JPS6149199B2 - - Google Patents

Info

Publication number
JPS6149199B2
JPS6149199B2 JP5332778A JP5332778A JPS6149199B2 JP S6149199 B2 JPS6149199 B2 JP S6149199B2 JP 5332778 A JP5332778 A JP 5332778A JP 5332778 A JP5332778 A JP 5332778A JP S6149199 B2 JPS6149199 B2 JP S6149199B2
Authority
JP
Japan
Prior art keywords
speed
empty
empty container
accumulator
conveyor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5332778A
Other languages
Japanese (ja)
Other versions
JPS54146189A (en
Inventor
Kozo Tobara
Juji Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP5332778A priority Critical patent/JPS54146189A/en
Publication of JPS54146189A publication Critical patent/JPS54146189A/en
Publication of JPS6149199B2 publication Critical patent/JPS6149199B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Control Of Conveyors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、飲料液や飲食物の缶詰、瓶詰等の容
器詰プロセスにおいて段積パレツト間に数多集積
掛帯された空缶、空瓶等の空容器群を解装送り出
すデパレタイザーに直結するアキユムレーター
と、飲料液や飲食物を空容器群に充填するフイー
ラーとの間に介在連結される数多の各種コンベヤ
群からなる空容器搬送供給ラインの自動運転制御
法に関するものである。 この種従来の空容器搬送供給ラインにおいては
アキユムレーターの空容器吐出数とフイーラーの
空容器充填数にはバラつきが生じ、従つてフイー
ラーの充填数よりもアキユムレーターの吐出数を
少し多目にとり、コンベヤ上に空容器群が満杯と
なればアキユムレーターを停止し又はコンベヤ上
にある程度無くなればアキユムレーターを動かす
オン・オフ2位置制御を行つており、どうしても
コンベヤ上に空容器を満杯に溜める結果コンベヤ
上で空容器が激突し又空容器の外底面をこすり疵
を付ける弊害があり、本件出願人が所有の特許第
872058号に係る運転制御法では、コンベヤ群上に
空容器群を一杯貯め、ラインプレツシヤーを加え
ながら空容器群が転倒しないよう押せ押せ状態の
一定密度で空容器群を搬送していたため、やは
り、常に空容器外底面にコンベヤチエーンで以つ
てスリツプ摩擦を生ぜしめることとなり、この現
象は流通渋帯の詰り現象において顕著であり、さ
らに各コンベヤを個別的に速度変動可能とするた
めコンベヤ毎に空容器の流通態様が粗密分布して
ラインプレツシヤーにより粗密団塊の追突現象も
多発し、騒音を生起せしめる弊害があり、最近頓
に普及しだした薄肉ツウピース缶容器を搬送対象
に選んだ時は、外底面のボトムラジアス部に大き
なスリツプ摺擦痕を留め表面処理膜が欠き取られ
錆の発生原因となつたりラインプレツシヤーによ
る追突時に缶胴に打痕や凹みを生起したりして不
良缶の発生や品質低下を招来する一方、従来のシ
ステムラインでは少なくとも全長が100m以上必
要としライン設定スペースの余地が余りない所で
は適用不能である欠点を有する。 本発明は、前記従来法とシステムの欠点に鑑
み、包装形態を解かれフイーラーに至る空容器群
の搬送途上で追突損傷事故をコンベヤによる空容
器の外底面に対する激擦痕を生じないように空容
器供給側の装置と空容器需要側装置との数量バラ
ンスを確実円滑にとり得る物流管理体制が実現さ
れるとともにライン設置スペースを余り必要とし
ない空容器搬送供給ラインの自動運転制御法およ
び運転制御システムを提供せんとするものであ
る。 本発明の自動運転制御法を適用する第1図に示
す空容器搬送供給ラインYの一レイアウト例を参
照しつつ説明する。 空容器搬送ラインYは、デパレタイザー1に直
結したアキユムレーター2、数多のコンベヤ3a
群を多列に並接して減列搬送を行う段階状の一体
的搬送帯からなる減列コンベヤたるコンバイナー
3、円形回転コンベヤたる第1ターンテーブル
4、第1搬送コンベヤ5、第2搬送コンベヤ6、
円形回転コンベヤたる第2ターンテーブル7、第
3搬送コンベヤ8、円形回転コンベヤたる第3タ
ーンテーブル9、第4搬送コンベヤ10、空容器
α群の搬送姿勢を所定斜傾するツウイスター1
1、空容器α群を洗滌処理するリンザー12、搬
送姿勢を復帰するツイスター13を経輸して、飲
料液や飲食物を空容器α内へ充填した直後に蓋締
めするシーマー14を付結しこれと同期運転する
フイーラー15に一貫系統連結されている。 こゝにおいて第2図に示すよう、アキユムレー
ター2、コンバイナー3、第1ターンテーブル4
および第1〜第4搬送コンベヤ5,6,8,10
のそれぞれの駆動モータIMO,IM1,IM3,IM
4,IM5−b,IM5−a,IM6,IM7を
AC200Vの三相電源回路R,S,Tに漏電ブレー
カーNFB2〜NFB5を介して多列並行接続する
一方、三相電源回路R,Tから漏電ブレーカー
NFB8を介して引出した単相電源回路201,
202よりさらに変圧器TRと安全器FU1,FU
2を経て入力側に操作電圧変換回路16を介接し
た制御並行母線601,602を連接し、他方単
相電源回路201,202と制御並行母線60
1,602間に跨り第3図乃至第5図に示すよう
それぞれの駆動モータIM0〜IM7に対応して付
帯具備する可変速用電磁接手VS0,VS1,VS
3,VS4,VS5A,VS5,VS6,VS7の各制
御回路17,18,19,20,21,22,2
3,24を多列並行介挿し、さらに単相電源回路
201と202間に跨り、第6図乃至第8図に示
すようなシーケンスリレー回路25,26,27
を多行並列介挿する。 またフイーラー15とは適宜同期手段で連結し
たシーマー14の駆動モータ28には極数変換式
かご形電動機を適用し、極数の切換によつて例え
ば高速1200rpm通常運転速度と低速600rpm非常
運転速度との二段設定自在とするとともに、速度
検出器29を取付け、通常運転時には高速検知信
号を第6図シーケンスリレー回路25の118A番
地の開接点RY−Hに送り閉成して同番地のタイ
マーリレーTM9を励磁し、119番地のタイマー
開接点TM9を一定秒刻遅延して閉成することに
より同番地の手動運転に係るストツプリレーRY
11と第3図乃至第5図の制御回路18〜24の
高速運転に係る始動リレーRY11A〜Dを励磁
する一方、非常運転時には低速検知信号を第6図
に示すシーケンスリレー回路25の120番地の開
接点RY−Lに送り閉成して同番地の手動運転に
係るストツプリレーRY12と第3図乃至第5図
の制御回路18〜24の低速運転に係る始動リレ
ーRY13A〜Dを励磁するようにしてシーマー
14の運転速度の可変に第1〜第4搬送コンベヤ
5,6,8,10および第1ターンテーブル4が
追従同期運転可能に統御される。 所で第2乃至第3ターンテーブル7,9は、そ
の駆動機構を次続する第3乃至第4搬送コンベヤ
8,10の駆動機構に機械的に連結し第3乃至第
4搬送コンベヤ8,10の駆動出力を第2乃至第
3ターンテーブル7,9の駆動機構に伝達入力し
て第3乃至第4搬送コンベヤ8,10と同速運転
を行つている。 第4搬送コンベヤ10の最終端手前約9m前後
の位置に第9図乃至第10図に示すようプラスチ
ツクプレートチエーン10aを中に挾んで空容器
流速検出器30の一対の検出ヘツドたる投光器3
1と受光器32を搬送される空容器α群の1箇毎
遮光自在に相対設するとともに空容器流速検出器
30には1/1000秒毎に標準時パルス信号PS1を
発生する水晶発振器33と設定器34により任意
の上限値数をセツト自在なプリセツトカウンター
35とを有し、当該プリセツトカウンター35
は、水晶発振器33からの標準時カウントパルス
信号PS1を逐次受けて投・受光器31,32が
空容器α毎に遮光されて空容器通過検知信号PS
2を入力している間だけ計数し空容器αが通過し
終り空容器αによる遮光の空容器通過検知信号
PS2が解かれるとその都度リセツトされ、次続
到来する空容器α毎に対して同じ作動を繰り返し
て行きプリセツト数値に計数値が達した時だけ第
3図の制御回路17における46番地乃至47番地の
閉・開両接点RY−SM1に低速切換指令信号PS
3を送り、切換開・閉してアキユムレーター2の
運転速度を低速制御するように自動操作し、従つ
て空容器α群は、第4搬送コンベヤ10にて搬送
されており、その空容器α群が詰まつていない限
り、コンベヤ速度Vとは同一であるが、前方に空
容器α群が詰り出すとV>Vとなり、プリセツト
カウンター35でのカウント数がきな値となり、
設定数を越えると、低速切換指令信号PS3が発
信される一方、シーマー14が高速から低速運転
に移行した時設定器34も連動してシーマー14
の低速運転に対応した上限値がセツト換えされ、
シーマー14停止時およびシーマー14が低速か
ら高速に切換つた時も一定時間リセツトされる。 第3搬送コンベヤ8の終端から約3m前後の中
間位置に、第10図に示すようプラスチツクプレ
ートチエーン8aを中に挾んで空容器流量検出器
36の一対の検出ヘツドたる投光器37と受光器
38を搬送される空容器α群の1箇毎遮光自在に
相対設するとともに、空容器流量検出器36には
例えば2秒間隔で基準時クリヤーパルス信号PS
4を発生する水晶発振器39と設定器40により
任意の下限値数をセツト自在なプリセツトカウン
ター41とカウント数を表示する表示器42とを
有し、プリセツトカウンター41は、投光器37
と受光器38との間を通過する空容器αの遮光毎
に発信される空容器通過検知信号PS5を逐次受
けて計数表示し、水晶発振器39からの基準時ク
リヤーパルス信号PS4により御破算され、即ち
基準時クリヤーパルス信号PS4の2秒間で通過
する空容器α数を計数し、そのトータルカウント
信号PS6を出力し次の0.5秒間で表示器42に計
数値を表示し、次の0.5秒間でクリヤー動作を順
次繰り返して行き、計数値がプリセツト数値に達
しない時だけ空容器流速検出器30のプリセツト
カウンター35にリセツトパルス信号PS7を発
し空容器流速検出器30をリセツトにして第3図
の制御回路17における46番地乃至47番地の閉・
開両接点RY−SM1を原状に切換復帰作動せしめ
ると同時に同図の同回路17における42番地乃至
43番地の閉・開両接点RY−SM2に高速切換指令
信号PS8を送り、切換開・閉してアキユムレー
ター2の運転速度を高速制御するように自動操作
し、空容器流速検出器30によるアキユムレータ
ー2の低速運転の過疎流通情報を一早くキヤツチ
し素早く反応対処する。 なお設定器40は、シーマー14が高速から低
速運転に移行した時運転シーマー14の低速運転
に対応した下限値がセツト換えされるよう構成さ
れている。 第3搬送コンベヤ8と第4搬送コンベヤ10の
始端側に設置した近接センサー43,44,4
5,46は一定秒間空容器αの通過を検知しない
時第6図に示すシーケンスリレー回路25の107
番地乃至110番地の開接点700M−1A,70
0M−1B,700M−2A,700M−2Bに
空容器停止信号を送り、閉成して同番地の空容器
転倒表示に係る非常リレーRY4A乃至RY5Bを
励磁し第7図に示すシーケンスリレー回路26の
148番地乃至151番地の開接点RY4A乃至RY5B
を閉成して148番地の開接点RY9が閉・閉接点
RY25,ST2が閉とする条件の下にリレーRY
21を励磁するとともに149番地のデパレタイザ
ー1に付設するライトL2を点灯し、監視要員が
デパレタイザー1の運転をストツプするる一方、
リレーRY21の励磁は、同回路26の143番地の
閉接点RY21を開成し同番地のタイマーリレー
TM3を消磁して146番地の開接点TM3を開成す
ることにより同番地のリレーRY18を消磁せし
め第4図に示す制御回路21の68番地乃至69番地
の開接点RY18を開成して可変速電磁接手VS5
Aを断切し第1搬送コンベヤ5を緊急ストツプす
る。これと並行して第8図に示すシーケンスリレ
ー回路27の179番地の開接点RY21を閉成し、
同番地の自動運転に係る開接点RY9が閉である
ことを条件に同番地の警報リレーRY28を励磁
し184番地の開接点RY28を閉成して183番地の
警報ベルBEL1を警鐘する。その間に転倒空容
器α群を正立姿勢に修正して詰り状態を解消し正
常な流量を確保する。 第4搬送コンベヤ10に付設したセンサー47
は、直前を空容器α群が流通を開始したことを検
知し出すと、第6図に示すシーケンスリレー回路
25の105番地の開接点HT−2に空容器到来検
知信号を送り開接点HT−2を閉成すると同番地
のリレーRY2が励磁して122番地の開接点RY2
を閉成し同番地のタイマーリレーTM1を励磁
し、所定秒刻遅延して123番地のタイマー閉接点
TM1を開成することにより初期スタートに係る
リレーRY14を消磁することとなる。これと並
行して127番地の閉接点RY2を開成し126番地の
タイマー閉接点TM2が開であることを条件に同
番地のリレーRY15を消磁して第2図に示す操
作電圧変換回路16の35番地乃至36番地の開接点
RY15を開成かつ37番地乃至38番地の閉接点RY
15を閉成して制御並行母線601,602の操
作電圧を低圧から高圧に切換えアキユムレーター
2、コンバイナー3、第1ターンテーブル4およ
び第1〜第4搬送コンベヤ5,6,8,10を高
速運転とする。 第1搬送コンベヤ5および排出コンベヤAにそ
れぞれ1組のヘツド48,49を相対付設したフ
オトセンサー50,51は、一定時間内にヘツド
48と49間を通過した空容器α群の数を計数表
示し、シーマー14からの排出容器数と、コンバ
イナー3からの供給容器数と、極力同数にする為
使用されるものであり、その同調作業としては、
調整監視要員により表示計数を照合しつつ第3図
に示す制御回路17の43番地の調整器たる可変抵
抗器VRLLを手動調整しアキユムレーター2の可
変速用電磁接手VSOの励磁電流たる操作電流を
微細に操作せしめアキユムレーター2の運転速度
を可変速微調整することによりアキユムレーター
2からコンバイナー3への空容器α群の吐出数を
プロセス制御する。 第2図に示す操作電圧変換回路16において、
AVRは自動電圧調整器、SD1,SD2は、制御並
行母線601,602に並列介在し各接点RY1
5で切換自在な低圧又は高圧設定用スライダツ
ク、RECは整流器たるDCユニツトである。 第3図に示すアキユムレーター2の制御回路1
7において、自動調整回路52に介入した一対の
VRHとVRLは高低設定用抵抗器であつてセンサ
ー30と36の高速切換指令信号又低速切換指令
信号により各接点RY−SM2,RY−SM1を介し
選択され、追従同調回路53に介入した一対の
VROH,VROLは、シーマー14の高速運転、低
速運転に対応する高低設定用抵抗器であつて、第
8図に示すシーケンスリレー回路27の186番地
のデパレタイザー1稼動に係る開接点XL9−2
が閉である条件の下に、第1搬送コンベヤ5に付
設したフオトセンサー50がシーマー14の低速
運転に切換り空容器α群の一定時間内の通過計数
量が一定値に落ち込むか、又は空容器α群の流通
が停滞し詰り現象が見られた時に発信する低速切
換指令信号を受けて同番地の開接点CM−1が閉
成すると、同番地のタイマーリレーTM8を励磁
し187番地のタイマー開接点TM8を所定秒刻遅
延して同番地のリレーRY29を励磁するととも
に188番地の自己保持リレーRY29と制御回路1
7の44番地乃至45番地の閉接点RY29を開成し
かつ48番地乃至49番地の開接点RY29を閉成し
てシーマー14の低速に対応した低速運転とし、
FOは制御盤、54は電磁接手VS0と連動するタ
コジエネレイターTG0に必要に応じこれに並列
接続したスピードメーターSM0と基準抵抗器RR
0を有する帰還回路であつて各電磁接手VS0の
動作特性を常時安定に保持するためのもの、55
はアキユムレーター2のオン・オフ連動スイツチ
である。 第3図乃至第5図に示す各制御回路18〜24
において、各追従同調回路56にそれぞれ介入し
た一対のVR1HとVR1L,VR3HとVR3L,
VR4HとVR4L,VR5AHとVR5AL,VR5
bHとVR5bL,VR6HとVR6L,VR7HとVR
7Lは、シーマー14の高速と低速運転に対応す
る高低設定用抵抗器であつて、シーマー14の駆
動モータ28に付設した速度検出器29からの高
速運転信号又は低速運転信号により各開接点RY
11か各開接点RY12のいずれかを択一的に選
択し、シーマー14の運転速度に各可変速用電磁
接手VS1〜VS7を追従制御せしめ、F1〜F
7、T3〜T7は各制御回路18〜24に介在挿
入した制御盤57は各可変速用電磁接手VS1〜
VS7と連動するタコジエネレイターTG1〜TG
7に必要に応じこれに並列接続したスピードメー
ターSM1〜SM7と基準抵抗器RR1〜RR7を有
する帰還回路であつて各可変速用電磁接手VS1
〜VS7の動作特性を常時安定に保持するための
もの、第3図の58は、コンバイナー3のオン・
オフ連動スイツチである。 本発明法を適用する搬送供給ラインYの運転始
動は第6図に示すシーケンスリレー回路25の
110番と111番間に備わる始動操作盤CS−1に実
装されたフオーノツチセレクター型の切換スイツ
チの内、手動スイツチMSは、調整運転や補修運
転時にオン操作してリレーRY6,RY7を、初期
スタートスイツチSSは、シーマー14およびフ
イラー15の運転に先立つて空状態にある搬送供
給ラインYの近接センサー47取付位置まで空容
器α群の先行端を予め搬送待機せしめる時にオン
操作してリレーRY6,RY8を、自動スイツチ
ASはシーマー14およびフイーラー15の定常
運転開始に伴つてシーマー14の運転速度に搬送
供給ラインYの駆動速度が追従同調自在とする時
にオン操作してリレーRY6と111番地乃至112番
地の開接点RY11又はRY12のいずれかが閉で
あることを条件にリレーRY9を閉成する。 リレーRY6の励磁は、128番地の開接点RY6
を閉成して、128番地乃至133番地間に介設された
操作盤CS−2に実装されたスリーノツチセレク
ター型切換スイツチの内、手動スイツチMSか自
動スイツチASのいずれかがオン状態の場合に限
り同番地〜131番地のアキユムレーター2および
コンバイナー3の各リレーMS1〜MS4を励磁し
第2図に示すモーター駆動回路IMCに含まれる電
磁接触子MS1〜MS4を一斉に閉成して各駆動モ
ータIM0〜IM4を始動すると同時に、第7図に
示すシーケンスリレー回路26の135番地の開接
点RY6を閉成して同番地〜138番地の各リレー
MS5〜MS7を励磁することにより139番地乃至
142番地の開接点MS5〜MS7を閉成せしめ、あ
わせて147番地の開接点MS5〜MS7を一勢に閉
成し同番地のリレーRY19を励磁するとともに
ライトL1を点灯するのと並行して第2図に示す
モーター駆動回路IMCに含まれる各駆動モータ
IM5−b〜IM7を始動する。 リレーRY7の励磁は、113番地の開接点RY7
を閉成し同番地のリレーRY7A〜7Dを励磁し
て第3図乃至第5図に示す各制御回路18〜21
の開接点RM7を閉成するとともに、132番地の
開接点RY7を閉成し、同番地の手動スイツチ
MS、閉接点RY10,RY3が閉であることを条
件にリレーRY16を励磁することにより第3図
に示す40番地乃至41番地の開接点RY16を閉成
して各制御回路17〜20を動作状態に置く一
方、120番地の閉接点RM7を開成し、他方、第
7図に示すシーケンスリレー回路26の142番地
の開接点RY7を閉成し同番地の閉接点RY10が
閉、139番地〜同番地の開接点MS5〜MS7が閉
である条件の下に同番地のリレーRY17を励磁
すれば、第5図の76番地乃至77番地の開接点RY
17を閉成して第5図に示す制御回路22〜24
を動作状態にする。 リレーRY8の励磁は、114番地の開接点RY8
を閉成して113番地のリレーRY7A〜7Dを励磁
すると同時に、123番地の開接点RY8を閉成す
る。 リレーRY9の励磁は、133番地と、第7図に示
すシーケンスリレー回路26の143番地と148番地
と179番地の回線にそれぞれ介挿された開接点RY
9を一勢に閉成せしめる。 かくして第6図乃至第8図に示すシーケンスリ
レー回路25,26,27を逐次連係作動し、第
2図のモータ駆動回路IMCと第3図乃至第5図の
各制御回路17〜24を操作することにより搬送
供給ラインYを運転制御する。 然るに本発明の自動運転制御法は、飲料液や飲
食物の缶詰、瓶詰等の容器詰プロセスにおいてデ
パレタイザー1でパレツト間に数多集積掛帯され
た空容器α群を解帯解荷して一団的に多量に送出
せられた空容器α群を多段に接続した各種コンベ
ヤ3〜10による搬送途上で姿勢修正や洗滌処理
等を施しつつ一列に整列してフイーラーへ高速供
給する一連の各種コンベヤ3〜10群からなる空
容器搬送供給ラインYの自動運転を制御するに当
り、親シーマー14に従属する各種子コンベヤ3
〜10との関係を持たせて、シーマー14の運転
速度に追従同調して前記各種コンベヤ3〜10群
の可変速操作自在な駆動装置の各制御回路18〜
21の操作電流を一括制御することにより搬送供
給ラインYの駆動速度を総合的に揃速統御する一
方、搬送供給ラインY上を流れる空容器α群の搬
送状況を、第1〜第4搬送コンベヤ5,6,8,
10と搬出コンベヤAの適宜位置にそれぞれ取付
けた空容器流速検出器30、空容器流量検出器3
6、近接センサー44〜46、センサー47およ
びフオトセンサー50,51から逐次送られて来
る流通情報を適確に掌握し、この得た流通情報に
基づきアキユムレーター2の可変速操作自在な駆
動装置の制御回路17の操作電流を逐一調整して
アキユムレーター2の運転速度を最適制御せし
め、アキユムレーター2から搬送供給ラインYへ
の空容器α群の吐出供給量を逐次プロセス制御し
て空容器α群の全体的流通歪を即座に修正するこ
とにより物流系の全体的調和ある運行を確保する
ものである。 さらに詳説すると、本発明の運転制御法は、ア
キユムレーター2の空容器α群吐出能力をCA
c・p・m、CBc・p・mの2段設定とし、フ
イーラー15の充填処理数CFc・p・mとすれ
ば、 CA>CF>CB となる様にアキユムレーター2の運転速度を設定
する。 通常は、CAc・p・mにてアキユムレーター
2を駆動し、空容器流速検出器30にて空容器α
群の詰りを感知し、アキユムレーター2の駆動速
度をCBc・p・mに落す。 又CBc・p・mに減速された空容器α群が空
容器流量検出器36で検知されれば、アキユムレ
ーター2の駆動速度をCAc・p・mに再度復帰
する。 搬送供給ラインYの運転状態としては、シーマ
ー14の稼動に追従同調する一方、搬送供給ライ
ンY上には空杯状態が発生しないようにする一
方、空容器α群の正常溜りは空容器流速検出器3
0の取付位置から第5搬送コンベヤ10の終端寄
りの2m以内に空容器α群の滞溜後行端が常時待
機するよう条件付ける。 こゝにおいて本発明法の具体的運転例について
説明する。 ○イ 通常運転速度spおよび空容器前後間隔平均
搬送ピツチp シーマー14が1200c・p・mの処理速度の
場合 第1乃至第2搬送コンベヤ5,6 sp:86m/min p:72mm 第3搬送コンベヤ8 sp:75m/min p:62mm 第4搬送コンベヤ10 sp:80m/min p:66mm ○ロ 通常理想運転状態の設定 リンザー12より3m程度の空容器α群の溜
り状態で運転している場合と設定すれば、 第1乃至第2搬送コンベヤ5,6上には
208箇 第3搬送コンベヤ8上には 209箇 第4搬送コンベヤ10上には 57箇+151箇 計 625箇 ○ハ 空容器流速検出器30の取付位置まで空容器
α群が増溜した場合 第1乃至第2搬送コンベヤ5,6上には
208箇 第3搬送コンベヤ8上には 209箇 第4搬送コンベヤ10上には 173箇+60箇 計 650箇 ○ニ アキユムレーター2の空容器α群吐出数が
1100c・p・mに低減し空容器流量検出器36
迄過疎搬送の先行空容器αが到達した場合、空
容器前後間隔平均搬送ピツチpは、 第1乃至第2搬送コンベヤ5,6上 78mm 第3搬送コンベヤ8上 68mm 第4搬送コンベヤ10上 72mm 空容器搬送箇数は 第1乃至第2搬送コンベヤ5,6上では
192箇 第3搬送コンベヤ8上では 161箇+48箇 第4搬送コンベヤ10上では 173箇+60箇 計 634箇 このようにしてアキユムレーター2の吐出スピ
ードが通常運転状態に戻り、以上の○イ〜○ニの手順
動作が繰り返され、搬送供給ラインYにおける空
容器α群の最適流通量の物流を一貫プロセス制御
してなる。 即ち○ハから○ニの段階に移行するには空容器流速
検出器30をかつ○ニから○イの段階に移行するには
空容器流量検出器36がそれぞれ媒介分担する
が、空容器流速検出器30においてはプリセツト
カウンター35の設定は、通常第4搬送コンベヤ
10のスピードが80m/minの場合『60』程度に
し、(但し、80m/minであれば、空容器α通過カ
ウント数値は「39」程度になる。)、リンザー12
より空容器α群が徐徐に詰まつて空容器流速検出
器30の投光器31と受光器32間に到達すれ
ば、空容器αの搬送速度は、当然第4搬送コンベ
ヤ10の速度より遅れ、プリセツトカウンター3
5はカウントアツプすることとなる。 本発明はシーマー14と各種コンベヤ3〜10
群とは自動運転時には連動し、シーマー14が停
止すれば、全コンベヤ3〜10群が停止しかつシ
ーマー14が稼動すれば全コンベヤ3〜10群が
始動し、また空容器流速検出器30も空容器流量
検出器36の設定値もシーマー14スピードが変
動すればそれにより適正値に速度変更する所謂1
台の親シーマー14により複数台の子コンベヤ3
〜10群を一括集中統御する一方、アキユムレー
ター2を空容器の流通状況に合わせた最適制御を
司るシステム管理体制を確立し、しかも本発明を
適用する搬送供給ラインは従来型の半分の50mラ
インでも充分有効に実施されそれだけ工場内設定
スペース余地が少なくて済む等優れた効果を奏す
る。
The present invention is directly connected to a depalletizer that disassembles and sends out groups of empty containers such as empty cans and empty bottles that are stacked between stacked pallets in a container packaging process such as canning and bottling beverages and food products. The present invention relates to an automatic operation control method for an empty container conveyance and supply line consisting of a large number of various conveyor groups interposed and connected between an accumulator and a filler for filling a group of empty containers with beverage liquid or food. In this type of conventional empty container conveyance and supply line, there is a discrepancy between the number of empty containers discharged by the accumulator and the number of empty containers filled by the filler. The system uses on/off two-position control to stop the accumulator when the group of empty containers becomes full, or to move the accumulator when there are a certain number of empty containers on the conveyor. This has the disadvantage of causing collisions and scratches on the outer bottom surface of the empty container.
In the operation control method related to No. 872058, a group of empty containers was stored on a group of conveyors, and the group of empty containers was conveyed at a constant density while applying line pressure to prevent the group of empty containers from falling over. After all, the conveyor chain always causes slip friction on the outer bottom surface of empty containers, and this phenomenon is noticeable in clogging of distribution zones. Due to the uneven distribution of empty containers, the line pressure often causes collisions between small and dense blocks, which creates noise, so thin-walled two-piece can containers, which have recently become popular, were selected for transportation. At times, large slip marks may be left on the bottom radius of the outer bottom surface, causing the surface treatment film to be chipped off and cause rust, and dents and dents may be caused on the can body when hit by line pressure. On the other hand, the conventional system line requires a total length of at least 100 m or more and cannot be applied in places where there is not much space for setting up the line. In view of the shortcomings of the conventional methods and systems, the present invention aims to reduce the risk of rear-end collision damage caused by unpacking and transport of empty containers to the filler, so as to prevent the occurrence of severe scratch marks on the outer bottom surface of the empty containers caused by the conveyor. An automatic operation control method and operation control system for an empty container conveyance and supply line that realizes a logistics management system that can reliably and smoothly balance the quantities of equipment on the container supply side and equipment on the empty container demand side, and that does not require much line installation space. We aim to provide the following. A description will be given with reference to an example of the layout of the empty container conveyance and supply line Y shown in FIG. 1 to which the automatic operation control method of the present invention is applied. The empty container conveyance line Y includes an accumulator 2 directly connected to a depalletizer 1, and numerous conveyors 3a.
A combiner 3 is a reduced-row conveyor consisting of a stepped integrated conveyance belt that carries groups in parallel in multiple rows for reduced-row conveyance, a first turntable 4 as a circular rotary conveyor, a first conveyor 5, and a second conveyor 6. ,
A second turntable 7 as a circular rotary conveyor, a third conveyor 8, a third turntable 9 as a circular rotary conveyor, a fourth conveyor 10, and a twister 1 that tilts the conveyance posture of the group α of empty containers at a predetermined inclination.
1. A rinser 12 that cleans the empty containers α group, a twister 13 that returns to the conveying position, and a seamer 14 that tightens the lid immediately after filling the empty containers α with beverage liquid or food. It is integrally connected to a feeler 15 which operates in synchronization with this. Here, as shown in FIG. 2, an accumulator 2, a combiner 3, and a first turntable 4 are installed.
and first to fourth conveyors 5, 6, 8, 10
The respective drive motors IMO, IM1, IM3, IM
4, IM5-b, IM5-a, IM6, IM7
Multi-series parallel connection is made to AC200V three-phase power circuits R, S, and T via earth leakage breakers NFB2 to NFB5, while earth leakage breakers are connected from three-phase power circuits R and T.
Single-phase power supply circuit 201 drawn out via NFB8,
From 202, transformer TR and safety device FU1, FU
Control parallel bus bars 601 and 602 with an operating voltage conversion circuit 16 interposed on the input side are connected through 2, and the other single phase power supply circuit 201 and 202 and control parallel bus bar 60
Variable speed electromagnetic joints VS0, VS1, VS are provided corresponding to the respective drive motors IM0 to IM7 as shown in FIGS. 3 to 5.
3, VS4, VS5A, VS5, VS6, VS7 control circuits 17, 18, 19, 20, 21, 22, 2
3 and 24 are inserted in parallel in multiple rows, and further straddled between the single-phase power supply circuits 201 and 202, sequence relay circuits 25, 26, and 27 as shown in FIGS.
Insert multiple rows in parallel. The drive motor 28 of the seamer 14, which is connected to the feeler 15 by an appropriate synchronizing means, is a pole-converting type squirrel-cage motor, and by switching the pole number, it can be set to, for example, a high-speed 1200 rpm normal operating speed and a low-speed 600 rpm emergency operating speed. In addition, a speed detector 29 is installed, and during normal operation, a high speed detection signal is sent to the open contact RY-H at address 118A of the sequence relay circuit 25 in Figure 6, which closes and connects the timer relay at the same address. By energizing TM9 and closing the timer open contact TM9 at address 119 with a certain second delay, the stop relay RY related to manual operation at the same address is activated.
11 and the start relays RY11A to RY11D related to high-speed operation of the control circuits 18 to 24 shown in FIGS. Send it to the open contact RY-L and close it to excite the stop relay RY12 associated with manual operation at the same address and the start relays RY13A-D associated with low-speed operation of control circuits 18-24 in FIGS. 3 to 5. As the operating speed of the seamer 14 is varied, the first to fourth conveyors 5, 6, 8, and 10 and the first turntable 4 are controlled so as to be able to follow and operate in synchronization. The second and third turntables 7 and 9 mechanically connect their drive mechanisms to the drive mechanisms of the third and fourth conveyors 8 and 10 that follow, respectively. The drive output is transmitted to the drive mechanisms of the second and third turntables 7 and 9 to operate at the same speed as the third and fourth conveyors 8 and 10. As shown in FIGS. 9 and 10, a projector 3 serving as a pair of detection heads for an empty container flow velocity detector 30 is placed at a position approximately 9 m before the final end of the fourth conveyor 10, with a plastic plate chain 10a sandwiched therein.
1 and a photoreceiver 32 are installed opposite each other to freely block light for each of the empty containers α group to be transported, and the empty container flow velocity detector 30 is set with a crystal oscillator 33 that generates a standard time pulse signal PS1 every 1/1000 seconds. A preset counter 35 to which an arbitrary upper limit value can be set by means of a counter 34 is provided.
, the emitter/receiver 31, 32 receives the standard time count pulse signal PS1 from the crystal oscillator 33 one after another, and the light is blocked for each empty container α to generate the empty container passage detection signal PS.
2 is counted only while inputting the empty container α, and when the empty container α passes, the empty container passing detection signal is blocked by the empty container α.
When PS2 is released, it is reset each time, and the same operation is repeated for each subsequent empty container α, and only when the count value reaches the preset value, addresses 46 and 47 in the control circuit 17 of FIG. 3 are reset. Low speed switching command signal PS is sent to both close and open contacts RY-SM1.
3 is automatically operated to control the operating speed of the accumulator 2 at a low speed by switching open/close. The conveyor speed is the same as V unless it is clogged, but if the empty containers α group start to clog in front, V>V, and the count number on the preset counter 35 becomes a large value.
When the set number is exceeded, a low speed switching command signal PS3 is transmitted, and when the seamer 14 shifts from high speed to low speed operation, the setting device 34 also operates in conjunction with the seamer 14.
The upper limit value corresponding to low speed operation is reset,
It is also reset for a certain period of time when the seamer 14 is stopped and when the seamer 14 is switched from low speed to high speed. At an intermediate position approximately 3 m from the end of the third conveyor 8, as shown in FIG. 10, a light projector 37 and a light receiver 38, which are a pair of detection heads of an empty container flow rate detector 36, are installed with a plastic plate chain 8a sandwiched therein. Each of the empty containers α group to be transported is installed opposite to each other so as to be able to freely block light, and the empty container flow rate detector 36 receives a reference time clear pulse signal PS at intervals of, for example, 2 seconds.
The preset counter 41 has a crystal oscillator 39 that generates 4, a preset counter 41 that can freely set an arbitrary lower limit value using a setter 40, and a display 42 that displays the count.
The empty container passage detection signal PS5 transmitted every time the empty container α passing between the light receiver 38 and the light receiver 38 is blocked, is counted and displayed, and is counted by the reference time clear pulse signal PS4 from the crystal oscillator 39, i.e. The number of empty containers α that pass during the 2 seconds of the reference clear pulse signal PS4 is counted, the total count signal PS6 is output, the counted value is displayed on the display 42 in the next 0.5 seconds, and the clearing operation is performed in the next 0.5 seconds. are repeated in sequence, and only when the counted value does not reach the preset value, a reset pulse signal PS7 is issued to the preset counter 35 of the empty vessel flow rate detector 30, the empty vessel flow rate detector 30 is reset, and the control circuit of Fig. 3 is activated. Closing of 46th and 47th in 17
At the same time as switching the open contact RY-SM1 to its original state and operating the return operation,
A high-speed switching command signal PS8 is sent to the close/open contact RY-SM2 at address 43, and the operation speed of the accumulator 2 is automatically controlled at high speed by switching open/close. Collect information about low-speed operation and depopulation as soon as possible and respond quickly. The setting device 40 is configured so that when the seamer 14 shifts from high speed to low speed operation, the lower limit value corresponding to the low speed operation of the seamer 14 is reset. Proximity sensors 43, 44, 4 installed on the starting end sides of the third conveyor 8 and the fourth conveyor 10
5, 46 is the sequence relay circuit 25 shown in FIG.
Open contact 700M-1A, 70 from address to address 110
Sends an empty container stop signal to 0M-1B, 700M-2A, and 700M-2B, closes them, and energizes the emergency relays RY4A to RY5B associated with the empty container overturning display at the same address, thereby starting the sequence relay circuit 26 shown in FIG.
Open contacts RY4A to RY5B at addresses 148 to 151
is closed and the open contact RY9 at address 148 is closed/closed contact.
Relay RY under the condition that RY25 and ST2 are closed
21 and lights up the light L2 attached to depalletizer 1 at address 149, while the monitoring personnel stops the operation of depalletizer 1.
To excite relay RY21, open the closing contact RY21 at address 143 of the same circuit 26 and energize the timer relay at the same address.
By demagnetizing TM3 and opening the open contact TM3 at address 146, the relay RY18 at the same address is demagnetized, and the open contacts RY18 at addresses 68 and 69 of the control circuit 21 shown in FIG. 4 are opened to open the variable speed electromagnetic joint. VS5
A is cut off and the first conveyor 5 is stopped urgently. In parallel with this, the open contact RY21 at address 179 of the sequence relay circuit 27 shown in FIG. 8 is closed,
On the condition that the open contact RY9 related to automatic operation at the same address is closed, the alarm relay RY28 at the same address is energized, the open contact RY28 at address 184 is closed, and the alarm bell BEL1 at address 183 is sounded. During this time, the overturned empty containers α group are corrected to an upright position to eliminate the clogging condition and ensure a normal flow rate. Sensor 47 attached to the fourth conveyor 10
When detecting that the empty containers α group have started to circulate immediately before, it sends an empty container arrival detection signal to the open contact HT-2 at address 105 of the sequence relay circuit 25 shown in FIG. When 2 is closed, relay RY2 at the same address is energized and the open contact RY2 at address 122 is activated.
closes, energizes the timer relay TM1 at the same address, and after a predetermined delay, the timer close contact at address 123
By opening TM1, relay RY14 related to the initial start is demagnetized. In parallel with this, the closing contact RY2 at address 127 is opened, and on condition that the timer closing contact TM2 at address 126 is open, the relay RY15 at the same address is demagnetized. Open contacts at addresses 36 to 36
Open RY15 and close contacts RY at addresses 37 and 38
15 is closed and the operating voltage of the control parallel buses 601 and 602 is switched from low voltage to high voltage, and the accumulator 2, combiner 3, first turntable 4, and first to fourth conveyors 5, 6, 8, and 10 are operated at high speed. shall be. Photo sensors 50 and 51 each having a pair of heads 48 and 49 attached to the first transport conveyor 5 and discharge conveyor A count and display the number of empty containers α group that have passed between the heads 48 and 49 within a certain period of time. However, it is used to make the number of containers discharged from the seamer 14 and the number of containers supplied from the combiner 3 as equal as possible, and the synchronization work is as follows.
Adjustment and monitoring personnel manually adjust the variable resistor VRLL, which is the regulator at address 43 of the control circuit 17 shown in Fig. 3, while checking the displayed counts, and finely adjust the operating current, which is the excitation current of the variable speed electromagnetic joint VSO of the accumulator 2. The number of empty containers α group discharged from the accumulator 2 to the combiner 3 is controlled in the process by finely adjusting the operating speed of the accumulator 2. In the operating voltage conversion circuit 16 shown in FIG.
AVR is an automatic voltage regulator, SD1 and SD2 are connected in parallel to the control parallel buses 601 and 602, and each contact RY1
5 is the slider for setting low or high pressure, and REC is a DC unit that is a rectifier. Control circuit 1 of accumulator 2 shown in Fig. 3
7, a pair of
VRH and VRL are high/low setting resistors, which are selected via the respective contacts RY-SM2 and RY-SM1 by the high-speed switching command signal or low-speed switching command signal of the sensors 30 and 36, and are connected to a pair of resistors intervening in the follow-up tuning circuit 53.
VROH and VROL are high-low setting resistors corresponding to high-speed and low-speed operation of the seamer 14, and are open contacts XL9-2 related to the operation of the depalletizer 1 at address 186 of the sequence relay circuit 27 shown in FIG.
is closed, the photo sensor 50 attached to the first conveyor 5 switches the seamer 14 to low-speed operation, and the number of empty containers α group passing within a certain period of time drops to a certain value, or When the open contact CM-1 at the same address closes in response to the low-speed switching command signal sent when the flow of containers α group is stagnant and a clogging phenomenon is observed, the timer relay TM8 at the same address is energized, and the timer at address 187 is activated. Opening contact TM8 is delayed by a predetermined second to excite relay RY29 at the same address, and self-holding relay RY29 at address 188 and control circuit 1 are energized.
7, the closed contacts RY29 at addresses 44 and 45 are opened, and the open contacts RY29 at addresses 48 and 49 are closed to perform low speed operation corresponding to the low speed of the seamer 14,
FO is the control panel, 54 is the tachogenerator TG0 that works with the electromagnetic joint VS0, and the speedometer SM0 and reference resistor RR that are connected in parallel to this as necessary.
55, which is a feedback circuit having a constant voltage of 0 and is used to always maintain stable operating characteristics of each electromagnetic coupling VS0
is the on/off interlock switch for accumulator 2. Each control circuit 18 to 24 shown in FIGS. 3 to 5
, a pair of VR1H and VR1L, VR3H and VR3L, which intervened in each follow-up tuning circuit 56,
VR4H and VR4L, VR5AH and VR5AL, VR5
bH and VR5bL, VR6H and VR6L, VR7H and VR
7L is a high/low setting resistor corresponding to high-speed and low-speed operation of the seamer 14, and each open contact RY is controlled by a high-speed operation signal or a low-speed operation signal from the speed detector 29 attached to the drive motor 28 of the seamer 14.
11 or each open contact RY12, the variable speed electromagnetic joints VS1 to VS7 are controlled to follow the operating speed of the seamer 14, and F1 to F
7. T3-T7 are interposed in each control circuit 18-24, and the control panel 57 is connected to each variable speed electromagnetic joint VS1-
Takoji generator TG1~TG that works with VS7
7, a feedback circuit having speedometers SM1 to SM7 and reference resistors RR1 to RR7 connected in parallel to each variable speed electromagnetic joint VS1 as necessary.
~ 58 in Fig. 3 is for keeping the operating characteristics of VS7 stable at all times.
This is an off-linked switch. The operation of the conveyance supply line Y to which the method of the present invention is applied is started using the sequence relay circuit 25 shown in FIG.
Among the switch selector type changeover switches mounted on the starting operation panel CS-1 installed between No. 110 and No. 111, the manual switch MS is turned on during adjustment or repair operation to initialize relays RY6 and RY7. The start switch SS is turned on when the leading ends of the empty containers α group are placed on standby for transportation to the proximity sensor 47 installation position of the empty conveyance supply line Y prior to the operation of the seamer 14 and filler 15, and relays RY6, RY8, automatic switch
When the seamer 14 and the filler 15 start steady operation, and the driving speed of the conveyance supply line Y can follow and synchronize with the operating speed of the seamer 14, AS is turned on and the relay RY6 connects to the open contact RY11 at addresses 111 and 112. Alternatively, relay RY9 is closed on the condition that either RY12 is closed. Relay RY6 is energized by open contact RY6 at address 128.
is closed, and either the manual switch MS or the automatic switch AS of the three-notch selector type changeover switch mounted on the operation panel CS-2 installed between addresses 128 and 133 is in the on state. The relays MS1 to MS4 of the accumulator 2 and combiner 3 at the same addresses to 131 are energized, and the electromagnetic contacts MS1 to MS4 included in the motor drive circuit IMC shown in Fig. 2 are closed all at once. At the same time as starting IM0 to IM4, the open contact RY6 at address 135 of the sequence relay circuit 26 shown in Fig. 7 is closed, and each relay at the same address to address 138 is activated.
By energizing MS5 to MS7, address 139 to
The open contacts MS5 to MS7 at address 142 are closed, and the open contacts MS5 to MS7 at address 147 are simultaneously closed to excite relay RY19 at the same address and light L1 is turned on. Each drive motor included in the motor drive circuit IMC shown in Figure 2
Start IM5-b to IM7. Relay RY7 is energized by open contact RY7 at address 113.
is closed and the relays RY7A to 7D at the same addresses are energized to activate each control circuit 18 to 21 shown in FIGS. 3 to 5.
At the same time, close the open contact RM7 at address 132, and close the open contact RY7 at address 132, and close the manual switch at the same address.
MS, by energizing relay RY16 on the condition that closed contacts RY10 and RY3 are closed, open contacts RY16 at addresses 40 and 41 shown in Fig. 3 are closed, and each control circuit 17 to 20 is in the operating state. On the one hand, the closing contact RM7 at address 120 is opened, and on the other hand, the opening contact RY7 at address 142 of the sequence relay circuit 26 shown in Fig. 7 is closed, and the closing contact RY10 at the same address is closed. If the relay RY17 at the same address is energized under the condition that the open contacts MS5 to MS7 are closed, the open contacts RY at addresses 76 and 77 in Fig.
Control circuits 22 to 24 shown in FIG. 5 by closing 17
put it into operation. Relay RY8 is energized by open contact RY8 at address 114.
is closed to excite the relays RY7A to 7D at address 113, and at the same time, the open contact RY8 at address 123 is closed. The relay RY9 is energized by open contacts RY inserted in the lines at address 133 and addresses 143, 148, and 179 of the sequence relay circuit 26 shown in FIG.
Force 9 to close all at once. In this way, the sequence relay circuits 25, 26, and 27 shown in FIGS. 6 to 8 are sequentially operated in conjunction with each other to operate the motor drive circuit IMC in FIG. 2 and each control circuit 17 to 24 in FIGS. 3 to 5. The operation of the transport supply line Y is thereby controlled. However, in the automatic operation control method of the present invention, in the container packaging process such as canning and bottling beverages and food and drinks, the depalletizer 1 unloads and unpacks the empty containers α group that are piled up between pallets. A series of various conveyors 3 that carry out posture correction, washing, etc. during conveyance by various conveyors 3 to 10 connected in multiple stages to the group of empty containers α that have been delivered in large quantities, are arranged in a line, and are fed to the filler at high speed. In controlling the automatic operation of the empty container conveyance supply line Y consisting of ~10 groups, each seed conveyor 3 subordinate to the parent seamer 14
~10, each control circuit 18~ of the drive device capable of variable speed operation of the various conveyors 3~10 groups following and synchronizing with the operating speed of the seamer 14.
By collectively controlling the operation currents of 21, the drive speed of the conveyance supply line Y is uniformly controlled, and the conveyance status of the empty containers α group flowing on the conveyance supply line Y is controlled by the first to fourth conveyors. 5, 6, 8,
10 and an empty container flow rate detector 30 and an empty container flow rate detector 3 installed at appropriate positions on the discharge conveyor A, respectively.
6. Accurately grasp the distribution information sequentially sent from the proximity sensors 44 to 46, the sensor 47, and the photo sensors 50 and 51, and control the variable speed drive device of the accumulator 2 based on the obtained distribution information. The operational current of the circuit 17 is adjusted one by one to optimally control the operating speed of the accumulator 2, and the discharge supply amount of the empty containers α group from the accumulator 2 to the conveyance supply line Y is sequentially controlled to control the entire empty containers α group. It ensures the overall harmonious operation of the logistics system by immediately correcting distribution distortions. To explain in more detail, the operation control method of the present invention controls the empty container α group discharge capacity of the accumulator 2 by C A
If the filling process number of the filler 15 is C F c・p・m, then the accumulator 2 is set so that C A > C F > C B. Set the operating speed. Normally, the accumulator 2 is driven at C A c・p・m, and the empty container α is detected by the empty container flow rate detector 30.
Detects clogging of the group and reduces the driving speed of the accumulator 2 to C B c・p・m. If the empty container α group that has been decelerated to C B c·p·m is detected by the empty container flow rate detector 36, the driving speed of the accumulator 2 is returned to C A c·p·m again. The operating state of the conveyance supply line Y is to follow and synchronize with the operation of the seamer 14, while preventing an empty state from occurring on the conveyance supply line Y, and to detect a normal accumulation of empty containers α group by detecting the empty container flow velocity. Vessel 3
Conditions are set such that the trailing end of the empty containers α group is always on standby within 2 m from the mounting position of No. 0 toward the terminal end of the fifth conveyor 10. Here, a specific example of operation of the method of the present invention will be explained. ○B Normal operating speed sp and average conveyance pitch p of front and rear empty containers When the seamer 14 has a processing speed of 1200c・p・m 1st and 2nd conveyor 5, 6 sp: 86m/min p: 72mm 3rd conveyor 8 sp: 75m/min p: 62mm 4th conveyor 10 sp: 80m/min p: 66mm ○B Setting of normal ideal operating state When operating with empty containers α group about 3m from the linzer 12 accumulating If set, on the first and second conveyors 5 and 6,
208 locations 209 locations on the 3rd conveyor 8 57 locations + 151 locations on the 4th transportation conveyor 10 Total 625 locations○c When empty containers α group accumulates up to the mounting position of the empty container flow velocity detector 30 1st On the second conveyor 5, 6
208 pieces on the 3rd conveyor 8 209 pieces on the 4th conveyor 10 173 + 60 pieces Total 650 pieces The number of empty containers α group discharged from the accumulator 2 is
Empty container flow rate detector 36 reduced to 1100c・p・m
When the leading empty container α of depopulated transport reaches the empty container front and back interval average transport pitch p is: 78 mm above the 1st and 2nd transport conveyors 5, 6 68 mm above the 3rd transport conveyor 8 72 mm above the 4th transport conveyor 10 Empty The number of containers transported on the first and second transport conveyors 5 and 6 is
192 locations on the third transfer conveyor 8 161 locations + 48 locations on the fourth transfer conveyor 10 173 locations + 60 locations Total 634 locations In this way, the discharge speed of the accumulator 2 returns to the normal operating state, and the above ○I to ○ The procedure operations are repeated, and the distribution of the optimum distribution amount of the empty containers α group in the transport supply line Y is controlled in an integrated process. In other words, the empty container flow rate detector 30 is used to move from the stage ○C to the stage ○D, and the empty container flow rate detector 36 is used to move from the stage ○2 to the stage ○B. In the container 30, the preset counter 35 is normally set to about ``60'' when the speed of the fourth conveyor 10 is 80 m/min (however, if the speed is 80 m/min, the empty container α passage count value is ``60''). 39"), Linzer 12
If the empty containers α group gradually become clogged and reach the space between the light emitter 31 and the light receiver 32 of the empty container flow velocity detector 30, the conveyance speed of the empty containers α will naturally be slower than the speed of the fourth conveyor 10, and the pre-loading will be delayed. Set counter 3
5 will be counted up. The present invention includes a seamer 14 and various conveyors 3 to 10.
Groups are linked during automatic operation, and when the seamer 14 stops, all conveyor groups 3 to 10 stop, and when the seamer 14 operates, all conveyor groups 3 to 10 start, and the empty container flow rate detector 30 also starts. The set value of the empty container flow rate detector 36 is also changed to an appropriate value when the seamer 14 speed changes.
A plurality of child conveyors 3 are conveyed by the main seamer 14.
~While centrally controlling 10 groups, we have established a system management system that optimally controls the accumulator 2 according to the distribution situation of empty containers. Moreover, the conveyance supply line to which the present invention is applied can be a 50m line, which is half the length of the conventional type. It is implemented effectively and has excellent effects such as requiring less space for installation in the factory.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法を適用する空容器搬送供給ラ
インの一レイアウト例とそれに付属する各センサ
ーの配置図、第2図は本発明法を実施する自動運
転制御システムにおけるモータ駆動回路図、第3
図乃至第5図は同・制御回路図、第6図乃至第8
図は同・シーケンスリレー回路図、第9図は同・
空容器流速検出器の投光器と受光器の配置状態斜
面図、第10図は同・空容器流速検出器と空容器
流量検出器との動作関係を示すブロツクダイヤグ
ラムである。 Y……空容器搬送供給ライン、α……空容器、
1……デパレタイザー、2……アキユムレータ
ー、3……コンバイナー、4,7,9……第1〜
第3ターンテーブル、5,6,8,10……第1
〜第4搬送コンベヤ、14……シーマー、15…
…フイーラー、17〜24……制御回路、25〜
27……シーケンスリレー回路、28……駆動モ
ータ、29……速度検出器、30……空容器流送
検出器、31,37……投光器、32,38……
受光器、33,39……水晶発振器、34,40
……設定器、35,41……プリセツトカウンタ
ー、36……空容器流量検出器、42……表示
器、PS1……標準時カウントパルス信号、PS
2,PS5……空容器通過検知信号、PS3……低
速切換指令信号、PS4……基準時クリヤーパル
ス信号、PS6……トータルカウント信号、PS7
……リセツトパルス信号、PS8……高速切換指
令信号、IM0〜IM7……駆動モータ、VS0〜
VS7……可変速用電磁接手、VRLL……可変抵
抗器。
Figure 1 shows an example of the layout of an empty container conveyance and supply line to which the method of the present invention is applied, and a layout diagram of each sensor attached thereto. Figure 2 is a motor drive circuit diagram of an automatic operation control system implementing the method of the present invention. 3
Figures 6 to 8 are control circuit diagrams, and Figures 6 to 8 are the same control circuit diagrams.
The figure is the same sequence relay circuit diagram, and Figure 9 is the same sequence relay circuit diagram.
FIG. 10 is a perspective view of the arrangement of the emitter and light receiver of the empty container flow rate detector, and FIG. 10 is a block diagram showing the operational relationship between the empty container flow rate detector and the empty container flow rate detector. Y... Empty container transport supply line, α... Empty container,
1... Depalletizer, 2... Accumulator, 3... Combiner, 4, 7, 9... 1st ~
3rd turntable, 5, 6, 8, 10...1st
~4th conveyor, 14...seamer, 15...
...Feeler, 17-24...Control circuit, 25-
27... Sequence relay circuit, 28... Drive motor, 29... Speed detector, 30... Empty container flow detector, 31, 37... Light emitter, 32, 38...
Photoreceiver, 33, 39...Crystal oscillator, 34, 40
... Setting device, 35, 41 ... Preset counter, 36 ... Empty container flow rate detector, 42 ... Display device, PS1 ... Standard time count pulse signal, PS
2, PS5...Empty container passage detection signal, PS3...Low speed switching command signal, PS4...Reference time clear pulse signal, PS6...Total count signal, PS7
...Reset pulse signal, PS8...High speed switching command signal, IM0~IM7...Drive motor, VS0~
VS7...Variable speed electromagnetic joint, VRLL...Variable resistor.

Claims (1)

【特許請求の範囲】 1 デパレタイザーの次段に直結したアキユムレ
ーターとフイーラー間に介在連結された数多の各
種コンベヤ群からなる空容器搬送供給ラインにお
いて、前記フイーラーに付結しこれと同期運転す
るシーマーの運転速度に前記搬送供給ラインの運
転速度を追従同調する一方、当該空容器搬送供給
ラインの内最終段コンベヤにおいては空容器の流
速を検出し設定値に達した時には前記アキユムレ
ーターへ低速切替信号を出力するとともに、中段
のコンベヤでは空容器の流量を検出し設定値に達
しない時には前記アキユムレーターへ高速切替信
号を出力して前記フイーラーの充填処理量に呼応
して前記アキユムレーターの運転速度を随時可変
速操作し当該アキユムレーターから前記搬送供給
ライン始端に吐出す空容器量を前記フイーラーの
充填処理量に対応可能に逐次調整してなる空容器
搬送供給ラインの自動運転制御法。 2 シーマーの運転速度は、高低二段に調節設定
自在である特許請求の範囲第1項記載の空容器搬
送供給ラインの自動運転制御法。
[Scope of Claims] 1. In an empty container conveyance supply line consisting of a large number of various conveyor groups interposed and connected between an accumulator directly connected to the next stage of a depalletizer and a filler, the system is connected to the filler and operated in synchronization with the same. The operating speed of the conveyance supply line is tracked and synchronized with the operating speed of the seamer, while the final stage conveyor of the empty container conveyance and supply line detects the flow velocity of empty containers, and when it reaches a set value, sends a low speed switching signal to the accumulator. At the same time, the middle conveyor detects the flow rate of the empty container, and when it does not reach the set value, it outputs a high-speed switching signal to the accumulator, and the operating speed of the accumulator can be adjusted at any time in accordance with the filling throughput of the filler. An automatic operation control method for an empty container conveyance and supply line, which comprises changing the speed and sequentially adjusting the amount of empty containers discharged from the accumulator to the starting end of the conveyance and supply line so as to correspond to the filling throughput of the filler. 2. The automatic operation control method for an empty container conveyance and supply line according to claim 1, wherein the operating speed of the seamer can be adjusted and set in two stages, high and low.
JP5332778A 1978-05-04 1978-05-04 Control method and system for automatically operating empty container conveying line Granted JPS54146189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5332778A JPS54146189A (en) 1978-05-04 1978-05-04 Control method and system for automatically operating empty container conveying line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5332778A JPS54146189A (en) 1978-05-04 1978-05-04 Control method and system for automatically operating empty container conveying line

Publications (2)

Publication Number Publication Date
JPS54146189A JPS54146189A (en) 1979-11-15
JPS6149199B2 true JPS6149199B2 (en) 1986-10-28

Family

ID=12939621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5332778A Granted JPS54146189A (en) 1978-05-04 1978-05-04 Control method and system for automatically operating empty container conveying line

Country Status (1)

Country Link
JP (1) JPS54146189A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62295817A (en) * 1986-06-11 1987-12-23 Yoshida Youkei Kigu Seisakusho:Kk Adjusting device for supply quantity of egg from egg collector to after processor
JP2532763Y2 (en) * 1989-12-22 1997-04-16 山崎製パン株式会社 Transfer device for dough balls

Also Published As

Publication number Publication date
JPS54146189A (en) 1979-11-15

Similar Documents

Publication Publication Date Title
US4401189A (en) Start/stop control system for conveyor means
US5058727A (en) Conveyor apparatus
US8490775B2 (en) Multiplex grouping device
US4044897A (en) Conveyor sorting and orienting system
US20020063037A1 (en) Conveyor system and a method of operating same
US6244421B1 (en) Singulated release for a zoned conveyor system
JPS6149199B2 (en)
US3995735A (en) Conveyor system
US6241072B1 (en) Bottle manufacturing hopper system
JPS6371003A (en) Article assorting equipment
US20210366223A1 (en) Vending machine and goods delivery method
US5013983A (en) Self leveling dispenser
US5020305A (en) Package plattering device and method
JPH0477991A (en) Processing method for cup receiving fault of automatic vending machine
US2789678A (en) Conveyor system
JPH09208031A (en) Article sorting equipment
JP2839322B2 (en) Vending machine product unloading control device
JP3255245B2 (en) Vending machine control device
JP2784833B2 (en) Vending machine product unloading control device
JP2903638B2 (en) Vending machine product take-out device
JP2566249Y2 (en) Article supply device
KR0117866B1 (en) Food beverage supplying apparatus
JPH0367810A (en) Goods transfer device
JP3094063U (en) Product sorting device
JP2001118136A (en) Merchandise taking out and carrying device for vending machine and its controlling method