the hardness of alumite cannot be effectively utilized, which causes a decrease in the head crushing resistance of the magnetic recording medium.
- Fe 2 O 3 formation was slow and unfavorable. Therefore, it has been desired to develop an alumite substrate that has a thick alumite layer and does not crack when heated at high temperatures. The inventors conducted extensive research to solve the above drawbacks, and found that when a chromic acid solution was used as the alumite treatment solution and the alumite treatment was carried out by the constant voltage method, it was possible to prevent black spot defects on the alumite film and improve the alumite treatment. It was found that this method has a considerable effect on thickening the layer and improving heat resistance. However, this method also has its limits; heat resistance is good up to an alumite film of around 10 μm, but if the film is thicker than that, cracks will occur in the alumite layer during heating, so it is not practical.
There were problems in manufacturing substrates with an alumite layer of 10 μm or more. The present invention can be used not only for film thicknesses of 10 μm or less, but also for film thicknesses of 10 μm or less.
This is a method for manufacturing an alumite substrate with excellent heat resistance that can be applied to cases with an alumite film of less than μm. During alumite treatment, an alumite film is formed by a constant voltage method in a chromic acid solution, and then an electrolytic film containing Sn salt is applied. 2 by applying voltage in solution
The purpose is to prevent the generation of sunspots and to produce an alumite substrate that does not generate cracks during heating by performing a subsequent electrolytic treatment. That is, in the present invention, an aluminum or aluminum alloy base material is anodized using a chromic acid solution having a concentration of 1.5 to 15% by weight using a constant voltage method at a voltage higher than 60V, preferably at a voltage of 70 to 100V. Afterwards, after washing with water or the like using a conventional method, Sn is added into the micropores of the alumite layer by performing a secondary electrolytic treatment in an electrolytic solution containing Sn salt.
At the same time, it causes numerous fine cracks to be generated in the barrier layer at the bottom of the alumite micropores, and when heated to form a magnetic film, these fine cracks form in the alumite layer to a size that is inconvenient for use as a magnetic recording medium. This prevents the occurrence of cracks. The alumite treatment conditions used are the same as the conventional Butsard method, with a chromic acid solution concentration of 1.5 to
The alumite treatment is carried out at a constant voltage of 15% by weight and a liquid temperature of 35 to 50°C, but the voltage is higher than 40V in the Butssard method and exceeds 60V, preferably between 70 and 100V. At this time, a small amount of sulfuric acid may be added to increase the conductivity of the chromic acid electrolyte. After the alumite treatment, take out the base material from the electrolytic bath,
It may be washed with water by a conventional method and, if necessary, with pure water. After that, 2
Next electrolyze. The electrolytic solution for secondary electrolysis may be any salt that precipitates Sn into the fine pores of the alumite layer. For example, use stannous sulfate, and add mineral acid to a concentration of 3 to 15 g/min.
Add organic acid, etc., adjust the pH to about 0.5-2, and lower the temperature.
It can be conveniently used at a temperature of 20 to 30°C.
It is also possible to add tartaric acid as a chelating agent and use it as a weak acid to neutral Sn salt-containing solution. An alumite substrate on which a chromic acid alumite layer has already been formed is immersed in the above solution, and electricity is applied to the electrolytic solution for about 20 seconds to 10 minutes, preferably 30 seconds to 8 minutes, using an alternating current or a waveform similar to alternating current. The alumite substrate obtained by the above treatment has almost no black spots and has excellent heat resistance even with a film thickness of 10 μm or more. Furthermore, the α-Fe 2 O 3 thin film deposited on the film is Cracks do not occur even when heat treatment is applied to form an O 3 thin film. Next, experiments conducted by the inventors in completing the present invention will be described. Table 1 shows aluminum alloy materials (A1-3 weight% Mg
Voltage and appearance of black spots on the alumite substrate when alumite treatment was performed using a DC constant voltage method in a 5 wt % chromic acid solution stored at a liquid temperature of 40°C, and the occurrence of cracks after heating at 350°C for 2 hours. and coating hardness related to head crushing resistance. The thickness of the alumite film at that time is 5μ
m and 15 μm. In addition, in Table 1, evaluation of sunspots is performed in a microscopic field of view (0.36 mm 2 ), 〇 is 2.5 μm or less, and △ is 3.5 μm.
μm or less, × indicates one or less black dots of 5 μm or less, and evaluation of cracks is based on microscopic observation of the alumite substrate after heat treatment. ○ indicates no cracks at all, △ indicates partial cracks. , × indicates that cracks occurred on the entire surface, and hardness evaluation is the result of using a microhardness meter. 〇 indicates 250H v or more, △ indicates 200 to 250H v , ×
indicates 200H v or less. The measurement samples for black spots, cracks, and hardness were made by grinding the surface of the film by 2 μm.

【表】 黒点についてはアルマイト電圧60Vより高い、
好ましくは70〜100Vにて、膜厚5μm、15μm
の皮膜を形成させると、2次電解の有無によらず
黒点のないものが得られる。 なお、比較のため従来法の硫酸皮膜も示したが
いずれも黒点が発生し、高密度磁気記録媒体用基
板としては不適当である。 クラツクについてはアルマイト皮膜のみでは膜
厚5μm程度ではよいが、膜厚10μm以上ではク
ラツクを生じる。しかしSn塩を含む電解溶液中
での2次電解処理を施こせば膜厚10μm以上でも
クラツクが発生しない。しかしCu塩を含む電解
溶液での2次電解ではクラツクが発生する。 硬度については上記した第1表のごとくほとん
ど差がないが、皮膜が厚くなるとアルマイト処理
時間が長くなるので、処理液による皮膜表面の溶
解が進み、硬度が下がる傾向がある。 また、第2表は第1表と同様にアルミニウム合
金基材を用い、かつ同様の温度および濃度のクロ
ム酸溶液を用いて直流定電圧法にて85Vでアルマ
イト処理を施したのちに、さらにSnSO4を含む液
温25℃の電解溶液中で電圧10Vの交流を用いて2
次電解を行なつた。なお、比較のためにCuSO4
を含む場合についても示す。この方法で作成した
SnまたはCuをアルマイト微細孔中に析出させた
基板を300〜400℃の温度範囲で加熱温度を変え、
各2時間この温度を保持した場合のクラツク発生
状況と加熱前の黒点発生の様子、耐ヘツドクラツ
シエ性に関する皮膜硬度を各々示す。 なお、第2表における黒点および皮膜硬度の評
価基準は第1表の場合と同様である。
[Table] For sunspots, the alumite voltage is higher than 60V.
Preferably at 70-100V, film thickness 5μm, 15μm
When a film is formed, a film without black spots can be obtained regardless of the presence or absence of secondary electrolysis. For comparison, conventional sulfuric acid films are also shown, but all of them produce black spots and are unsuitable as substrates for high-density magnetic recording media. Regarding cracks, an alumite film alone with a thickness of about 5 μm is sufficient, but a film thickness of 10 μm or more will cause cracks. However, if a secondary electrolytic treatment is performed in an electrolytic solution containing Sn salts, cracks will not occur even if the film thickness is 10 μm or more. However, cracks occur during secondary electrolysis using an electrolytic solution containing Cu salt. There is almost no difference in hardness as shown in Table 1 above, but as the film becomes thicker, the alumite treatment time becomes longer, so the surface of the film is more dissolved by the treatment liquid, and the hardness tends to decrease. In addition, Table 2 uses an aluminum alloy base material as in Table 1, and after anodizing at 85V using the DC constant voltage method using a chromic acid solution at the same temperature and concentration, SnSO 2 using AC voltage 10V in an electrolytic solution containing 4 at a temperature of 25°C.
Next electrolysis was performed. For comparison, CuSO4
It also shows the case where it is included. created using this method
A substrate with Sn or Cu deposited in alumite micropores is heated by varying the heating temperature in the temperature range of 300 to 400℃.
The appearance of cracks when this temperature was maintained for 2 hours, the appearance of black spots before heating, and the film hardness related to head crack resistance are shown. The evaluation criteria for black spots and film hardness in Table 2 are the same as in Table 1.

【表】 第1表および第2表の結果から以下のことが判
つた。 即ち、本発明のようにクロム酸溶液を用い直流
定電圧法により60Vより高い電圧でアルマイト処
理を施したのち、さらにSn塩を含む電解溶液中
で2次電解を行なつた基板においては、黒点や加
熱によるクラツク発生は全くみられず、あるいは
殆んど見られず、また基板の耐ヘツドクラツシユ
性を高めるために皮膜厚を大きくした場合でも、
黒点やクラツクの発生は見られなかつた。しかし
比較例に示すごとくCu塩を含む電解溶液中で2
次電解を行なつた場合、10μm以上のアルマイト
皮膜厚ではクラツク発生がみられた。 なお、2次電解の際に析出するSnの量は20秒
では20mg/m2、1分では70mg/m2、5分間では
250mg/m2程度であつた。また、2次電解の際に
Sn塩を含む酸性の電解溶液ではアルマイト孔底
に数+Å程度の極めて細かいクラツクが無数に生
じ、加熱時に析出Snが溶融しクラツクからバリ
ヤー層内に浸透し、そのためバルヤー層を改質す
るので、クラツク発生が起らず、一方、Cuは溶
融点が高いためこのような現象は起きないものと
考えられる。 以上述べたように本発明方法による高密度磁気
記録媒体用アルマイト基板の製造法では、従来か
ら問題にされて来た黒点の発生、高温加熱時のク
ラツク発生および耐ヘツドクラツシユ性に関する
皮膜硬度について同時に解決することができ工業
的にすぐれた発明と云うことができる。 次に本発明の実施例を以下に示す。 実施例 1 高密度磁気記録用アルミニウム合金基材(A1
―3重量%Mg合金、内径100mm、外径210mm、厚
さ2mm)を所定の表面研摩を施した後、非侵食性
洗浄剤にて洗浄し、アルマイト処理をした。アル
マイト処理は40℃に加熱した5重量%クロム酸溶
液中に、前記アルミニウム材を浸漬し、アノード
として直流にて電解処理した。電圧は85V一定と
し、約150分の電解で膜厚20μmの乳白色の平滑
なアルマイト皮膜が得られた。 次にアルマイト処理した合金基材を電解槽から
引き上げ、水洗、純水洗を行なつたのち、炭素を
対極とし10Vの交流を印加して2次電解を行なつ
た。その際の電解溶液の組成は以下のとおりであ
る。 硫酸第一錫SnSO4 5g/ 硫酸H2SO4 5g/ 硫酸アンモニウム(NH42SO4 7g/ 水 残部 PH 1.2 電解溶液温度 25℃ 電解時間 20秒、40秒、1分、3分、5分 2次電解後水洗乾燥したのち、2μm研削して
アルマイト皮膜表面を平滑にし、350℃、2時間
加熱して顕微鏡観察したところいずれの場合もク
ラツク発生が認められなかつた。 さらに、加熱の前後で表面粗さを触針式粗さ計
(タリサーフ)で測定し比較したが、加熱処理に
よる表面粗さの劣化は測定誤差内で検出されなか
つた。従つて本発明により作成したアルマイト基
板はγ―Fe2O3の磁性薄膜を形成する加熱プロセ
スにおいて、十分な耐熱性を有することが判つ
た。 なお、比較のため上記組成のうちSnSO4のみを
CuSO4(7g/)に代え電解溶液を用いその
他を同じ条件で2次電解したところ、いずれもク
ラツクの発生がみられ、高密度磁気記録媒体用基
板として不適当であつた。 実施例 2 実施例1に示した方法で形成したアルマイト基
板の表面をさらにポリツシユしてアルマイト層の
厚さを3μ、6.5μ、12μとしたものを各々作成
し、その上に0.17μmの厚さのγ―Fe2O3磁性薄
膜を形成した。この磁気記録媒体の表面に先端径
が20μmのダイヤモンドピンを荷重1〜30gで押
しつけ、スクラツチしてクラツチ痕の深さを表面
粗さ計で測定した。比較のために表面硬化ガラス
基板および約25μmV厚のNi―Pメツキ層で表面
硬化したアルミニウム合金基板の上にγ―Fe2O3
磁性薄膜を形成したものを用いた。 スクラツチ深さの荷重依存性を第1図に示す。 第1図に示されるように、アルヤマイト基板を
用いた際にはアルマイト層の増加と共にスクラツ
チ深さが減少しており、12μmの厚さのアルマイ
ト基板を用いるとスクラツチ深さは表面硬化ガラ
スやNi―Pメツキ基板を用いた場合とほゞ同等
の水準まで改良されている。これはアルマイト厚
さが薄い場合にはアルマイト層が実質的に表面硬
化の役割りをせず、比較的低荷重でも下地のアル
ミニウム合金に塑性変形が生じるのに対し、アル
マイト厚さが厚い場合には表面硬化の効果が顕著
に現われて来るためである。従つて、本発明の方
法で作成したアルマイト基板はアルマイト層の硬
度Hvを減少させずにアルマイト層を厚く出来た
結果、従来の1〜3μmまでのアルマイト基板に
比べ機械的強度が向上しており、従来基板の欠点
であつた耐ヘツドクラツシユ性の問題を大巾に改
善することに成功していることを示す。
[Table] From the results in Tables 1 and 2, the following was found. That is, in the case of a board that has been alumite treated at a voltage higher than 60V using a chromic acid solution using a DC constant voltage method as in the present invention, and then subjected to secondary electrolysis in an electrolytic solution containing Sn salts, black spots may occur. No or almost no cracks were observed due to heat or heating, and even when the film thickness was increased to improve the board's head crushing resistance,
No sunspots or cracks were observed. However, as shown in the comparative example, 2
When the subsequent electrolysis was performed, cracks were observed in alumite coatings with a thickness of 10 μm or more. The amount of Sn deposited during secondary electrolysis is 20 mg/m 2 in 20 seconds, 70 mg/m 2 in 1 minute, and 70 mg/m 2 in 5 minutes.
It was about 250mg/m2. Also, during secondary electrolysis
In an acidic electrolytic solution containing Sn salts, countless extremely fine cracks of several angstroms in size are generated at the bottom of the alumite pores, and when heated, the precipitated Sn melts and penetrates into the barrier layer through the cracks, thereby modifying the barrier layer. On the other hand, it is thought that such a phenomenon does not occur because Cu has a high melting point. As described above, the method of manufacturing an alumite substrate for high-density magnetic recording media according to the method of the present invention simultaneously solves the conventional problems of black spots, cracks during high-temperature heating, and film hardness related to head crush resistance. This can be said to be an industrially excellent invention. Next, examples of the present invention will be shown below. Example 1 Aluminum alloy base material for high-density magnetic recording (A1
-3 wt% Mg alloy, inner diameter 100 mm, outer diameter 210 mm, thickness 2 mm) was subjected to specified surface polishing, then cleaned with a non-erosive cleaning agent, and anodized. For the alumite treatment, the aluminum material was immersed in a 5% by weight chromic acid solution heated to 40°C, and electrolytically treated using direct current as an anode. The voltage was kept constant at 85 V, and a milky white smooth alumite film with a thickness of 20 μm was obtained after approximately 150 minutes of electrolysis. Next, the alumite-treated alloy base material was pulled out of the electrolytic cell, washed with water and purified water, and then subjected to secondary electrolysis by applying 10 V alternating current with carbon as the counter electrode. The composition of the electrolytic solution at that time is as follows. Stannous sulfate SnSO 4 5g / Sulfuric acid H 2 SO 4 5g / Ammonium sulfate (NH 4 ) 2 SO 4 7g / Water Balance PH 1.2 Electrolyte solution temperature 25℃ Electrolysis time 20 seconds, 40 seconds, 1 minute, 3 minutes, 5 minutes After secondary electrolysis, washing with water and drying, the surface of the alumite film was smoothed by grinding by 2 μm, heated at 350° C. for 2 hours, and observed under a microscope. No cracks were observed in any case. Furthermore, the surface roughness was measured and compared before and after heating using a stylus roughness meter (Talysurf), but no deterioration in surface roughness due to the heating treatment was detected within the measurement error. Therefore, it was found that the alumite substrate produced according to the present invention has sufficient heat resistance in the heating process for forming a magnetic thin film of γ-Fe 2 O 3 . For comparison, only SnSO 4 of the above composition was used.
When secondary electrolysis was performed using an electrolytic solution in place of CuSO 4 (7 g/) under the same conditions, cracks were observed in all cases, making them unsuitable as substrates for high-density magnetic recording media. Example 2 The surface of the alumite substrate formed by the method shown in Example 1 was further polished to create an alumite layer with a thickness of 3 μm, 6.5 μm, and 12 μm, and a 0.17 μm thick layer was applied on top of the alumite layer. A γ-Fe 2 O 3 magnetic thin film was formed. A diamond pin with a tip diameter of 20 .mu.m was pressed against the surface of the magnetic recording medium under a load of 1 to 30 g, and the depth of the scratch mark was measured using a surface roughness meter. For comparison, γ-Fe 2 O 3 was deposited on a surface-hardened glass substrate and an aluminum alloy substrate surface-hardened with a Ni-P plating layer of approximately 25 μmV thickness.
A magnetic thin film formed thereon was used. Figure 1 shows the load dependence of the scratch depth. As shown in Figure 1, when an alumite substrate is used, the scratch depth decreases as the alumite layer increases, and when an alumite substrate with a thickness of 12 μm is used, the scratch depth decreases when surface-hardened glass or Ni - Improved to almost the same level as when using a P-plated board. This is because when the alumite thickness is thin, the alumite layer does not substantially play the role of surface hardening, and plastic deformation occurs in the underlying aluminum alloy even under relatively low loads, whereas when the alumite thickness is thick, This is because the effect of surface hardening becomes noticeable. Therefore, the alumite substrate made by the method of the present invention can have a thick alumite layer without reducing the hardness Hv of the alumite layer, and as a result has improved mechanical strength compared to conventional alumite substrates with a thickness of 1 to 3 μm. This shows that the problem of head crush resistance, which was a drawback of conventional substrates, has been successfully improved to a large extent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の技術的内容を示すものであつ
て、アルマイト厚さを3μm、6.5μm、12μm
としその表面に0.17μmの厚さのγ―Fe2O3磁性
薄膜を被着させたもの、並びに比較のための表面
硬化ガラスとNi―Pメツキについて荷重とスク
ラツチ深さの関係を示すグラフがある。
Figure 1 shows the technical content of the present invention, and shows the alumite thicknesses of 3 μm, 6.5 μm, and 12 μm.
A graph showing the relationship between load and scratch depth is shown for a case where a γ-Fe 2 O 3 magnetic thin film with a thickness of 0.17 μm is deposited on the surface of Toshiro, as well as surface hardened glass and Ni-P plating for comparison. be.

Claims (1)

【特許請求の範囲】[Claims] 1 アルミニウムまたはアルミニウム合金基材を
1.5〜15重量%クロム酸溶液中に浸し定電圧法に
より60Vより高い電圧でアルミニウムまたはアル
ミニウム合金基材表面にアルマイト処理を施こし
たのち、Sn塩を含有する電解溶液中で2次電解
し、アルマイト層中にSnを析出させることを特
徴とする磁気記録媒体用アルマイト基板の製造方
法。
1 Aluminum or aluminum alloy base material
After applying alumite treatment to the surface of the aluminum or aluminum alloy base material at a voltage higher than 60V by immersing it in a 1.5 to 15% by weight chromic acid solution using a constant voltage method, it is subjected to secondary electrolysis in an electrolytic solution containing Sn salt, A method for manufacturing an alumite substrate for a magnetic recording medium, characterized by precipitating Sn in an alumite layer.
JP14143183A 1983-08-02 1983-08-02 Preparation of alumite substrate for magnetic recording medium Granted JPS6033392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14143183A JPS6033392A (en) 1983-08-02 1983-08-02 Preparation of alumite substrate for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14143183A JPS6033392A (en) 1983-08-02 1983-08-02 Preparation of alumite substrate for magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS6033392A JPS6033392A (en) 1985-02-20
JPS6149400B2 true JPS6149400B2 (en) 1986-10-29

Family

ID=15291809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14143183A Granted JPS6033392A (en) 1983-08-02 1983-08-02 Preparation of alumite substrate for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS6033392A (en)

Also Published As

Publication number Publication date
JPS6033392A (en) 1985-02-20

Similar Documents

Publication Publication Date Title
US4631112A (en) Surface-treated aluminum alloy substrates for magnetic disks
JPH0791667B2 (en) Mandrel for electroforming
US3232854A (en) Chromium plating
US1971761A (en) Protection of metals
EP0216543B1 (en) Method of manufacturing of an anodized memory disc substrate
JPH05503316A (en) Methods and products for applying finish coatings to anodizable metal substrates
US2389131A (en) Electrodeposition of antimony
US4784732A (en) Electrolytic formation of an aluminum oxide layer
JPS6149400B2 (en)
GB2117406A (en) Electrolytic stripping
US2739932A (en) Electrodepositing chromium on aluminum
US3276974A (en) Anodizing process for the metal beryllium
US2092130A (en) Anodic cleaning process
US2330170A (en) Electrolytic polishing of metal
US2534911A (en) Process of removing hydrogen embrittlement of bright nickel electrodeposits
KR910002570B1 (en) High performance electrodeposited chromium layers
JPH0346890B2 (en)
JPS623423A (en) Substrate for magnetic recording material made of al
JPS62278294A (en) Production of substrate for magnetic recording medium
US1793936A (en) Method of fabricating metal-coated articles
Hothersall et al. The anodic polishing of electroplated nickel
JPH01133218A (en) Production of aluminum substrate for magnetic disk
JPS60175219A (en) Production of alumite substrate for high-density magnetic recording
JPS6260478B2 (en)
JPH11279788A (en) Method and device for chrome plating