JPS6149376B2 - - Google Patents

Info

Publication number
JPS6149376B2
JPS6149376B2 JP54033649A JP3364979A JPS6149376B2 JP S6149376 B2 JPS6149376 B2 JP S6149376B2 JP 54033649 A JP54033649 A JP 54033649A JP 3364979 A JP3364979 A JP 3364979A JP S6149376 B2 JPS6149376 B2 JP S6149376B2
Authority
JP
Japan
Prior art keywords
alloy
present
range
less
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54033649A
Other languages
Japanese (ja)
Other versions
JPS55125249A (en
Inventor
Takeo Horii
Satoshi Kamishiraki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihei Kinzoku Kogyo Co Ltd
Original Assignee
Taihei Kinzoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taihei Kinzoku Kogyo Co Ltd filed Critical Taihei Kinzoku Kogyo Co Ltd
Priority to JP3364979A priority Critical patent/JPS55125249A/en
Publication of JPS55125249A publication Critical patent/JPS55125249A/en
Publication of JPS6149376B2 publication Critical patent/JPS6149376B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic

Description

【発明の詳細な説明】[Detailed description of the invention]

現在一般に市販され使用されている溶射用及び
肉盛用自溶性合金として表1に示す組成のものが
ある。 これらの合金で被覆した製品は、使用中の摩擦
熱、その他の熱により焼きつきを起したり、急激
な熱変化によりひぴ割れや剥離を起すことが多
い。また熱が加わらなくても疲労等により、ひぴ
割れを起し剥離事故を起すことが多い。 本発明は、常温での耐摩耗性及び耐疲労性はも
とより、800℃迄の高温での耐摩耗性、耐疲労性
が従来の自溶性合金より優れ、かつ急激な熱変化
によつても割れや剥離の少ない溶射及び肉盛用自
溶性合金を提供することを目的とする。 本明細書において自溶性合金とは、製品の表面
に被覆する場合、溶融処理をするが、その時、製
品素材の融点より低い温度で容易に溶け、素材と
完全に合金化して、素材と被覆層の境界で、機械
的な剥離を起さない状態を生ずる性質の合金と定
義する。また本明細書で以下に使用した%はすべ
て重量%を表わすものとする。 本発明は上記の目的を達するために、Ni40〜
70%、Cr5〜40%、B1〜6%、Si1〜6%、C0.1
〜2.0%、Fe1〜10%、W1%以上20%未満、
Cu0.8〜5%からなる耐熱耐摩耗性自溶性合金、
及びこれらの他にMo5%以下、Co5%以下、Sn5
%以下、Be3%以下のうちの一つ以上を含有した
耐熱耐摩耗性自溶性合金を構成したものである。 以下に本発明の組成要件について説明する。 Ni40〜70%:この範囲よりNiが少ない場合、
この合金を製造することが非常に難しく、又被覆
層も形成しにくく実用的ではない。又この範囲よ
り多い場合でも目的は達成できるが、高価なNi
を使用した割には効果は期待できない。従つてこ
の範囲内とする。 Cr5〜40%:常温はもとより高温においても、
硬さを出すためには最低5%は添加する必要があ
る。又Crが多くなるにつれ硬さの他に耐熱性を
持たせる事に効果があるが、この範囲より多く添
加されると自溶性に害を与えるためこの範囲内と
する。 B、Si1〜6%:自溶性を出すために必要な元
素で、その性質を維持するためには最低1%は必
要である。又この範囲より多い場合は合金を作る
事が困難であり、被覆後の被膜も脆くなり、常温
における耐疲労や熱変化に対して弱くなり、割れ
や剥離の原因となり、本発明の目的が達成できな
い。そのためこの範囲内とする。 C0.1〜2.0%:被覆層の強度を増すために必要
で、更に常温、高温における耐摩耗性を高める効
果がある。又合金製造を容易にする。本発明の目
的達成のためには最低0.1%は必要であり、2%
を越えると炭化物の形成が多くなりもろくなる。
従つてこの範囲内とする。 Fe1〜10%:耐熱衝撃性を与えるため必要であ
り、その効果は1%から現われる。10%を越えた
場合でも熱衝撃に対しては効果があるが、耐摩耗
性は低下し本発明の目的達成は困難となる。従つ
てこの範囲内とする。 W1%以上20%未満:Niの地の中に固溶し合金
の強度を増し、更に常温における硬さを高温
(800℃迄)においても維持するために必ず必要な
元素である。その効果は1%から顕著な効果が現
われ、添加量が多い程効果は大である。しかし20
%未満迄が限度で、これを越えると合金が製造し
にくく、又高価となり実用的でない。従つてこの
範囲内とする。 Mo0〜5.0%:Wと同様Niの地の中に固溶し合
金の強度を増し、その結果常温、高温の耐摩耗性
に有効に働く元素である。しかしMoの添加は、
製品の表面にこの合金を被覆する際の溶融処理工
程において酸化の原因となり、被膜の割れ、剥離
を引き起す。ただし5%迄の添加では本発明の目
的を達成するのに何ら支障はない。 又Wが添加されている場合にはMoは添加され
ていなくとも本発明の目的を達成することが出来
る。従つてこの範囲内とする。 Cu0.8〜5%:Niの地の中に固溶し、クロムボ
ロン、クロム炭化物、タングステン炭化物等の析
出をうながす。これらの析出物は非常に硬く、従
つて常温の耐摩耗に非常に効果を及ぼす。高温に
おいてもCuの存在によりこれら析出物は安定と
なりそのため常温、高温の耐摩耗性を出すために
は重要な元素である。さらにCuの添加は耐熱衝
撃性にも効果を及ぼす。これに判然としないが熱
伝導性を良好にさせるためとも思われる。 以上によりCuの添加は本発明の目的を達成す
るためには必要不可欠の元素である。以上のよう
な効果は0.5%位から徐々に現われ、0.8%から顕
著にあらわれる。又5%を越えると析出効果が大
となり、又脆くなり、高温においては酸化が激し
くなる原因となるので本発明の目的は達成できな
くなる。 その他Cuは溶融処理時において被膜表面を滑
らかにし、溶融処理を円滑にさせるため素材との
密着性を高め耐剥離性を大にする効果がある。以
上の理由によりこの範囲内とする。 Co0〜5%:W、Moと同様Niの地に固溶し合
金の強度を増し、常温及び高温における耐摩耗を
与えるために効果がある。5%以上でもこの効果
は発揮出来るが、高価な割にはそれ程効果増は見
込めず、本発明の目的の目的達成には5%迄で十
分である。又W、Moが同時に添加されている時
にはCoは添加されていなくても十分本発明の目
的は達成できる。従つてこの範囲内とする。 Sn0〜5%:Cuと同様Niに固溶しクロムボロン
等の析出をうながし耐摩耗性を出すのに効果があ
る。又溶融処理時において被膜表面を滑らかに
し、又素材との密着性を高め耐剥離性を大にする
効果がある。従つて急激な熱変化が加えられても
被膜が剥離することがなく本発明の目的を達成す
るには重要な元素である。 しかしCuの添加量が十分である場合にはSnは
必ずしも添加されなくても本発明の目的は達成で
きる。又5%までの添加は上記の様な効果がある
がこれを越えると高温において非常に酸化され易
くなり、又脆さも出て剥離や割れを起す原因とな
る。従つてこの範囲とする。 Be0〜3%:Cuと同様Niに固溶し析出硬化をう
ながし、耐摩耗性に効果のある元素である。又高
温時には酸化され、その酸化物は耐熱性を高め摺
動部の焼付を防止する効果がある。従つて使用条
件がある程度高温の領域で温度変化する場合には
必要な元素である。又ダイキヤスト用チツプのよ
うに内部が常に水冷されて押出し時以外は表面が
室温に近い状態に保たれる場合には必ずしも添加
されなくても目的達成のためには支障はない。 又この添加量を増加することにより常温、高温
の耐摩耗性は増すが3%を越えると溶融処理中や
使用中に酸化物が多くなり過ぎ、耐剥離性が落ち
又割れが発生し易くなり本発明の目的が達成でき
ない。従つてこの範囲とする。 本発明合金は溶解法によつて作り、溶融状態の
合金を水アトマイズ法によつて粉末化し、粉末状
態で通常使用する。 この発明を詳細に説明するに当り、使用した材
料について説明する。
As self-fluxing alloys for thermal spraying and overlaying that are currently commercially available and in use, there are compositions shown in Table 1. Products coated with these alloys often suffer from seizing due to frictional heat or other heat during use, or cracking or peeling due to rapid thermal changes. Moreover, even if no heat is applied, cracks often occur due to fatigue and other factors, resulting in peeling accidents. The present invention has superior wear and fatigue resistance not only at room temperature, but also at high temperatures up to 800°C, compared to conventional self-fusing alloys, and is also resistant to cracking due to rapid thermal changes. The purpose of the present invention is to provide a self-fusing alloy for thermal spraying and overlaying with less peeling. In this specification, a self-fusing alloy refers to a self-fusing alloy that is melted when coated on the surface of a product. At that time, it easily melts at a temperature lower than the melting point of the product material, completely alloys with the material, and forms a coating layer with the material. It is defined as an alloy with a property that does not cause mechanical peeling at the boundary of . Furthermore, all percentages used below in this specification represent weight percentages. In order to achieve the above object, the present invention
70%, Cr5~40%, B1~6%, Si1~6%, C0.1
~2.0%, Fe1~10%, W1% or more but less than 20%,
A heat-resistant and wear-resistant self-fusing alloy consisting of 0.8 to 5% Cu,
In addition to these, Mo5% or less, Co5% or less, Sn5
% or less, and Be 3% or less. The compositional requirements of the present invention will be explained below. Ni40-70%: If Ni is less than this range,
It is very difficult to manufacture this alloy, and it is also difficult to form a coating layer, making it impractical. Although the purpose can be achieved even if the amount exceeds this range, expensive Ni
No effect can be expected from using it. Therefore, it should be within this range. Cr5-40%: Not only at room temperature but also at high temperature,
In order to obtain hardness, it is necessary to add at least 5%. Also, as the amount of Cr increases, it is effective in imparting heat resistance in addition to hardness, but if it is added in a larger amount than this range, it will harm self-solubility, so it should be within this range. B. Si 1-6%: An element necessary to achieve self-solubility, and at least 1% is required to maintain this property. Moreover, if the amount exceeds this range, it is difficult to make an alloy, and the coating after coating becomes brittle and weak against fatigue resistance and thermal changes at room temperature, causing cracking and peeling, and the purpose of the present invention is not achieved. Can not. Therefore, it should be within this range. C0.1-2.0%: Necessary to increase the strength of the coating layer, and has the effect of increasing wear resistance at room temperature and high temperature. It also facilitates alloy manufacturing. In order to achieve the purpose of the present invention, a minimum of 0.1% is necessary, and 2%
If it exceeds 100%, more carbides will be formed and it will become brittle.
Therefore, it should be within this range. Fe1 to 10%: Necessary to provide thermal shock resistance, and its effect becomes apparent from 1%. Even if it exceeds 10%, it is effective against thermal shock, but wear resistance decreases, making it difficult to achieve the object of the present invention. Therefore, it should be within this range. W 1% or more and less than 20%: An element that is absolutely necessary to dissolve in the Ni base and increase the strength of the alloy, and to maintain the hardness at room temperature even at high temperatures (up to 800°C). The effect becomes noticeable starting from 1%, and the greater the amount added, the greater the effect. But 20
The limit is less than %, and if it exceeds this, the alloy will be difficult to manufacture and will be expensive, making it impractical. Therefore, it should be within this range. Mo0 to 5.0%: Like W, it is an element that solidly dissolves in the Ni base, increases the strength of the alloy, and as a result works effectively for wear resistance at room temperature and high temperature. However, the addition of Mo
It causes oxidation during the melting process when coating the surface of a product with this alloy, causing cracking and peeling of the coating. However, if it is added up to 5%, there is no problem in achieving the object of the present invention. Furthermore, when W is added, the object of the present invention can be achieved even if Mo is not added. Therefore, it should be within this range. Cu0.8-5%: Dissolves in the Ni base and promotes the precipitation of chromium boron, chromium carbide, tungsten carbide, etc. These precipitates are very hard and therefore have a great effect on wear resistance at room temperature. The presence of Cu makes these precipitates stable even at high temperatures, so Cu is an important element for providing wear resistance at room and high temperatures. Furthermore, the addition of Cu also has an effect on thermal shock resistance. Although it is not clear why this is the case, it seems that this is to improve thermal conductivity. From the above, the addition of Cu is an essential element in order to achieve the object of the present invention. The above effects gradually appear from around 0.5% and become noticeable from 0.8%. Moreover, if it exceeds 5%, the precipitation effect becomes large, and it becomes brittle, causing severe oxidation at high temperatures, making it impossible to achieve the object of the present invention. In addition, Cu has the effect of increasing adhesion to the material and increasing peeling resistance by smoothing the surface of the coating during melting and making the melting process smoother. For the above reasons, it is within this range. Co 0 to 5%: Similar to W and Mo, it forms a solid solution in the Ni base and is effective in increasing the strength of the alloy and providing wear resistance at room and high temperatures. Although this effect can be exhibited even with a content of 5% or more, it is not expected to increase the effect that much considering the high cost, and a content of up to 5% is sufficient to achieve the objective of the present invention. Further, when W and Mo are added at the same time, the object of the present invention can be sufficiently achieved even if Co is not added. Therefore, it should be within this range. Sn0 to 5%: Similar to Cu, it dissolves in Ni and promotes the precipitation of chromium boron, etc., and is effective in providing wear resistance. It also has the effect of smoothing the surface of the coating during melt processing, increasing its adhesion to the material, and increasing its peeling resistance. Therefore, it is an important element in achieving the object of the present invention without causing the coating to peel off even if rapid thermal changes are applied. However, if the amount of Cu added is sufficient, the object of the present invention can be achieved even if Sn is not necessarily added. Addition of up to 5% has the above-mentioned effects, but if it exceeds this, it becomes extremely susceptible to oxidation at high temperatures and becomes brittle, causing peeling and cracking. Therefore, this is the range. Be 0 to 3%: Like Cu, it is an element that dissolves in Ni to promote precipitation hardening and is effective in improving wear resistance. It is also oxidized at high temperatures, and the oxide has the effect of increasing heat resistance and preventing seizure of sliding parts. Therefore, it is a necessary element when the usage conditions include temperature changes in a relatively high temperature range. Further, in cases where the inside is constantly water-cooled and the surface is kept close to room temperature except during extrusion, such as in die casting chips, there is no problem in achieving the purpose even if it is not necessarily added. Increasing the amount added increases wear resistance at room temperature and high temperature, but if it exceeds 3%, there will be too much oxide during melt processing or use, resulting in decreased peeling resistance and cracking. The purpose of the invention cannot be achieved. Therefore, this is the range. The alloy of the present invention is produced by a melting method, and the alloy in a molten state is pulverized by a water atomization method, and is normally used in the powder state. In explaining this invention in detail, the materials used will be explained.

【表】【table】

【表】【table】

【表】 次に本発明の実施例について説明する。 実施例1 プランジヤーポンプ用プランジヤー プランジヤーは常温において、水、その他薬液
を高圧にして送り込むために使用されるもので、
耐摩耗が非常に要求される部品である。 従来これらの部品の表面にクロムメツキが施工
されていたが、満足できる結果が得られず、表1
に示す自溶性合金を粉末にして表面に溶射するこ
とにより、ある程度寿命延長に成功している。 この部品に本発明合金を適用した結果を表3に
示す。但し素材は何れもS45C材である。
[Table] Next, examples of the present invention will be described. Example 1 Plunger for plunger pump A plunger is used to pump water or other chemical liquids under high pressure at room temperature.
This is a part that requires extremely high wear resistance. Conventionally, chrome plating was applied to the surfaces of these parts, but satisfactory results were not obtained, and Table 1
By spraying the self-fusing alloy shown in powder form onto the surface, we have succeeded in extending the service life to some extent. Table 3 shows the results of applying the invention alloy to this part. However, the material for both is S45C.

【表】【table】

【表】 実施例2 黄銅のパイプ焼鈍炉用ハースロール 本部品は500〜600℃で還元性雰囲気、時には酸
化性雰囲気で使用されるもので最高700℃程度の
条件下で使用される部品である。 従来ロール材としてSUS304が使用されていた
が、表面に酸化スケール等の凸起物が付着する、
いわゆるビルドアツプ現象が起り、熱処理品にキ
ズをつけ、これが操業停止の原因となつていた。
この現象が起る迄の期間は約3ケ月である。この
ロール表面に表1にある様な合金を被覆し寿命延
長に一応の成功はしているが、完全なものではな
く、又炉を停止する時、こられの合金層はヒビ割
れや剥離を起すことが多かつた、そこで本発明品
と従来品とを同条件下で実機に使用したところ次
の結果を得た。結果を表4に示す。ロール素材は
何れもSUS304材である。
[Table] Example 2 Hearth roll for brass pipe annealing furnace This part is used in a reducing atmosphere at 500 to 600°C, and sometimes in an oxidizing atmosphere, and is a part used at a maximum temperature of about 700°C. . Conventionally, SUS304 was used as roll material, but convex objects such as oxide scale adhered to the surface.
A so-called build-up phenomenon occurred, causing scratches on heat-treated products and causing operational shutdowns.
It takes about 3 months for this phenomenon to occur. The surface of this roll is coated with alloys as shown in Table 1, and although there has been some success in extending its life, it is not perfect, and when the furnace is shut down, these alloy layers tend to crack or peel. Therefore, when the product of the present invention and the conventional product were used in an actual machine under the same conditions, the following results were obtained. The results are shown in Table 4. The roll material is SUS304 material.

【表】 実施例3 アルミニウムダイキヤスト用チツプ アルミニウムダイキヤスト用チツプは、溶融ア
ルミニウムの押出し用ピストンヘツドとして使用
されるもので、このチツプの内部には水が流れ、
常に内部より冷却する構造となつている。従つて
溶融アルミニウムを押出す際は、表面部の溶射被
膜は高温にさらされ、押出しの終つた時点では、
内部より冷却されるためある程度の低温になり、
極めて苛酷な加熱冷却をうけるものである。 このチツプの先端の円板状面及びこれに連続す
る円筒面に、本発明合金を被覆し、同一条件下
で、従来品と比較したところ次の結果を得た。使
用した素材は何れもS45C材である。
[Table] Example 3 Chip for aluminum die casting The chip for aluminum die casting is used as a piston head for extruding molten aluminum, and water flows inside this chip.
The structure is such that it is always cooled from the inside. Therefore, when extruding molten aluminum, the sprayed coating on the surface is exposed to high temperatures, and at the end of extrusion,
Because it is cooled from the inside, it becomes a certain low temperature,
It is subjected to extremely severe heating and cooling. The disc-shaped surface at the tip of this chip and the cylindrical surface continuous thereto were coated with the alloy of the present invention and compared with a conventional product under the same conditions, the following results were obtained. The material used is S45C material.

【表】【table】

Claims (1)

【特許請求の範囲】 1 重量%で、Ni40〜70%、Cr5〜40%、B1〜6
%、Si1〜6%、C0.1〜2.0%、Fe1〜10%、W1%
以上20%未満、Cu0.8〜5%、からなることを特
徴とする耐熱耐摩耗性自溶性合金。 2 重量%で、Ni40〜70%、Cr5〜40%、B1〜6
%、Si1〜6%、C0.1〜2.0%、Fe1〜10%、W1%
以上20%未満、Cu0.8〜5%と、Mo5%以下、
Co5%以下、Sn5%以下、Be3%以下のうちの一
つ以上とからなることを特徴とする耐熱耐摩耗性
自溶性合金。
[Claims] 1% by weight: Ni40-70%, Cr5-40%, B1-6
%, Si1~6%, C0.1~2.0%, Fe1~10%, W1%
1. A heat-resistant, wear-resistant, self-fusing alloy characterized by comprising 0.8 to 5% of Cu and less than 20% of Cu. 2 Weight%: Ni40~70%, Cr5~40%, B1~6
%, Si1~6%, C0.1~2.0%, Fe1~10%, W1%
More than 20%, Cu0.8~5%, Mo5% or less,
A heat-resistant, wear-resistant, self-fusing alloy characterized by comprising one or more of Co5% or less, Sn5% or less, and Be3% or less.
JP3364979A 1979-03-22 1979-03-22 Heat and wear resistant self-fluxing alloy Granted JPS55125249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3364979A JPS55125249A (en) 1979-03-22 1979-03-22 Heat and wear resistant self-fluxing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3364979A JPS55125249A (en) 1979-03-22 1979-03-22 Heat and wear resistant self-fluxing alloy

Publications (2)

Publication Number Publication Date
JPS55125249A JPS55125249A (en) 1980-09-26
JPS6149376B2 true JPS6149376B2 (en) 1986-10-29

Family

ID=12392287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3364979A Granted JPS55125249A (en) 1979-03-22 1979-03-22 Heat and wear resistant self-fluxing alloy

Country Status (1)

Country Link
JP (1) JPS55125249A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146890U (en) * 1987-03-19 1988-09-28
WO2020235547A1 (en) 2019-05-23 2020-11-26 東洋製罐グループホールディングス株式会社 Ni-based self-fluxing alloy, glass production member using ni-based self-fluxing alloy, and mold and glass mass transport member each using glass production member

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152338A (en) * 1984-08-20 1986-03-15 Daido Steel Co Ltd Wear and corrosion resistant alloy
JPS62142705A (en) * 1985-12-18 1987-06-26 Kobe Steel Ltd Production of cylinder for plastic molding device
JPS62235402A (en) * 1986-04-02 1987-10-15 Nippon Koshuha Kogyo Kk Production of composite hollow member
US5141571A (en) * 1991-05-07 1992-08-25 Wall Colmonoy Corporation Hard surfacing alloy with precipitated bi-metallic tungsten chromium metal carbides and process
JPH05140682A (en) * 1991-11-15 1993-06-08 Kobe Steel Ltd Corrosion resistant and wear resistant alloy
US5980653A (en) * 1997-01-23 1999-11-09 Ngk Metals Corporation Nickel-copper-beryllium alloy compositions
JP2001255098A (en) * 2000-03-09 2001-09-21 Ishikawajima Harima Heavy Ind Co Ltd Regenerative air preheater
JP4653721B2 (en) * 2006-11-07 2011-03-16 住友金属鉱山株式会社 Ni-based self-fluxing alloy powder for thermal spraying, method for producing the same, and self-fluxing alloy spray coating obtained using the powder
DE102009035210B3 (en) * 2009-07-29 2010-11-25 Federal-Mogul Burscheid Gmbh Sliding element with thermally sprayed coating and manufacturing method therefor
TWI549918B (en) * 2011-12-05 2016-09-21 好根那公司 New material for high velocity oxy fuel spraying, and products made therefrom
CN102828138A (en) * 2012-09-14 2012-12-19 兰州理工合金粉末有限责任公司 Nickel-chrome-molybdenum-tungsten alloy powder for plasma surfacing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125205A (en) * 1974-08-23 1976-03-01 Tokyo Shibaura Electric Co SOKUDOPATAANHATSUSEISOCHI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125205A (en) * 1974-08-23 1976-03-01 Tokyo Shibaura Electric Co SOKUDOPATAANHATSUSEISOCHI

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63146890U (en) * 1987-03-19 1988-09-28
WO2020235547A1 (en) 2019-05-23 2020-11-26 東洋製罐グループホールディングス株式会社 Ni-based self-fluxing alloy, glass production member using ni-based self-fluxing alloy, and mold and glass mass transport member each using glass production member

Also Published As

Publication number Publication date
JPS55125249A (en) 1980-09-26

Similar Documents

Publication Publication Date Title
JPS6149376B2 (en)
JP4782366B2 (en) Coating material and products coated with this material
US4075392A (en) Alloy-coated ferrous metal substrate
JP2015507687A (en) New materials for high-speed flame spraying and products produced thereby
JP7013823B2 (en) Manufacturing method of mold for continuous casting
JP2001347355A (en) Plunger tip for die casting and its manufacturing method
JPH04270003A (en) Hot tube making tool and its production
US3135623A (en) Surface treatment of steel billets to be extruded, and of extrusion tools
JPS61159247A (en) Quick cooling roll for producing high-silicon thin steel strip
KR100857287B1 (en) self-fluxing alloy powders and roll having spraying coating layer
JP2739409B2 (en) Manufacturing method of corrosion and wear resistant multilayer metal coating
JP3113234B2 (en) Screw for injection molding machine and method of manufacturing the screw
JP2003531290A (en) Method for producing wide plates of thin slab molds
KR100388031B1 (en) Casting roll coating method of twin roll sheet casting machine
JPS62183950A (en) Thermal spraying roll for hot casting slab
JPS60141861A (en) Hearth roll for continuous annealing furnace having superior build-up resistance
JPH09108807A (en) Sleeve for pressure casting excellent in erosion resistance and heat retaining property
JPS63248572A (en) Build-up welding method for surface of copper member
US300324A (en) Alloy for coating metals
JPH06279944A (en) Alloy for glass molding metal mold
US2066054A (en) Surface alloyed casting
KR970009476B1 (en) Ni self-melting alloy for spray coating
JP2642570B2 (en) Heat- and wear-resistant cast slab support for continuous casting
JPS5944382B2 (en) Cast hot-work tool steel with excellent wear resistance
JPH0575505B2 (en)