JPS6148808A - Distributed index lens - Google Patents

Distributed index lens

Info

Publication number
JPS6148808A
JPS6148808A JP17104484A JP17104484A JPS6148808A JP S6148808 A JPS6148808 A JP S6148808A JP 17104484 A JP17104484 A JP 17104484A JP 17104484 A JP17104484 A JP 17104484A JP S6148808 A JPS6148808 A JP S6148808A
Authority
JP
Japan
Prior art keywords
lens
spherical aberration
index lens
focal length
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17104484A
Other languages
Japanese (ja)
Other versions
JPH0556484B2 (en
Inventor
Takeshi Baba
健 馬場
Jun Hattori
純 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17104484A priority Critical patent/JPS6148808A/en
Publication of JPS6148808A publication Critical patent/JPS6148808A/en
Publication of JPH0556484B2 publication Critical patent/JPH0556484B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To compensate a spherical aberration and a sine condition at the same time by allowing the relation among the constant of an equation expressing a refractive index ditribution, thickness of a lens, and its focal length to meet specific requirements. CONSTITUTION:The distributed index lens has flat surfaces as both end surfaces and satisfies N(r)=N0+N1r<2>+N2r<4>+..., where N(r) is the refractive index distribution at distance (r) from the optical axis and N0, N1, N2... are constants. For this purpose, N1<0, 0.01<=N2.f<4=0.09, and 2.3<d/f, and (-2N1/N0)<1/2>. d<=pi/2, where (d) is the thickness of the lens, (f) is the focal length of the lens, and pi is the circle ratio. Consequently, the spherical aberration and sine condition are both compensated although both end surfaces are flat.

Description

【発明の詳細な説明】 本発明は、半導体レーザのコリメータレンズ或いは光デ
イスク装置のピックアップレンズ、等に好適な屈折率分
布型レンズに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gradient index lens suitable for a collimator lens of a semiconductor laser, a pickup lens of an optical disk device, and the like.

従来より、光軸と垂直な方向に屈折率分布を有するレン
ズ、いわゆるラディアル・グラディエンド・インデック
ス・レンズとしては、セルフォックレンズ(商品名)が
良く知られており、王立等倍結像素子として複写機など
に使用されている。
Selfoc lens (trade name) is well known as a so-called radial gradient index lens, which has a refractive index distribution in the direction perpendicular to the optical axis, and is known as the Royal 1-magnification imaging element. Used in copy machines, etc.

屈折率分布型レンズは製造上、微小なレンズを得ること
が容易で、このため近年においては半導体レーザのフリ
メータレンズ、光デイスク装置のピックアップレンズや
ファイバーのカップリングレンズに応用する試みがちる
。しかし、このようなレンズは実用上、軸上収差だけで
なく物体が光軸近傍に存在するときも良好な結像性能を
有していること、即ち正弦条件を満足していることが必
要でおる。このため、特開昭58−122512号公報
、特開昭59−62815号公報等においてはラディア
ル・グラデイエントインデックスレンズの両端面に曲率
をつけることにより前述の性能を得ている。しかし、屈
曲率分布型レンズを使用する最大の理由は、微小な球面
レンズのtX面加工に比して、両端面を平面研磨するだ
けでレンズが得られる、という製造上、加工上の長所に
あり、従って屈折率分布型レンズの両端面を球面加工す
ることは望ましくないことであった。
It is easy to manufacture a gradient index lens into a minute lens, and therefore, in recent years, there have been many attempts to apply it to frimeter lenses for semiconductor lasers, pickup lenses for optical disk devices, and coupling lenses for fibers. However, in practice, such a lens must have good imaging performance not only against axial aberrations but also when an object is near the optical axis, that is, it must satisfy the sine condition. is. For this reason, in JP-A-58-122512 and JP-A-59-62815, the above-mentioned performance is obtained by adding curvature to both end surfaces of a radial gradient index lens. However, the biggest reason for using a gradient index lens is its manufacturing and processing advantage, in that the lens can be obtained by simply polishing both end faces to a flat surface, compared to the tX surface processing of minute spherical lenses. Therefore, it is not desirable to process both end surfaces of a gradient index lens into spherical surfaces.

本発明の目的は、上述した点を鑑み、両端面が平面でち
りながら球面収差と正弦条件とを同時に補正可能な屈折
率分布型レンズを提供することにある。
In view of the above-mentioned points, it is an object of the present invention to provide a gradient index lens that can simultaneously correct spherical aberration and sine conditions while having both end faces flat.

本発明では、その両端面が平面で且つNO+N1 rN
2+・・・・・・を定数として、光軸からrの点に於け
る屈折率分布)T(r)が、 N(r)++a NO+N1r”+N2r’+ −・・
・・で表わされる屈折率分布製レンズに於いて、(1)
  l’h<0 (n)  o、o 1≦N2・f4≦0.09(lit
)  2.3 <〜り なる条件を満足させることに、より上記目的を達成せん
とするものである。同、dはレンズの肉厚、即ち光軸上
の長さ、ではレンズの焦点距離、πは円周率である。
In the present invention, both end faces are flat and NO+N1 rN
With 2+...... as a constant, the refractive index distribution at a point r from the optical axis) T(r) is N(r)++a NO+N1r''+N2r'+ -...
In the gradient index lens represented by..., (1)
l'h<0 (n) o, o 1≦N2・f4≦0.09 (lit
) 2.3 We aim to achieve the above objective by satisfying the following conditions. Similarly, d is the thickness of the lens, that is, the length on the optical axis, the focal length of the lens, and π is the circumference.

以下、本発明に関して詳述する。The present invention will be explained in detail below.

球面収差と正弦条件を補正するためには、3次の球面収
差係数及びコマ収差係数の値をそれぞれ小さくする必要
がある。
In order to correct the spherical aberration and the sine condition, it is necessary to reduce the values of the third-order spherical aberration coefficient and coma aberration coefficient.

屈折率Nが光軸からの距1ii11rに対して、”(r
)=No−+−N1r2+n、 r’4HSr6+ 、
、、  ・(NO+’1 +N2 +’3s・・・・・
一定)と表わされる両端面が平面のラディアルグラデイ
エントインデックスレンズにおいて、3次の収差係数の
値に寄与するパラメータは、NQ、N1゜N2及びレン
ズ肉厚dの4つである。
For the distance 1ii11r from the optical axis, the refractive index N is ``(r
)=No-+-N1r2+n, r'4HSr6+,
,, ・(NO+'1 +N2 +'3s...
In a radial gradient index lens whose end surfaces are flat and which are expressed as constant), there are four parameters that contribute to the value of the third-order aberration coefficient: NQ, N1°N2, and lens thickness d.

一方、要求される条件は、 3次球面収差係数 1キロ 3次コマ収差係数 ■中0 03つの条件である。On the other hand, the required conditions are Third-order spherical aberration coefficient 1 kg Third-order coma aberration coefficient ■ Medium 0 There are three conditions.

N2が3次の各収差係数と線型な関係にあることは、J
our、 Opt、 Eloc、 Am、 60巻、1
436〜1443頁、1970年刊行のP、 J、5a
nasの論文によ)知られている。従って、この関係を
%tl用して、”G +Nl + ’に対して、3次球
面収差係数Iがほぼ零となる様に、N2を設定した。こ
の時、N2の値は、焦点距離をfとすると、 0.01≦N2・f4≦0.09 なる関係を満たすことが望ましい。R口ち、N2・f4
が上限値を越えると球面収差が補正過剰にな9、下限値
を越えると球面収差が補正不足となるカ蔦らである。
The fact that N2 has a linear relationship with each third-order aberration coefficient means that J
our, Opt, Eloc, Am, 60 volumes, 1
436-1443, P, J, 5a published in 1970.
(according to a paper by Nas). Therefore, using this relationship as %tl, N2 was set so that the third-order spherical aberration coefficient I was almost zero for "G + Nl + '. At this time, the value of N2 was determined by the focal length. Assuming f, it is desirable to satisfy the following relationship: 0.01≦N2・f4≦0.09.Ruchi, N2・f4
If it exceeds the upper limit value, the spherical aberration will be over-corrected9, and if it exceeds the lower limit value, the spherical aberration will be under-corrected.

次に、近軸量に寄与するノくラメータはNO,N1゜d
の3つであり、与えられたNQ、dに対して常に焦点距
離fが一定となる様VcN1を定めること妙:出来る。
Next, the parameter contributing to the paraxial quantity is NO, N1°d
It is possible to determine VcN1 so that the focal length f is always constant for given NQ and d.

今、例えばIJ6=1.6とし、N++N2を上述した
様に定めた時、ノくラメ−ターd/fに対する3次コマ
収差係数■と、物体距離が無限遠時のバンクフォーカス
S′を焦点距離fで規格化した値B/fのグラフを第1
図に示す。第1図では横軸Kd/fを、縦軸に■とSa
tの値が取っである。
Now, for example, when IJ6 = 1.6 and N++N2 is determined as described above, the third-order coma aberration coefficient ■ for the nomura meter d/f and the bank focus S' when the object distance is infinite are the focal points. The first graph of the value B/f normalized by the distance f
As shown in the figure. In Figure 1, the horizontal axis shows Kd/f, and the vertical axis shows ■ and Sa.
The value of t is the key.

第1図においては、3次収差係数の値は物体無限煙、入
射瞳はレンズの前側主平面にあるものとして算出したも
のである。また3次コマ収差係数If)[は焦点距離f
が1のときの値に規差係数1=oとすることはできない
が、肉厚dが大キくなり、バンクフォーカスe′が小さ
くなるに従って5次コ臂収差係数Hの絶対値が減少し、
特ICvf > 2.3 O範囲では1111<0.3
となり、実用的な性能を得ることが可能である。
In FIG. 1, the values of the third-order aberration coefficients are calculated assuming that the object is infinite smoke and the entrance pupil is located on the front principal plane of the lens. Also, the third-order coma aberration coefficient If) [is the focal length f
Although it is not possible to set the standard deviation coefficient 1=o to the value when ,
Special ICvf > 2.3 1111 < 0.3 in O range
Therefore, it is possible to obtain practical performance.

るためには次の条件が必要である。但しπは円周率であ
る。
In order to do so, the following conditions are necessary. However, π is pi.

N1<0 次に、本発明の実施例について述べる。表1及び表2は
各々、本発明に係る屈折率分布型1/ンズの第1実施例
及び第2実施例のレンズデータを示している。
N1<0 Next, examples of the present invention will be described. Tables 1 and 2 show lens data of a first example and a second example of the gradient index 1/lens according to the present invention, respectively.

表1       表2 第1実施例     第2実施例 各レンズデーター、No、N1.[11,(L、f、l
、71 の表わすものは既に述べられているので、ここ
では説明を省く。前記第1実施例の球面収差(実線)と
正弦条件不満足量(破線)を第2図(A)に、同じく半
画角1.7°における横収差曲線を第2図(B)に示す
。更に、前記第2実施例の球面収差(実線)と正弦条件
不満足量(破線)を第3図(A)に、同じく半画角1.
7°における横収差曲線を第3図CB) K示す。
Table 1 Table 2 First Example Second Example Each lens data, No., N1. [11, (L, f, l
, 71 has already been described, so the explanation will be omitted here. The spherical aberration (solid line) and the amount of unsatisfactory sine condition (broken line) of the first embodiment are shown in FIG. 2(A), and the lateral aberration curve at a half angle of view of 1.7° is shown in FIG. 2(B). Furthermore, the spherical aberration (solid line) and the amount of unsatisfactory sine condition (broken line) of the second embodiment are shown in FIG.
The lateral aberration curve at 7° is shown in Figure 3 (CB).

この2つの例は共に、物体無限遠時のバックフォーカス
8′の値が8′*0でちゃ、例えば半導体レーザーのコ
リメータレンズとして用いる場合には、レンズの端面に
半導体レーザーを密着させて使用するものである。
In both of these two examples, the value of back focus 8' when the object is at infinity is 8' * 0. For example, when used as a collimator lens for a semiconductor laser, the semiconductor laser is used in close contact with the end face of the lens. It is something.

第2図及び第5図より明らかな様に、これ等の実施例に
おいては、開口数(N、A)が0.3、半画角2°程度
の範囲内で実用的な性能を有し、例えば半導体レーザや
LEDのコリメータとして有用である。なお、表1、表
2の1.IIの値、及び第2図、第6図の収差図は、物
体は無限遠に、入射瞳は前側主平面にあるものとして算
出したものである。又、1.Itの値はレンズの焦点距
離fが1のときの値に正規化されている・なお、球面収
差が補正されているとき、正弦条件は入射瞳の位置には
無関係である。
As is clear from FIGS. 2 and 5, these examples have practical performance within the range of a numerical aperture (N, A) of 0.3 and a half angle of view of about 2 degrees. It is useful, for example, as a collimator for semiconductor lasers and LEDs. Note that 1. of Tables 1 and 2. The value of II and the aberration diagrams in FIGS. 2 and 6 were calculated assuming that the object is at infinity and the entrance pupil is on the front principal plane. Also, 1. The value of It is normalized to the value when the focal length f of the lens is 1. Note that when the spherical aberration is corrected, the sine condition is independent of the position of the entrance pupil.

また、表1、表2のHの値と、第2図、第3図よりわか
るように、軸上屈折率Noが大きいほどコマ収差が改善
される傾向にあり、本発明釦おいては、kJo≧1.6
であれば、更に望ましい。
In addition, as can be seen from the values of H in Tables 1 and 2 and FIGS. 2 and 3, comatic aberration tends to be improved as the axial refractive index No. increases, and in the button of the present invention, kJo≧1.6
If so, even more desirable.

上述した様に、本発明に於いては両端面が平面でありな
がら、球面収差と正弦条件とを共に補正した良好な性能
を持つ屈折率分布型レンズが可能であり、半導体レーザ
ーのコリメータレンズ等として有用である。
As mentioned above, according to the present invention, it is possible to create a gradient index lens with good performance that corrects both spherical aberration and sinusoidal conditions even though both end surfaces are flat, and it can be used as a collimator lens for semiconductor lasers, etc. It is useful as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的な構成を説明する為の図、第2
図(A) 、 CB)は本発明に係る屈折率分布型レン
ズの第1実施例の収差を示す図、第3図(A) 、 C
B)は本発明に係る屈折率分布凰レンズの第2実施例の
収差を示す図。 f・・・焦点距離 d・・・レンズ厚 8′・・・バックフォーカス ■・・・3次コマ収差係数 N 、A、・・・開口数 Mar、・・・メリジオナル
Figure 1 is a diagram for explaining the basic configuration of the present invention, Figure 2 is a diagram for explaining the basic configuration of the present invention.
Figures (A) and CB) are diagrams showing aberrations of the first embodiment of the gradient index lens according to the present invention, and Figures 3 (A) and C).
B) is a diagram showing aberrations of the second example of the gradient index lens according to the present invention. f...focal length d...lens thickness 8'...back focus ■...third-order coma aberration coefficient N, A,...numerical aperture Mar,...meridional

Claims (1)

【特許請求の範囲】[Claims] (1)光軸からの距離rに於ける点の屈折率分布N(r
)が、N_0、N_1、N_2・・・・・を定数として
、N(r)=N_0+N_1r^2+N_2r^4+・
・・・・で表わされる屈折率分布を光軸と垂直な面内で
有し、その両端面が平面である屈折率分布型レンズに於
いて、 dをレンズの肉厚、fをレンズの焦点距離 とすると、 (i)N_1<0 (ii)0.01≦N_2・f^4≦0.09(iii
)2.3<d/f (iv)√([−2N_1]/[N_0])・d≦π/
2なる条件を満足することを特徴とする屈折率分布型レ
ンズ。
(1) Refractive index distribution N(r
), with N_0, N_1, N_2... as constants, N(r)=N_0+N_1r^2+N_2r^4+.
In a gradient index lens that has a refractive index distribution expressed as . Assuming the distance, (i) N_1<0 (ii) 0.01≦N_2・f^4≦0.09 (iii
)2.3<d/f (iv)√([-2N_1]/[N_0])・d≦π/
A gradient index lens that satisfies two conditions.
JP17104484A 1984-08-17 1984-08-17 Distributed index lens Granted JPS6148808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17104484A JPS6148808A (en) 1984-08-17 1984-08-17 Distributed index lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17104484A JPS6148808A (en) 1984-08-17 1984-08-17 Distributed index lens

Publications (2)

Publication Number Publication Date
JPS6148808A true JPS6148808A (en) 1986-03-10
JPH0556484B2 JPH0556484B2 (en) 1993-08-19

Family

ID=15916044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17104484A Granted JPS6148808A (en) 1984-08-17 1984-08-17 Distributed index lens

Country Status (1)

Country Link
JP (1) JPS6148808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486951A (en) * 1993-12-16 1996-01-23 Eastman Kodak Company Gradial zone lens and method of fabrication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109456A (en) * 1978-02-15 1979-08-28 Mitsubishi Electric Corp Lens of refractive index distribution type
JPS57120901A (en) * 1981-01-20 1982-07-28 Nippon Sheet Glass Co Ltd Refractive index distributed type lens
JPS58219507A (en) * 1982-06-15 1983-12-21 Nippon Sheet Glass Co Ltd One-dimensional lens

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109456A (en) * 1978-02-15 1979-08-28 Mitsubishi Electric Corp Lens of refractive index distribution type
JPS57120901A (en) * 1981-01-20 1982-07-28 Nippon Sheet Glass Co Ltd Refractive index distributed type lens
JPS58219507A (en) * 1982-06-15 1983-12-21 Nippon Sheet Glass Co Ltd One-dimensional lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486951A (en) * 1993-12-16 1996-01-23 Eastman Kodak Company Gradial zone lens and method of fabrication
US5629800A (en) * 1993-12-16 1997-05-13 Eastman Kodak Company Gradial zone lens and method of fabrication

Also Published As

Publication number Publication date
JPH0556484B2 (en) 1993-08-19

Similar Documents

Publication Publication Date Title
US4765723A (en) Objective lens system for optical reading device
US4396254A (en) f·θ Lens
JPS6156314A (en) Recording and reproducing objective lens of optical information recording medium
JPS61194416A (en) Distributed index lens
JPS6148808A (en) Distributed index lens
US3936155A (en) Three-element projection lenses
US4852981A (en) Imaging lens system comprising a distributed index lens and a plano-convex lens
JPS5965820A (en) Telephoto lens system
US2587347A (en) High-speed four-component photographic objective
JPH0143291B2 (en)
JPH11258497A (en) Objective lens optical system
JPH02223906A (en) Finite system large-diameter aspherical lens
JPH0248886B2 (en) KORIMEETAARENZUKEI
JPH0463312A (en) Refractive index distribution type single lens
JPH0359407B2 (en)
JPH043850B2 (en)
US4693565A (en) Collimator lens
JP2727373B2 (en) Finite system large aperture imaging lens
JPH01161308A (en) Lens for optical recording and reproducing device
JPH01130115A (en) Lens system for laser beam
JPS6111721A (en) Collimating lens
JPH0369083B2 (en)
JPS59195213A (en) Photographic compact lens
JP2511275B2 (en) Optical system for recording / reproducing optical information media
JPH0143290B2 (en)