JPS6148780A - Monopulse angle measuring receiver - Google Patents

Monopulse angle measuring receiver

Info

Publication number
JPS6148780A
JPS6148780A JP17019584A JP17019584A JPS6148780A JP S6148780 A JPS6148780 A JP S6148780A JP 17019584 A JP17019584 A JP 17019584A JP 17019584 A JP17019584 A JP 17019584A JP S6148780 A JPS6148780 A JP S6148780A
Authority
JP
Japan
Prior art keywords
signal
monopulse
amplitude
output
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17019584A
Other languages
Japanese (ja)
Inventor
Yuichi Kuroda
雄一 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17019584A priority Critical patent/JPS6148780A/en
Publication of JPS6148780A publication Critical patent/JPS6148780A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4445Monopulse radar, i.e. simultaneous lobing amplitude comparisons monopulse, i.e. comparing the echo signals received by an antenna arrangement with overlapping squinted beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • G01S13/4436Monopulse radar, i.e. simultaneous lobing with means specially adapted to maintain the same processing characteristics between the monopulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/28Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived simultaneously from receiving antennas or antenna systems having differently-oriented directivity characteristics
    • G01S3/32Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived simultaneously from receiving antennas or antenna systems having differently-oriented directivity characteristics derived from different combinations of signals from separate antennas, e.g. comparing sum with difference

Abstract

PURPOSE:To realize a monopulse angle measuring function only by uniforming amplitude characteristics of receiving circuits of plural systems by determining a deviation angle from the amplitude ratio of the sum and difference signal between monopulse receive signals and then making a level comparison with the signal of a single transmission repetitive signal. CONSTITUTION:The sum SIGMA of and difference DELTA of receive signals from nonopulse antennas of two systems are processed by intermediate frequency mixers 32 and 37, logarithmic amplifiers 34 and 38, an operational amplifier 35, etc., thereby outputting the logarithmic value of the amplitude ratio DELTA/SIGMA of the sum SIGMA and difference DELTA which corresponds to the deviation angle from a real direction. On the other hand, the amplitude ratio of the output of the amplifier 35 and an output which is delayed behind said output through a delay circuit 39 by the single transmission repetition time is compared by a level comparator 40 to determine a deviation direction delta to the real direction. Thus, the monopulse angle measuring function is realized only by uniforming amplitude characteristics of receiving circuits of two systems, etc.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、例えば航空別等の目標を捕捉、監視するた
めのレーダ装置に用いられるもので、複数の空中線水平
パターンから得られる受信信号の和及び差の振幅を比較
することにより、高精度の方位情報を1qるモノパルス
測角受信数に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is used in a radar device for capturing and monitoring targets, such as aviation targets, and the present invention is a radar device for acquiring and monitoring targets such as aircraft, and uses and the number of received monopulse angle measurements that provide 1q of highly accurate azimuth information by comparing the amplitude of the difference.

[発明の技術的背景とその問題点〕 従来より、2系統の空中線水平パターンの和及び差と、
これに対応する2系統の受信回路とを用いるモノパルス
測角受信機にあっては、例えば航空機監視用二次監視レ
ーク装置に用いられるものとして、第3図に示すような
回路がよく知られている。
[Technical background of the invention and its problems] Conventionally, the sum and difference of two systems of horizontal antenna patterns,
Regarding monopulse angle measurement receivers that use a corresponding two-system receiving circuit, the circuit shown in Fig. 3 is well known as one used, for example, in a secondary monitoring rake device for aircraft monitoring. There is.

ずなわら、この受信数では、入力段に設けたπ/2ハイ
ブリッド11により和のパターンから得られる受信信号
Σと、差のパターンから得られる受信信号Δを入力して
合成し、Σ及びΔの一方を実部、他方を山部に持つ2つ
の複合信号Σ−jΔ、Δ−jΣ(jは虚数単位)を生成
する。
However, with this number of receptions, the received signal Σ obtained from the sum pattern and the received signal Δ obtained from the difference pattern are input and synthesized by the π/2 hybrid 11 provided at the input stage, and the received signal Σ and Δ Two composite signals Σ-jΔ and Δ-jΣ (j is an imaginary number unit) are generated, one having a real part and the other a peak part.

そして、高周波増幅器12.13にて上記2つの複合信
号Σ−jΔ、Δ−jΣを増幅し、混合器14゜15にて
Ff ff11発振器16からの等位相の発振信号と混
合して、Σ−JΔ、−Δ+jΣなる中間周波信号に逓降
し、それぞれ分配器17.18によりリミッタ19、2
0及びπ/2ハイブリッド21に分配する。2つの複合
信号Σ−jΔ、Δ−jΣは、例えば第4図(a)、(b
)に示すようなベクトルで表わされる。ここで、上記リ
ミッタ19.20は、それぞれ複合信号Σ−」Δ、−Δ
+jΣの振幅を一定に揃えて位相比較器22.23に供
給し、また上記π/2ハイブリッド21は上記2つの複
合信号Σ−jΔ、−Δ+」Σから受信信号Σを再現する
ものである。
Then, the two composite signals Σ-jΔ and Δ-jΣ are amplified in the high-frequency amplifiers 12 and 13, and mixed with the oscillation signal of equal phase from the Ff ff11 oscillator 16 in the mixer 14-15 to generate Σ-jΔ and Δ-jΣ. The intermediate frequency signals JΔ and -Δ+jΣ are lowered to limiters 19 and 2 by distributors 17 and 18, respectively.
0 and π/2 hybrid 21. The two composite signals Σ-jΔ and Δ-jΣ are shown in FIGS. 4(a) and (b), for example.
) is expressed as a vector as shown in Here, the limiters 19 and 20 are connected to the composite signals Σ-'Δ and -Δ, respectively.
The amplitudes of +jΣ are made constant and supplied to phase comparators 22 and 23, and the π/2 hybrid 21 reproduces the received signal Σ from the two composite signals Σ−jΔ and −Δ+′Σ.

さらに、この信号Σを分配器24、リミッタ25、π/
2ハイブリッド26を介して上記位相比較器22゜23
に供給し、それぞれ信号Σと複合信号のΣ−」Δ及び−
Δ+JΣとの各位相差φの余弦信号COSφを検出した
後、この2つの余弦信号COSφを加n ft327で
合成することにより出力2 cosφ=f(Δ/Σ)く
振幅比Δ/Σの関数)を得る。つまり、上記位相差φ(
第4図(a)。
Further, this signal Σ is sent to a distributor 24, a limiter 25, π/
2 hybrid 26 to the phase comparator 22゜23.
and the signal Σ and the composite signal Σ−”Δ and −
After detecting the cosine signal COSφ of each phase difference φ with Δ+JΣ, the two cosine signals COSφ are combined by adding nft327 to obtain the output 2 cosφ=f(Δ/Σ) (function of amplitude ratio Δ/Σ). obtain. In other words, the above phase difference φ(
Figure 4(a).

(b)かられかるようにφ=tan′l(Δ/Σ)であ
る)を検出してΣとΔの振幅比Δ/Σを求めることによ
り、通常の△/Σ対角度のテーブルから目標の方位角を
検出することができるものである。
(b) As shown from It is possible to detect the azimuth angle of

尚、上記分配器24で分配された信号Σは、対数増幅器
28により対数増幅及び検波され、logΣなる信号と
なって出力される。この信号logΣは、上記信号r(
Δ/Σ)と共に、この受信別の後段に接続される処理装
置に供給され、目標及びその方位角検出処理に供される
ものである。また、このモノパルス測角受信し1は、第
3図には示されていないが、(ナイドローブ応答抑圧の
ために水平面無指向性の空中線パターンより1qだ信号
用の受信観を別に持つことが多い。
The signal Σ distributed by the distributor 24 is logarithmically amplified and detected by the logarithmic amplifier 28, and is output as a log Σ signal. This signal logΣ is the signal r(
Δ/Σ) is supplied to a processing device connected to a subsequent stage of this reception, and is used for target and azimuth detection processing. Although this monopulse angle measurement receiver 1 is not shown in Fig. 3, (in order to suppress the nightlobe response, it often has a separate reception view for signals 1q from the horizontal omnidirectional antenna pattern. .

ところで、上記のような回路方式によるモノパルス測角
受信機では、2系統の受信回路の対応する回路部、づな
わち12と13.14と15.17と18.19と20
及び22と23の各振幅及び位相特性が十分揃っている
ことと、各回路部間の電気長が十分揃っていることが、
高精度の方位角検出を行なううえで必須の条件となる。
By the way, in the monopulse angle measurement receiver using the circuit system as described above, the corresponding circuit sections of the two receiving circuits, namely 12, 13.14, 15.17, 18.19 and 20
and that the amplitude and phase characteristics of 22 and 23 are sufficiently consistent, and that the electrical lengths between each circuit section are sufficiently consistent,
This is an essential condition for highly accurate azimuth detection.

特に、高周波増幅器12.13−t′)混合器14.1
5及び中間周波増幅器等の能動回路部については、極め
て蹟度良くその特性を揃えなければならない。また、各
回路部間の電気長は、特に位相誤差をなくすため、波層
が例えば20cm程度の周波数の場合、mm単位で精度
良く合わせる必要がある。そして、受信信号の周波数が
通常有限の帯域幅を有するため、各回路部及び各回路部
間の特性の一致をその全帯域幅に渡って確認しなければ
ならない。しかも、初期設定以降の環境条件変化または
経時変化等による変動を最少限に抑えるため、各回路部
の素子選定に十分注意すると共に何等かの補償回路を予
め用意しておく等の考慮が必要である。
In particular, the high frequency amplifier 12.13-t') mixer 14.1
Active circuit sections such as 5 and intermediate frequency amplifiers must have extremely uniform characteristics. Furthermore, in order to eliminate phase errors, the electrical length between each circuit section needs to be precisely matched in units of mm when the wave layer has a frequency of, for example, about 20 cm. Since the frequency of the received signal usually has a finite bandwidth, it is necessary to check whether the characteristics of each circuit section and between the circuit sections match over the entire bandwidth. Furthermore, in order to minimize fluctuations due to changes in environmental conditions or changes over time after the initial settings, it is necessary to pay close attention to the selection of elements in each circuit and to prepare some kind of compensation circuit in advance. be.

[発明の目的] この発明は上記のような事情を考慮してなされたもので
、複数系統の受信回路の振幅特性を揃えるだけでモノパ
ルス測角橢能を実現することが可能であり、これによっ
て設計、調整及び保守を容易にすることのできるモノパ
ルス測角受信1幾を提供することを目的とする。
[Purpose of the Invention] This invention was made in consideration of the above-mentioned circumstances, and it is possible to realize monopulse angle measurement accuracy simply by arranging the amplitude characteristics of multiple receiving circuits. It is an object of the present invention to provide a monopulse angle measurement receiver which can be easily designed, adjusted and maintained.

[発明の概要] すなわち、この発明に係るモノパルス測角受信懇は、モ
ノパルス空中線より得られる受信信号の和の信号と差の
信号の振幅比に対応した信号から目標方位の空中線真方
位に対する偏移角度を求めると共に、少なくとも1送信
繰返し周期の時間差を有する振幅比に対応した信号のレ
ベルを比較してその大小関係から目標が空中線真方位に
対してどちら側に存在するかを判別するようにしたもの
である。
[Summary of the Invention] That is, the monopulse angle measurement receiver according to the present invention calculates the deviation of the target azimuth from the antenna true azimuth from a signal corresponding to the amplitude ratio of the sum signal and the difference signal of received signals obtained from the monopulse antenna. In addition to determining the angle, the levels of signals corresponding to amplitude ratios having a time difference of at least one transmission repetition period are compared, and based on the magnitude relationship, it is determined which side the target is on with respect to the true direction of the antenna. It is something.

[発明の実施例] 以下、第1図及び第2図を参照してこの発明の一実施例
を詳細に説明する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.

第1図はその(さ1成を示すもので、前記受信信号Σは
高周波増幅器31にて増幅された後、混合器32に供給
されて局部発振器33からの局部発振信号と混合され、
中間周波信号に逓降される。そして、対数増幅器34に
て対数増幅及び検波されてlogΣなる信号となって、
後段の図示しない処理回路に供給されると共に、後述す
る演算増幅器35の一方の入力端に供給される。
FIG. 1 shows its (1) configuration, in which the received signal Σ is amplified by a high frequency amplifier 31, then supplied to a mixer 32 and mixed with a local oscillation signal from a local oscillator 33.
It is down-converted to an intermediate frequency signal. Then, it is logarithmically amplified and detected by the logarithmic amplifier 34 to become a logΣ signal,
The signal is supplied to a subsequent processing circuit (not shown), and is also supplied to one input terminal of an operational amplifier 35, which will be described later.

一方、前記受信信号Δは高周波増幅器36にてj曽幅さ
れた後、混合器37に供給されて局部発振器33からの
局部発振信号と混合され、中間周波信号に逓降される。
On the other hand, the received signal Δ is multiplied by j in the high frequency amplifier 36, and then supplied to the mixer 37 where it is mixed with the local oscillation signal from the local oscillator 33 and down-converted to an intermediate frequency signal.

そして、対数増幅器38にて対数増幅及び検波されて1
09Δなる信号となり、上記演算増幅器35の他方の入
力端に供給される。この演算増幅器35は、上記2信号
logΣ及びlogΔの差信号を取出すもので、その出
力は信号logΣと同様に上記処理回路に供給されると
共に、レベル比較器40の一方の入力端に供給され、ま
た1繰返し周期分遅延する遅延回路39を介してレベル
比較器40の他方の入力端に供給される。このレベル比
較器40は、上記演算増幅器35の出力と遅延回路3つ
の出力との各振幅レベルを比較し、その大小に応じて2
値となる信号δを生成して上記処理回路へ出力するもの
である。
Then, it is logarithmically amplified and detected by a logarithmic amplifier 38, and 1
This becomes a signal of 09Δ and is supplied to the other input terminal of the operational amplifier 35. This operational amplifier 35 extracts a difference signal between the two signals logΣ and logΔ, and its output is supplied to the processing circuit as well as the signal logΣ, and is also supplied to one input terminal of the level comparator 40. The signal is also supplied to the other input terminal of the level comparator 40 via a delay circuit 39 that delays the signal by one repetition period. The level comparator 40 compares the amplitude levels of the output of the operational amplifier 35 and the outputs of the three delay circuits, and divides the output into two levels depending on the magnitude.
It generates a signal δ that is a value and outputs it to the processing circuit.

上記のような構成において、以下その動作について説明
する。
The operation of the above configuration will be described below.

まず、この受信dでは、受信信号Σを高周波増幅器31
、混合器32及び対数増幅器34を介すことにより前記
logΣなる信号を生成する一方、受信信号△を高周波
増幅器36、混合器37及び対数増幅器38を介すこと
によりlogΔなる信号を生成し、演算増幅器35で両
信号109Σ及びlogΔの差信号を取出″f0つより
、この演算増幅器35の出力はlogΔ−logΣ=1
0リ 1Δ/Σ1となる。この10g1Δ/ε1なる信
号は、第3図に示したf(Δ/Σ)なる信号と同様に、
空中線の和と差のパターンからそれぞれ(qだ信号の振
幅比の関数であるから、後段の処理回路においてlog
Δ/Σの1直から空中線の真方位を基準とするその目標
方位の偏移角度が読み出せるように参照テーブルを予め
用意してJ5けば、モノパルス測角のは能を実現できる
ようになる。但し、ここではΣ及びΔの振幅比のみに注
目し、その位相差を保つことを考慮していないため、空
中線の真方位に対する目標方位の偏移角度はわかっても
、その極性(±、符号といってもよい)すなわち、目標
方位が空中線の真方位に対してどちら側にあるのかはわ
からない。
First, in this reception d, the received signal Σ is sent to the high frequency amplifier 31.
, a signal of log Σ is generated by passing it through the mixer 32 and the logarithmic amplifier 34, while a signal of log Δ is generated by passing the received signal Δ through the high frequency amplifier 36, the mixer 37 and the logarithmic amplifier 38, and the calculation is performed. The amplifier 35 extracts the difference signal between the two signals 109Σ and logΔ. From f0, the output of the operational amplifier 35 is logΔ−logΣ=1
0li 1Δ/Σ1. This signal 10g1Δ/ε1 is similar to the signal f(Δ/Σ) shown in FIG.
From the antenna sum and difference patterns, each (q) is a function of the amplitude ratio of the signal, so the subsequent processing circuit calculates log
If you prepare a reference table in advance so that you can read the deviation angle of the target direction based on the true direction of the antenna from the first axis of Δ/Σ, you will be able to realize the functionality of monopulse angle measurement. . However, here we focus only on the amplitude ratio of Σ and Δ and do not consider maintaining their phase difference, so even if we know the angle of deviation of the target azimuth from the true azimuth of the antenna, we do not know its polarity (±, sign). In other words, it is not known on which side the target direction is relative to the true direction of the antenna.

そこで、遅延回路39により上記10Q]Δ/Σ1なる
信号を1操返し周期分だけ遅延させ、レベル比較器40
で次の周期のlog  lΔ/Σ1なる信号と振幅レベ
ルを比較する。そして、その大小に応じて目標方位が空
中線真方位の比較的近傍にあるときそのどちらにあるか
を示す2値(Oまたは1)の信号δを生成して、先のl
og  1Δ/Σ1と共に処理回路に供給する。
Therefore, the delay circuit 39 delays the signal 10Q]Δ/Σ1 by one repetition period, and the level comparator 40
The amplitude level is compared with the signal of log lΔ/Σ1 of the next period. Then, depending on the size, a binary signal δ (O or 1) indicating which direction the target direction is located when it is relatively close to the antenna true direction is generated, and
og 1Δ/Σ1 together with the processing circuit.

つまり、上記Σ及びΔのパターンは例えば第2図のよう
にに示されるので、空中線が回転してその真方位が目標
の存在する方向に接近しつつある場合を考えると、図中
11.Δ1に基づく10g1△1/Σ1 lなる信号が
得られるとき、その1繰返し周期後には例えば図中Σ2
.Δ2に基づ(logl△2/Σ21なる信号が得られ
る。ここで、空中線の真方位が目標方向に接近して(1
くと、Σは次第に大きくなり、Δは次第に小さくなって
いく。すなわち、上記loglΔ1/Σ1 Iなる信号
と10g)Δ2/Σ2 Iなる信号との間にはto(I
 l△2/Σ21<IQ(IIΔ1/Σ11の関係があ
る。尚、空中線の真方位が目標方向から離れつつある場
合には上記と逆の関係が成立つ。
In other words, the above-mentioned patterns of Σ and Δ are shown, for example, as shown in FIG. When a signal of 10g1△1/Σ1 l based on Δ1 is obtained, after one repetition period, for example, Σ2 in the figure
.. Based on Δ2, a signal (loglΔ2/Σ21) is obtained. Here, the true direction of the antenna approaches the target direction and (1
As the value increases, Σ gradually increases and Δ gradually decreases. In other words, between the signal loglΔ1/Σ1 I and the signal 10g)Δ2/Σ2 I,
There is a relationship lΔ2/Σ21<IQ (IIΔ1/Σ11). If the true direction of the antenna is moving away from the target direction, the opposite relationship to the above holds true.

このことから、レベル比較器40の出力δがO(次周期
の10(l lΔ/Σ1信号の方が小である〉のとぎに
L、1」標方向が空中線真方向に対して空中線の回転方
向と同一側にあり、信号δが1(次周期の10g1Δ/
Σj信号の方が大)のときは、目標方向が空中線真方向
に対して空中線の回転方向と反対側にあると判別できる
ようになる。そして、一般には上記空中線の水平パター
ンが若干の非対称性を持つため、処理回路の10g1Δ
/Σ]なる信号から方位の偏移角度を読み出すための参
照テーブルは、上記信号δの値に応じて選択されること
になる。
From this, the output δ of the level comparator 40 is L, 1'' when the output δ of the level comparator 40 is It is on the same side as the direction, and the signal δ is 1 (10g1Δ/
When the Σj signal is larger), it can be determined that the target direction is on the opposite side of the antenna's rotational direction with respect to the antenna's true direction. Generally, the horizontal pattern of the above-mentioned antenna has some asymmetry, so the processing circuit's 10g1Δ
/Σ] A reference table for reading out the deviation angle of the azimuth from the signal is selected according to the value of the signal δ.

したがって、上記のように構成したモノパルス測角受信
機は、2系統の受信回路について振幅特性を揃えるだけ
でモノパルス測角は能を実現でき、位相特性を考[i!
jTj”る必要がないので、回路の設計、調整及び保守
を極めて容易に行なうことができるようになる。
Therefore, the monopulse angle measurement receiver configured as described above can realize the monopulse angle measurement function simply by arranging the amplitude characteristics of the two receiving circuits, and also takes into consideration the phase characteristics [i!
Since there is no need to perform the circuit design, adjustment, and maintenance, the circuit can be designed, adjusted, and maintained very easily.

尚、上記実施例では、遅延回路39による遅延量を1繰
返し周期分としたが、この値は送信繰返し周波数及び空
中線の回転数に応じて 10g1Δ、/Σ1の振幅レベル差を検出するのに適当
な間隔に設定してもよい。この場合、遅延世を手動によ
り設定するまたは電子計陣1幾等により自動的に設定す
るようにすれば、一層効果的である。
In the above embodiment, the delay amount by the delay circuit 39 was set to one repetition period, but this value is suitable for detecting an amplitude level difference of 10g1Δ, /Σ1 depending on the transmission repetition frequency and the rotational speed of the antenna. You can set it to any interval. In this case, it is more effective to set the delay time manually or automatically using the electronic instrument 1 or the like.

また、上記対数増幅器34.38に代って所要のダイナ
ミックレンジを有する線形増幅器で構成してもよい。こ
の場合、演口増幅器35は除算器の機能を有するものと
する。さらに、上記対数(または線形)増幅器34.3
8の出力を直ちにデジタル・アナログ変換し、演算増幅
器35、遅延回路3つ及びレベル比較器40をデジタル
回路で実現して、上記動作をデジタル処理で行なうよう
にしてもよく、また演算増幅器35の後段にアナログ・
デジタル変換器を設けて遅延回路39及びレベル比較器
40の機能をデジタル回路で実現するようにしてもよい
Furthermore, the logarithmic amplifiers 34 and 38 may be replaced by linear amplifiers having a required dynamic range. In this case, it is assumed that the arithmetic amplifier 35 has the function of a divider. Furthermore, the logarithmic (or linear) amplifier 34.3
The output of the operational amplifier 35, the three delay circuits, and the level comparator 40 may be implemented as digital circuits, and the above operation may be performed by digital processing. Analog in the rear stage
A digital converter may be provided so that the functions of the delay circuit 39 and the level comparator 40 are realized by a digital circuit.

そして、上記実施例では説明の便宜上2系統の空中線パ
ターン及び受信回路の例を用いたが、この発明を3系統
以上の空中線パターン及び受信回路を有するモノパルス
測角受信機に適用しても同様に実施可能であることは言
うまでもない。
In the above embodiment, an example of two systems of antenna patterns and a receiving circuit is used for convenience of explanation, but the same effect can be obtained even if the present invention is applied to a monopulse angle measurement receiver having three or more systems of antenna patterns and receiving circuits. Needless to say, it is possible.

[発明の効果] 以上訂述したようにこの発明によれば、?!2数系統の
受信回路の振幅特性を揃えるだけでモノパルス測角(幾
能を実現することが可能であり、これによって設計1.
J、!I整及び保守を容易にすることのできるモノパル
ス測角受信懇を提供することができる。
[Effect of the invention] As detailed above, according to this invention,? ! It is possible to realize monopulse angle measurement (geometry) by simply arranging the amplitude characteristics of two or more receiver circuits, which allows design 1.
J,! It is possible to provide a monopulse angle measurement receiver which can be easily adjusted and maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係るモノパルス測角受信別の一実施
例を示すブロック回路構成図、第2図は同実施例の動作
を説明するための図、第3図は従来のモノパルス測角受
信機の構成を示すブロック回路図、第4図は上記受信機
の動作を説明するための図である。 11、21.2G・・・π/2ハイブリッド、12.1
3.31゜36・・・高周波増幅器、14.15.32
.37・・・混合器、16゜33・・・局部発振器、1
7.18.24・・・分配器、19.20゜25・・・
リミッタ、22.23・・・位相比較器、27・・・加
算器、28、34.311・・・対数増幅器、35・・
・演算増幅器、39・・・遅延回路、40・・・レベル
比較器。
Fig. 1 is a block circuit diagram showing another embodiment of monopulse angle measurement reception according to the present invention, Fig. 2 is a diagram for explaining the operation of the same embodiment, and Fig. 3 is a conventional monopulse angle measurement reception example. FIG. 4 is a block circuit diagram showing the configuration of the receiver, and is a diagram for explaining the operation of the receiver. 11, 21.2G...π/2 hybrid, 12.1
3.31゜36...High frequency amplifier, 14.15.32
.. 37... Mixer, 16° 33... Local oscillator, 1
7.18.24...Distributor, 19.20°25...
Limiter, 22.23... Phase comparator, 27... Adder, 28, 34.311... Logarithmic amplifier, 35...
- Operational amplifier, 39...Delay circuit, 40...Level comparator.

Claims (1)

【特許請求の範囲】[Claims] モノパルス空中線より得られる受信信号の和の信号と差
の信号の振幅比に対応した信号を導出して目標方位の空
中線真方位に対する偏移角度を求める第1の手段と、少
なくとも1送信繰返し周期の時間差を有する前記振幅比
に対応した信号のレベルを比較して目標の空中線真方位
に対する方向を判別する第2の手段とを具備したことを
特徴とするモノパルス測角受信機。
a first means for deriving a signal corresponding to the amplitude ratio of the sum signal and the difference signal of the received signals obtained from the monopulse antenna to determine the deviation angle of the target azimuth with respect to the antenna true azimuth; A monopulse angle measurement receiver comprising: second means for comparing the levels of signals corresponding to the amplitude ratios having a time difference to determine the direction of the target with respect to the antenna true direction.
JP17019584A 1984-08-15 1984-08-15 Monopulse angle measuring receiver Pending JPS6148780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17019584A JPS6148780A (en) 1984-08-15 1984-08-15 Monopulse angle measuring receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17019584A JPS6148780A (en) 1984-08-15 1984-08-15 Monopulse angle measuring receiver

Publications (1)

Publication Number Publication Date
JPS6148780A true JPS6148780A (en) 1986-03-10

Family

ID=15900432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17019584A Pending JPS6148780A (en) 1984-08-15 1984-08-15 Monopulse angle measuring receiver

Country Status (1)

Country Link
JP (1) JPS6148780A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082950A1 (en) * 2018-06-26 2019-12-27 Thales METHOD AND SYSTEM FOR DETERMINING AN ANGLE OF ARRIVAL OF A RADIOELECTRIC SIGNAL
CN112965028A (en) * 2021-02-10 2021-06-15 西南电子技术研究所(中国电子科技集团公司第十研究所) Multi-beam phased array difference sum ratio angle estimation method
CN113189579A (en) * 2021-03-24 2021-07-30 四川九洲空管科技有限责任公司 Hybrid monopulse angle measurement system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082950A1 (en) * 2018-06-26 2019-12-27 Thales METHOD AND SYSTEM FOR DETERMINING AN ANGLE OF ARRIVAL OF A RADIOELECTRIC SIGNAL
EP3588123A1 (en) * 2018-06-26 2020-01-01 Thales Method and system for determining an angle of arrival of a radio-electric signal
US11249166B2 (en) 2018-06-26 2022-02-15 Thales Method and system for determining an angle of arrival of a radioelectric signal
AU2019204348B2 (en) * 2018-06-26 2023-01-05 Thales Method and system for determining an angle of arrival of a radioelectric signal
CN112965028A (en) * 2021-02-10 2021-06-15 西南电子技术研究所(中国电子科技集团公司第十研究所) Multi-beam phased array difference sum ratio angle estimation method
CN112965028B (en) * 2021-02-10 2023-08-29 西南电子技术研究所(中国电子科技集团公司第十研究所) Multi-beam phased array difference and ratio angle estimation method
CN113189579A (en) * 2021-03-24 2021-07-30 四川九洲空管科技有限责任公司 Hybrid monopulse angle measurement system and method
CN113189579B (en) * 2021-03-24 2022-08-16 四川九洲空管科技有限责任公司 Hybrid monopulse angle measurement system and method

Similar Documents

Publication Publication Date Title
US5072224A (en) Monopulse processing systems
US3953805A (en) DC component suppression in zero CF IF systems
US6759983B2 (en) Method and device for precise geolocation of low-power, broadband, amplitude-modulated signals
US4538150A (en) Self-calibration of stacked beam radar
JPS61108984A (en) Radar equipment for measuring mono-pulse angle
EP0533223B1 (en) Method and apparatus for the determination of the height of a target
US4689623A (en) Monopulse processing systems
EP0846272B1 (en) Air traffic advisory system bearing estimation receiver
US3339199A (en) Single-channel signal-processing network and monopulse receiver systems embodying the same
US4635060A (en) Coherent-on-receive radar with prephase correction circuit
US3854117A (en) Phase-difference detector
US5173701A (en) Radar apparatus with jamming indicator and receiver device with jamming indicator
JPH02503225A (en) Target range sensing device
US3969726A (en) Two channel monopulse receiver
JPS6148780A (en) Monopulse angle measuring receiver
US4115774A (en) CW radar AM-noise video-cancellation system
JPS6119949B2 (en)
US4313117A (en) Method and apparatus for electrically scanning an antenna array in a monopulse DF radar system
US3243815A (en) Radar testing apparatus
US2418308A (en) Radio direction finder
JP2634259B2 (en) High frequency signal direction finder
US3971019A (en) Receiver apparatus
JP3247549B2 (en) Monopulse radar device
US3283323A (en) Automatic gain control ratio circuit
RU2195685C1 (en) Receiver in equipment of users of signals of global satellite radio navigation systems