JPS6148914B2 - - Google Patents

Info

Publication number
JPS6148914B2
JPS6148914B2 JP54065827A JP6582779A JPS6148914B2 JP S6148914 B2 JPS6148914 B2 JP S6148914B2 JP 54065827 A JP54065827 A JP 54065827A JP 6582779 A JP6582779 A JP 6582779A JP S6148914 B2 JPS6148914 B2 JP S6148914B2
Authority
JP
Japan
Prior art keywords
bacterial cells
self
digestion
autolysis
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54065827A
Other languages
Japanese (ja)
Other versions
JPS55159791A (en
Inventor
Osamu Uchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP6582779A priority Critical patent/JPS55159791A/en
Publication of JPS55159791A publication Critical patent/JPS55159791A/en
Publication of JPS6148914B2 publication Critical patent/JPS6148914B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は菌体の自己消化方法に関するものであ
り、詳しくは自己消化に先立つて菌体にアルカリ
処理を施し、菌体に自己消化に必要な酵素を失活
させない限度で変化を起させ、同時に他の汚染菌
の生活能を停止ないし衰退させて自己消化中にお
ける腐敗を抑制する方法に関するものである。特
に本発明はアルカリ処理の少くとも一部を、食塩
や種々のエキス等の共存下に行なう方法に関する
ものである。菌体、特に酵母を自己消化させて酵
母エキスを製造することは公知である。このよう
な自己消化法としては、酵母に食塩を高濃度で添
加したり、酢酸エチル等の有機溶媒を添加して原
形質分離を生起させ、酵母を泥状化させたのち、
30〜70℃程度で自己消化を行なわせる方法があ
る。しかし高濃度の食塩の添加は、得られる酵母
エキス中の食塩濃度を高めるので好ましいことで
はなく、また食品添加物でない有機溶媒の使用も
本来避けるべきものである。 このような難点を解決する方法として、比較的
少量の食塩とエタノールを併用する方法が提案さ
れている(特開昭49―62675参照。) 本発明はかかる方法とは異なり、生菌体をPH10
以上のアルカリ水溶液と接触させて菌体をメチレ
ンブルーで明らかに染色され得る状態とするアル
カリ処理工程と、アルカリ処理工程を経た菌体を
PH5〜9で自己消化させる自己消化工程とよりな
り、且つアルカリ処理工程の少くとも一部は塩化
ナトリウム、グルタミン酸ソーダ、蛋白分解アミ
ノ酸、魚肉エキス、肉エキス、野菜エキス及び菌
体エキスより選ばれた少くとも1種の添加物の存
在下に行なわれることを特徴とする菌体の自己消
化方法である。 本発明について以下に詳細に説明すると、本発
明の自己消化方法の対象となるものは、種々の酵
母や細菌などの生菌体である。例えばサツカロマ
イセス・セレビシエ(Saccharomycess
cerevisiae)、サツカロマイセス・カールスベル
ゲンシス(Saccharmycess carlsbergensis)等
のサツカロマイセス属酵母、キヤンデイダ・ウチ
リス(Candida utilis)、キヤンデイダ・トロピ
カリス(Candida tropicalis)等のキヤンデイダ
属酵母、ピヒア・ミソ(Pichia miso)等の酵母
及びブレビバクテリウム属(Brevi―bacterium
sp.)やコリネバクテリウム属
(Corynebacterium sp.)で代表されるアミノ酸
発酵細菌等が原料として用いられる。 これらの酵母や細菌は種々の発酵工業の副産物
として得られたものを利用してもよく、また菌体
生産を目的として培養したものを用いてもよい。
例えばビール工業の副産物であるビール酵母は、
本発明方法の代表的な原料菌体である。これらの
菌体は生菌体であることが必要である。生菌体は
後述のメチレンブルー染色法で染色されないので
容易に識別できる。もちろん生菌体中に若干のメ
チレンブルー染色法で染色され得る菌体を含んで
いるものも本発明方法の原料とすることができ
る。従つて本発明方法の原料は実質的に生菌体で
あればよい。 本発明では、先ずこれらの菌体をPH10以上のア
ルカリ水溶液と接触させるアルカリ処理工程に付
する。この工程は、通常、菌体の水スラリーにア
ルカリを添加して所定のPHとし、若干撹拌するだ
けでよい。アルカリとしては苛性ソーダ、水酸化
カルシウム、アンモニア等のいずれをも用いるこ
とができるが、通常は苛性ソーダ若しくは水酸化
カルシウム又はこの両者を併用する。 アルカリ処理のPHが低いと、アルカリ処理に長
時間を要し且つ汚染菌の不活性化が不十分で、後
続する自己消化中に腐敗を起すことがある。一
方、PHが高すぎるとアルカリ処理中に菌体から核
酸や蛋白質が溶出し、且つ酵素の活性も損なわれ
易い。従つてアルカリ処理はPH10.5〜12.5、特に
11〜12で行なうのが好ましい。なお、アルカリ処
理中にPHが漸次低下するが、通常はそのままま放
置して差支えない。 アルカリ処理に際しては後続する自己消化が阻
害されないように、すなわち菌体の酵素活性がで
きるだけ保存されるようにすることが重要であ
る。従つてアルカリ処理は低温で行なうことが好
ましく、通常は0〜40℃、好ましくは5〜30℃で
行なわれる。アルカリ処理は菌体がメチレンブル
ー染色法により、明らかに染色されるようになる
まで行なう。なおメチレンブルー染色法とは、ア
ルカリ処理した菌体懸濁液を水で稀釈してスライ
ドガラス上に一滴とり、これにメチレンブルー液
(メチレンブルー0.02gを蒸留水50mlに溶解させ
た溶液と、Na2HPO4・12H2O:0.018gと
KH2PO4:2.70gを蒸留水50mlに溶解させた溶液
とを一緒にした溶液)を一滴加え、菌体が染色さ
れたか否かを顕微鏡で観察する方法である。メチ
レンブルー染色法で明らかに染色されるようにな
れば、染色された菌体だけでなく未染色の菌体も
既に変化しているので、アルカリ処理を中止して
も未染色の菌体は短時間のうちに染色されるに至
る。通常は菌体の50%以上が染色されるまでアル
カリ処理を行なう。染色された菌体の比率は血球
盤を用いることにより容易に算出することができ
る。 アルカリ処理の時間は通常1〜60分であり、ア
ルカリ性が強いほど、また温度が高いほど短時間
の処理でよい。例えばPH12以上の強アルカリ性下
では、通常、1分未満の極めて短い時間アルカリ
と接触させるだけで明らかに染色が認められるよ
うになる。処理時間が長いと酵素が失活するおそ
れがあるので、必要以上に長時間の処理をするの
は避けるべきである。好ましいアルカリ処理時間
は20分以内である。特にPH11〜12で5分以内のア
ルカリ処理が好ましい。 本発明ではアルカリ処理工程の少くとも一部
は、塩化ナトリウム、グルタミン酸ソーダ、蛋白
分解アミノ酸、魚肉エキス、肉エキス、、野菜エ
キス及び菌体エキスより選ばれた少くとも1種の
存在下に行なうこと、即ちこれらの添加物の存在
下に菌体とPH10以上のアルカリ水溶液とを接触さ
せることが必要である。例えば圧搾酵母のような
含水菌体や菌体の水スラリーに上記の添加物を加
えておき、次いでアルカリを添加して所定のPHと
するか又は上記の添加物とアルカリとを同時に添
加して所定のPHとすることにより、アルカリ処理
工程の全部を添加物の存在下に行なうことができ
る。また菌体の水スラリーにアルカリを添加して
所定のPHとし、次いで上述の添加物を加えること
により、アルカリ処理工程の後半を添加物の存在
下に行なうようにすることもできる。多量の不純
物を含む菌体を原料とする場合には、菌体を上記
の添加物の不存在下にアルカリ水溶液に懸濁し、
次いで遠心分離装置で上澄液と菌体を含むスラリ
ーとに分離し、このスラリーに上記の添加物を加
えてPH10以上の所定のPHに保持するのが好まし
い。アルカリ処理工程を上述の添加物の存在下に
行なうと、アルカリ処理の効果が強く表われる。
従つてPH及び温度が同じならば、短時間の処理で
菌体が染色されるようになる。また、温度及び処
理時間が同じならば、より低いPHで処理を行なう
ことができる。また、これらの添加物は自己消化
工程で自己消化液の防腐能を高める効果もある。 添加物の濃度は菌体が自己融解を起すに十分な
濃度であることが好ましい。通常は塩化ナトリウ
ムの場合で1〜5(重量)%、エキス等の場合に
はこれよりも若干多く、数%〜10(重量)%の濃
度となるように菌体スラリーに添加される。これ
らの添加物のうち最も一般的なのは塩化ナトリウ
ムであり、含水菌体または菌体の水スラリーに塩
化ナトリウムを所定濃度となるように添加して菌
に原形質分離を起させ、引続いてアルカリを添加
して所定のPHとする方法が多く用いられる。自己
消化はアルカリ処理の終つた菌体に酸を加え、PH
を5〜9に調整しながら行なう。酸としては塩
酸、燐酸等の無機酸及び酢酸、クエン酸、リンゴ
酸、乳酸等の有機酸が用いられる。アルカリ処理
を水酸化カルシウムを含む水溶液中で行なつた場
合には、酸として燐酸ないし燐酸と他の酸とを併
用して、カルシウムを燐酸カルシウムとして析出
させるのが好ましく、かくすることにより更にす
ぐれた自己消化液が得られる。 特に生菌体にビール工業の副産物であるビール
酵母を用いた場合には、自己消化液中にホツプに
由来すると考えられるにがみがあるが、アルカリ
として水酸化カルシウムを用い且つ酸として燐酸
を用いてカルシウムを燐酸カルシウムとして析出
させると、自己消化液のにがみも同時に除去する
ことができる。自己消化は菌体を5〜25(重量)
%の懸濁液とし、若干撹拌しつつ20〜50℃、特に
30〜50℃に保持することにより容易に行なうこと
ができる。なお、自己消化中に液のPHは漸次低下
するので、本発明ではアルカリ処理した菌体をPH
9より若干高いPHまで中和して自己消化を開始さ
せ、自己消化の実質的部分はPH5〜9で行なわせ
るようにすることもできる。しかしPH5〜9の範
囲外では自己消化は著るしく遅いので、最初から
PH5〜9に調整して自己消化させるのが好まし
い。自己消化に要する時間は温度及びアルカリ処
理の条件によつても異なるが、通常10〜30時間程
度である。 実己消化が終了したならば、加熱して酵素を失
活させる。かくして得られた自己消化液は残渣を
分離したのち濃縮して酵母エキス等としてもよ
く、またそのまま濃縮して調味料とすることもで
きる。所望ならば濃縮に先立ち骨粉や他のエキ
ス、油脂等を添加してもよい。 本発明方法によれば、食品添加物として許容さ
れているものだけを用いて、腐敗をおこさせるこ
となく自己消化を行なわせることができ、得られ
る自己消化液は風味にすぐれている。 次に実施例により本発明を更に詳細に説明する
が、本発明は以下の実施例に限定されるものでは
ない。なお、実施例で用いたパン酵母は下記の方
法により取得したものである。市販のパン酵母10
Kgを水道水で6倍に稀釈してスラリーとし、次い
で遠心清浄機で酵母を濃縮する操作を5回反復し
て、固形分18(重量)%の酵母を得た。 糖8(重量)%(糖としてはスラツジを分離し
た糖蜜を使用)、KH2PO40.2(重量%、
NH4H2PO40.6(重量)%、MgSO4・7H2O0.03
(重量)%、酵母エキス0.2(重量)%、ビオチン
2μg/の培地を加熱殺菌して、撹拌機を備え
た100の培養槽に仕込んだ。これに前記の固形
分18%の酵母を投入し、アンモニア水でPHを5に
保ちながら、20℃で8時間培養し、酵母が分裂し
たことを確認した。次いで10℃で24時間静置培養
を行なつたのち遠心分離して酵母を回収した。酵
母は5回水洗したのち遠心分離機で脱水して、固
形分26(重量)%、乾物の粗蛋白質含量52.4(重
量)%のパン酵母とした。 実施例 1 パン酵母100gに塩化ナトリウム1gを添加し
て自己融解させた。次いで1N−NaOHを添加して
PH10.4とし、30℃で10分保持した。メチレンブル
ー染色率は70%以上であつた。このスラリーに
1N−HClを加えてPH9とし、38〜40℃で16時間自
己消化させた。自己消化終了時のPHは6.7であつ
た。得られた自己消化液は1N−HClでPH6.0に調
節し、水を加えて500gとし、95〜99℃に5分間
保持した。次いで遠心分離機で上澄液と沈澱とに
分離し、沈澱は水を加えて500gとしたのち再び
遠心分離機で上澄液と沈澱とに分離した。沈澱の
乾物重量は17.2gであつた。従つて酵母の乾物重
量の34%が自己消化により菌体外に抽出されたこ
とになる(以下、これをエキス抽出率という。) 実施例2〜7 パン酵母100gに下記の添加物を加えて自己融
解させた。次いで0.4N―NaOHを加えてPH11と
し、20℃で10分間保持した。メチレンブルー染色
率は90%以上であつた。このスラリーに1N―HC
を加えてPH8とし、38℃で16時間自己消化を行
なわせた。自己消化終了時のPHは6.7〜7であつ
た。結果を第1表に示す。
The present invention relates to a method for self-digestion of bacterial cells, and more specifically, prior to autolysis, the bacterial cells are treated with alkali to cause changes in the bacterial cells to the extent that enzymes necessary for autolysis are not deactivated, and at the same time. This invention relates to a method for suppressing putrefaction during autolysis by stopping or reducing the viability of other contaminating bacteria. In particular, the present invention relates to a method in which at least part of the alkaline treatment is carried out in the presence of common salt, various extracts, and the like. It is known to produce yeast extract by autolyzing bacterial cells, especially yeast. Such autolysis involves adding a high concentration of table salt or an organic solvent such as ethyl acetate to yeast to cause plasma separation and turning the yeast into a slurry.
There is a method that allows autolysis to occur at a temperature of about 30 to 70 degrees Celsius. However, adding a high concentration of salt is not preferable because it increases the salt concentration in the yeast extract obtained, and the use of organic solvents that are not food additives should also be avoided. As a method to solve these difficulties, a method has been proposed in which a relatively small amount of salt and ethanol are used in combination (see Japanese Patent Application Laid-Open No. 49-62675.) The present invention differs from such a method in that live bacteria are heated to pH 10.
An alkaline treatment step in which the bacterial cells are brought into contact with the above alkaline aqueous solution to a state where they can be clearly stained with methylene blue, and the bacterial cells that have undergone the alkali treatment step are
It consists of an autolysis step of self-digestion at pH 5 to 9, and at least a part of the alkali treatment step is selected from sodium chloride, monosodium glutamate, proteolytic amino acids, fish extract, meat extract, vegetable extract, and bacterial cell extract. This is a method for self-digestion of bacterial cells, characterized in that it is carried out in the presence of at least one kind of additive. The present invention will be described in detail below. The targets of the autolysis method of the present invention are live microbial cells such as various yeasts and bacteria. For example, Saccharomyces cerevisiae (Saccharomyces
cerevisiae), Saccharomyces carlsbergensis (Saccharomyces carlsbergensis), Candida genus yeast such as Candida utilis (Candida tropicalis), Candida tropicalis (Candida tropicalis), Pichia miso (Pichia miso), etc. and Brevi-bacterium spp.
Amino acid-fermenting bacteria such as those typified by Corynebacterium sp. and Corynebacterium sp. are used as raw materials. These yeasts and bacteria may be obtained as by-products of various fermentation industries, or may be cultured for the purpose of producing bacterial cells.
For example, brewer's yeast, a byproduct of the beer industry,
This is a typical raw material bacterial cell for the method of the present invention. These microbial cells need to be viable microbial cells. Live bacteria can be easily identified because they are not stained by the methylene blue staining method described below. Of course, viable cells containing some cells that can be stained with methylene blue staining can also be used as the raw material for the method of the present invention. Therefore, the raw material for the method of the present invention may be substantially viable bacterial cells. In the present invention, these bacterial cells are first subjected to an alkali treatment step in which they are brought into contact with an alkaline aqueous solution having a pH of 10 or higher. This step usually requires only adding an alkali to a water slurry of bacterial cells to adjust the pH to a predetermined value and stirring the slurry slightly. As the alkali, any of caustic soda, calcium hydroxide, ammonia, etc. can be used, but usually caustic soda, calcium hydroxide, or both are used in combination. If the pH of the alkaline treatment is low, the alkaline treatment takes a long time and the inactivation of contaminants is insufficient, which may cause spoilage during the subsequent autolysis. On the other hand, if the pH is too high, nucleic acids and proteins are likely to be eluted from the bacterial cells during alkaline treatment, and enzyme activity is likely to be impaired. Therefore, alkaline treatment has a pH of 10.5 to 12.5, especially
11 to 12 is preferable. Note that the pH will gradually decrease during the alkali treatment, but normally it can be left as is. During alkaline treatment, it is important to ensure that the subsequent autolysis is not inhibited, that is, that the enzymatic activity of the bacterial cells is preserved as much as possible. Therefore, the alkali treatment is preferably carried out at a low temperature, usually from 0 to 40°C, preferably from 5 to 30°C. The alkaline treatment is carried out until the bacterial cells become clearly stained by methylene blue staining. The methylene blue staining method involves diluting an alkali-treated bacterial cell suspension with water, placing a drop on a slide glass, and adding methylene blue solution (a solution of 0.02 g of methylene blue dissolved in 50 ml of distilled water) and Na 2 HPO. 4・12H 2 O: 0.018g
In this method, a drop of a solution prepared by dissolving 2.70 g of KH 2 PO 4 in 50 ml of distilled water is added, and the microbial cells are observed under a microscope to see if they are stained. If the methylene blue staining method clearly stains the cells, not only the stained cells but also the unstained cells have already changed, so even if the alkali treatment is stopped, the unstained cells will remain for a short period of time. It will eventually become dyed. Usually, alkaline treatment is carried out until 50% or more of the bacterial cells are stained. The ratio of stained bacterial cells can be easily calculated using a hemocyte disc. The time for the alkaline treatment is usually 1 to 60 minutes, and the stronger the alkalinity or the higher the temperature, the shorter the treatment may be. For example, under strong alkaline conditions with a pH of 12 or higher, staining becomes clearly visible after contact with the alkali for an extremely short period of less than 1 minute. If the treatment time is too long, the enzyme may be deactivated, so treatment should be avoided for an unnecessarily long time. The preferred alkali treatment time is within 20 minutes. In particular, alkali treatment at pH 11 to 12 within 5 minutes is preferred. In the present invention, at least a part of the alkali treatment step is carried out in the presence of at least one selected from sodium chloride, monosodium glutamate, proteolytic amino acids, fish extract, meat extract, vegetable extract, and bacterial cell extract. That is, it is necessary to bring the bacterial cells into contact with an alkaline aqueous solution having a pH of 10 or more in the presence of these additives. For example, the above additives may be added to water-containing microbial cells such as compressed yeast or an aqueous slurry of microbial cells, and then an alkali may be added to adjust the pH to a predetermined level, or the above additives and an alkali may be added at the same time. By setting the pH to a predetermined value, the entire alkali treatment step can be performed in the presence of additives. Alternatively, the second half of the alkali treatment step can be carried out in the presence of the additive by adding an alkali to the water slurry of the bacterial cells to adjust the pH to a predetermined value, and then adding the above-mentioned additives. When using bacterial cells containing a large amount of impurities as a raw material, suspend the bacterial cells in an alkaline aqueous solution in the absence of the above additives,
It is then separated into a supernatant liquid and a slurry containing bacterial cells using a centrifugal separator, and the above-mentioned additives are added to this slurry to maintain it at a predetermined pH of 10 or higher. When the alkali treatment step is carried out in the presence of the above-mentioned additives, the effect of the alkali treatment becomes more pronounced.
Therefore, if the pH and temperature are the same, the bacterial cells can be stained with a short treatment time. Furthermore, if the temperature and treatment time are the same, the treatment can be performed at a lower pH. In addition, these additives have the effect of increasing the preservative ability of the autolytic fluid during the autolysis process. The concentration of the additive is preferably a concentration sufficient to cause autolysis of the bacterial cells. Usually, in the case of sodium chloride, it is added to the bacterial cell slurry at a concentration of 1 to 5% (by weight), and in the case of extracts, the concentration is slightly higher, ranging from several percent to 10% (by weight). The most common of these additives is sodium chloride, which is added to a predetermined concentration of hydrated bacterial cells or an aqueous slurry of bacterial cells to cause plasmolysis of the bacteria, followed by alkali treatment. A method is often used to adjust the pH to a predetermined value by adding . Autolysis involves adding acid to the bacterial cells that have been treated with alkaline to adjust the pH.
Do this while adjusting the number from 5 to 9. As the acid, inorganic acids such as hydrochloric acid and phosphoric acid, and organic acids such as acetic acid, citric acid, malic acid, and lactic acid are used. When the alkali treatment is carried out in an aqueous solution containing calcium hydroxide, it is preferable to use phosphoric acid or a combination of phosphoric acid and another acid as the acid to precipitate the calcium as calcium phosphate, which provides an even better result. An autolyzed solution can be obtained. In particular, when brewer's yeast, a byproduct of the beer industry, is used as the living microbial cell, there is a bitterness in the autolysis liquid that is thought to originate from hops, but calcium hydroxide is used as the alkali and phosphoric acid is used as the acid. When calcium is precipitated as calcium phosphate, the bitterness of the autolytic fluid can be removed at the same time. Autolysis reduces bacterial cells to 5-25 (weight)
% suspension, and stir it slightly at 20-50℃, especially
This can be easily done by maintaining the temperature at 30 to 50°C. Note that the pH of the liquid gradually decreases during autolysis, so in the present invention, the pH of the alkali-treated bacterial cells is reduced.
It is also possible to initiate autolysis by neutralizing to a pH slightly above 9, with a substantial portion of the autolysis occurring at a pH of 5-9. However, autolysis is extremely slow outside the pH range of 5 to 9, so from the beginning
It is preferable to adjust the pH to 5 to 9 for autolysis. The time required for autolysis varies depending on the temperature and alkali treatment conditions, but is usually about 10 to 30 hours. Once the fruit itself has been digested, the enzymes are deactivated by heating. After separating the residue, the autolyzed liquid obtained in this manner may be concentrated to produce a yeast extract or the like, or it may be directly concentrated to be used as a seasoning. If desired, bone meal, other extracts, oils, etc. may be added prior to concentration. According to the method of the present invention, autolysis can be carried out without causing spoilage by using only food additives that are allowed, and the resulting autolysis liquid has excellent flavor. EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples. The baker's yeast used in the examples was obtained by the following method. Commercially available baker's yeast 10
Kg was diluted 6 times with tap water to form a slurry, and the operation of concentrating the yeast using a centrifugal cleaner was repeated five times to obtain yeast with a solid content of 18% (by weight). Sugar 8 (weight) % (molasses separated from sludge is used as sugar), KH 2 PO 4 0.2 (weight %,
NH 4 H 2 PO 4 0.6 (weight)%, MgSO 4 7H 2 O0.03
(weight)%, yeast extract 0.2% (weight), and biotin 2 μg/L medium was heat sterilized and placed in 100 culture vessels equipped with a stirrer. The above-mentioned yeast with a solid content of 18% was added to this, and while the pH was maintained at 5 with aqueous ammonia, it was cultured at 20°C for 8 hours, and it was confirmed that the yeast had split. Next, after static culture was performed at 10°C for 24 hours, the yeast was collected by centrifugation. The yeast was washed with water five times and then dehydrated using a centrifuge to obtain baker's yeast with a solid content of 26% (by weight) and a dry crude protein content of 52.4% (by weight). Example 1 1 g of sodium chloride was added to 100 g of baker's yeast to cause it to self-thaw. Then add 1N-NaOH
The pH was adjusted to 10.4 and maintained at 30°C for 10 minutes. The methylene blue staining rate was over 70%. to this slurry
1N-HCl was added to adjust the pH to 9, and autolysis was carried out at 38-40°C for 16 hours. The pH at the end of autolysis was 6.7. The resulting autolysis solution was adjusted to pH 6.0 with 1N HCl, water was added to make 500 g, and the solution was kept at 95-99°C for 5 minutes. Next, it was separated into a supernatant liquid and a precipitate using a centrifuge, and the precipitate was made up to 500 g by adding water, and then separated into a supernatant liquid and a precipitate using a centrifuge again. The dry weight of the precipitate was 17.2 g. Therefore, 34% of the dry weight of the yeast was extracted outside the cells by autolysis (hereinafter referred to as extract extraction rate). Examples 2 to 7 The following additives were added to 100 g of baker's yeast. Self-lysed. Next, 0.4N-NaOH was added to adjust the pH to 11, and the mixture was kept at 20°C for 10 minutes. The methylene blue staining rate was over 90%. 1N-HC in this slurry
was added to adjust the pH to 8, and autolysis was carried out at 38°C for 16 hours. The pH at the end of autolysis was 6.7-7. The results are shown in Table 1.

【表】 アミノ酸:グルテンを酸分解して得たアミノ酸
混合物の粉末で、組成は塩化ナトリウム58
(重量)%、アミノ酸その他42(重量)% 魚肉エキス:まいわしの熱水抽出物の粉末 牛肉エキス:粗蛋白60(重量)%、水分17(重
量)%、塩化ナトリウム3(重量)% 酵母エキス:塩化ナトリウム47(重量)%、エ
キス分その他53(重量)% 野菜エキス:アスパラガス缶詰の煮汁の粉末
で、組成は灰分7(重量)%、全窒素2.1
(重量)%、可溶性無窒素物81(重量)% 実施例 8 予じめアルカリ水溶液で洗浄したビール前発酵
酵母(固形分23(重量)%、メチレンブルー染色
率5%以下)45gを、水30mlに懸濁させてスラリ
ーとした。このスラリーのPHは6.8であつた。こ
れに塩化ナトリウム1.5gと1N―NaOHを添加し
てPH11.5とし、20℃で3分間保持した。メチレン
ブルー染色率は90%以上であつた。次いで1N―
HClでPH8とし、38℃で24時間自己消化させた。
なお、自己消化の途中で時々1N―NaOHを添加し
てPHを8〜6.5の範囲に維持した。エキス抽出率
34%が得られた。
[Table] Amino acids: Powder of amino acid mixture obtained by acid decomposition of gluten, composition is 58% sodium chloride.
(weight)%, amino acids and other 42% (weight) Fish meat extract: Powder of hot water extract of Japanese sardine Beef extract: Crude protein 60% (weight), water 17% (weight), sodium chloride 3% (weight) Yeast Extract: Sodium chloride 47% (weight), other extracts 53% (weight) Vegetable extract: Powdered broth from canned asparagus, composition: ash 7% (weight), total nitrogen 2.1
(weight) %, soluble nitrogen-free matter 81 (weight) % Example 8 45 g of beer pre-fermentation yeast (solid content 23 (weight) %, methylene blue staining rate 5% or less) washed in advance with an alkaline aqueous solution and 30 ml of water. to make a slurry. The pH of this slurry was 6.8. 1.5 g of sodium chloride and 1N-NaOH were added to this to adjust the pH to 11.5, and the mixture was maintained at 20°C for 3 minutes. The methylene blue staining rate was over 90%. Then 1N-
The pH was adjusted to 8 with HCl and autolysis was performed at 38°C for 24 hours.
In addition, 1N-NaOH was occasionally added during the autolysis to maintain the pH in the range of 8 to 6.5. Extract extraction rate
34% was obtained.

Claims (1)

【特許請求の範囲】 1 生菌体をPH10以上のアルカリ水溶液と接触さ
せて菌体をメチレンブルーで明らかに染色され得
る状態とするアルカリ処理工程と、アルカリ処理
工程を経た菌体をPH5〜9で自己消化させる自己
消化工程とよりなり、且つアルカリ処理工程の少
くとも一部は塩化ナトリウム、グルタミン酸ソー
ダ、蛋白分解アミノ酸、魚肉エキス、肉エキス、
野菜エキス及び菌体エキスより選ばれた少くとも
1種の添加物の存在下に行なわれることを特徴と
する菌体の自己消化方法。 2 特許請求の範囲第1項記載の菌体の自己消化
方法において、アルカリ処理工程を菌体の50%以
上が染色され得るに至るまで行なうことを特徴と
する方法。 3 特許請求の範囲第1項又は第2項記載の菌体
の自己消化方法において、アルカリ処理工程をア
ルカリ水溶液に生菌体を懸濁させたのち遠心分離
装置で上澄液と菌体を含むスラリーとに分離し、
このスラリーに塩化ナトリウム、グルタミン酸ソ
ーダ、蛋白分解アミノ酸、魚肉エキス、肉エキ
ス、野菜エキス及び菌体エキスより選ばれた少く
とも1種の添加物を加えてPH10以上に保持するこ
とにより行なうことを特徴とする方法。 4 特許請求の範囲第1項ないし第3項のいずれ
かに記載の菌体の自己消化方法において、生菌体
をPH11〜12のアルカリ水溶液と接触させることを
特徴とする方法。 5 特許請求の範囲第1項ないし第4項のいずれ
かに記載の菌体の自己消化方法において、自己消
化を30〜50℃で行なうことを特徴とする方法。 6 特許請求の範囲第1項ないし第5項のいずれ
かに記載の菌体の自己消化方法において、アルカ
リ処理を5〜30℃で行なうことを特徴とする方
法。 7 特許請求の範囲第1項ないし第6項のいずれ
かに記載の菌体の自己消化方法において、アルカ
リ処理を水酸化カルシウムを含むアルカリ水溶液
中で行ない、次いで菌体を含むアルカリ水溶液を
燐酸を含む酸を用いて中和してPH5〜9として自
己消化させることを特徴とする方法。
[Scope of Claims] 1. An alkaline treatment step in which viable bacterial cells are brought into contact with an alkaline aqueous solution with a pH of 10 or more to bring the bacterial cells into a state where they can be clearly stained with methylene blue; At least a part of the alkali treatment step includes sodium chloride, monosodium glutamate, proteolytic amino acids, fish meat extract, meat extract,
A method for self-digestion of bacterial cells, characterized in that the method is carried out in the presence of at least one additive selected from vegetable extracts and bacterial cell extracts. 2. The method for self-digestion of bacterial cells according to claim 1, characterized in that the alkali treatment step is carried out until 50% or more of the bacterial cells can be stained. 3. In the method for self-digestion of bacterial cells according to claim 1 or 2, the alkali treatment step involves suspending live bacterial cells in an alkaline aqueous solution and then using a centrifuge to remove the supernatant liquid and the bacterial cells. Separate into slurry and
The slurry is characterized by adding at least one additive selected from sodium chloride, monosodium glutamate, proteolytic amino acids, fish extract, meat extract, vegetable extract, and bacterial cell extract to maintain the pH at 10 or above. How to do it. 4. A method for self-digestion of bacterial cells according to any one of claims 1 to 3, characterized in that viable bacterial cells are brought into contact with an alkaline aqueous solution having a pH of 11 to 12. 5. A method for autolysis of bacterial cells according to any one of claims 1 to 4, characterized in that the autolysis is carried out at 30 to 50°C. 6. The method for self-digestion of bacterial cells according to any one of claims 1 to 5, characterized in that the alkali treatment is carried out at 5 to 30°C. 7. In the method for self-digestion of bacterial cells according to any one of claims 1 to 6, the alkali treatment is performed in an alkaline aqueous solution containing calcium hydroxide, and then the alkaline aqueous solution containing the bacterial cells is treated with phosphoric acid. A method characterized by neutralizing using an acid containing the acid and autolyzing it to a pH of 5 to 9.
JP6582779A 1979-05-28 1979-05-28 Autolysis of microbial cell Granted JPS55159791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6582779A JPS55159791A (en) 1979-05-28 1979-05-28 Autolysis of microbial cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6582779A JPS55159791A (en) 1979-05-28 1979-05-28 Autolysis of microbial cell

Publications (2)

Publication Number Publication Date
JPS55159791A JPS55159791A (en) 1980-12-12
JPS6148914B2 true JPS6148914B2 (en) 1986-10-27

Family

ID=13298240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6582779A Granted JPS55159791A (en) 1979-05-28 1979-05-28 Autolysis of microbial cell

Country Status (1)

Country Link
JP (1) JPS55159791A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843760A (en) * 1981-09-10 1983-03-14 Mitsubishi Chem Ind Ltd Preparation of yeast extract
JPH03503476A (en) * 1987-07-22 1991-08-08 インペリアル キャンサー リサーチ テクノロジー,リミテッド Digestion method

Also Published As

Publication number Publication date
JPS55159791A (en) 1980-12-12

Similar Documents

Publication Publication Date Title
EP0354610B1 (en) Method for the preparation of a yeast extract, said yeast extract, its use as a food flavour, and a food composition comprising the yeast extract
JP5783401B2 (en) Yeast autolysate
EP0081262B1 (en) Process for the production of alpha-galactosidase and uses of the enzyme thus obtained
US3632346A (en) Process for rendering innocuous flatulence-producing saccharides
US4218481A (en) Yeast autolysis process
US3761353A (en) Enzymatic protein solubilization
US4032663A (en) Process for using cell wall-lysing enzymes
JP3519572B2 (en) Yeast extract composition and yeast mutant for obtaining the same
US4122196A (en) Process for the manufacture of yeast glycan
US3775393A (en) Ammonia extraction of unicellular microorganisms
US3991215A (en) Manufacture of yeast protein isolate having a reduced nucleic acid content by a thermal process
US4769329A (en) Preparation of optically pure D- and L- lactic acid
US4285976A (en) Method for accelerating autolysis of yeast
JP2891296B2 (en) Food material containing a large amount of γ-aminobutyric acid and method for producing the same
US3960659A (en) Treatment of proteinaceous material
EP0039415B1 (en) Process for producing a yeast extract
JPS6148914B2 (en)
US3996104A (en) Process for preparing from a microbial cell mass a protein concentrate having a low nucleic acid content, and the protein concentrate thus obtained
US3969189A (en) Cell wall-lysing complex enzymes and a process for the production thereof
US3443969A (en) Method for preparing condiments from yeasts
US3686144A (en) Recovery of yeast proteins in refined form and with high yield by dehydration with an alkanol followed by acidic esterification
US4133904A (en) Treatment of single cell protein
US20040258800A1 (en) Brewer' s yeast or brewer' s yeast extract with improved flavor, process for producing the same and flavor improving agent therefor
JPS6148913B2 (en)
US5981212A (en) Way of increasing the riboflavin content in spray-dried discharges from riboflavin fermentations