JPS6148668A - Structure of multilayer bellows - Google Patents

Structure of multilayer bellows

Info

Publication number
JPS6148668A
JPS6148668A JP16785784A JP16785784A JPS6148668A JP S6148668 A JPS6148668 A JP S6148668A JP 16785784 A JP16785784 A JP 16785784A JP 16785784 A JP16785784 A JP 16785784A JP S6148668 A JPS6148668 A JP S6148668A
Authority
JP
Japan
Prior art keywords
bellows
layer
radius
curvature
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16785784A
Other languages
Japanese (ja)
Inventor
Hideaki Abe
英昭 安部
Shigehiro Shimoyashiki
下屋敷 重広
Kazuo Takahashi
和雄 高橋
Yoshihiko Sato
佐藤 吉彦
No Maeda
前田 納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16785784A priority Critical patent/JPS6148668A/en
Publication of JPS6148668A publication Critical patent/JPS6148668A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J3/00Diaphragms; Bellows; Bellows pistons
    • F16J3/04Bellows
    • F16J3/047Metallic bellows

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

PURPOSE:To prevent the generation of the local contact and stress on extension and contraction of a bellows by generating the bellows interval larger than that at other parts, at the top part, bottom part, or the both parts of a multilayer bellows. CONSTITUTION:Each layer is put into closely attached state only in the parallel part 5 of a multilayer bellows, and the radius of curvature of the inner surface of an outer layer bellows 1 is made equal to the radius of curvature of the outer surface of an inner layer bellows 2, and a gap is formed between the top part and the bottom part of the stress concentration part. By closely attaching the parallel parts of the bellows and making the radius of curvature of the inner surface of the outside bellows equal to the radius of the contiguous tow bellows curvature of the outer surface of the inside bellows and forming the prescribed gaps between the layers where stress concentration is generated, the contact generated on extension and contraction at the stress concentration part is eliminated, and the difference of rigidity between at the top part and the bottom part of the layers is made min., and the stress distribution is made uniform.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は多層構造のベローズに係わシ、IP!jに大き
な伸縮量を吸収するのに好適なベローズに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a bellows having a multilayer structure, and relates to an IP! This invention relates to a bellows suitable for absorbing a large amount of expansion and contraction in j.

〔発明の背景〕[Background of the invention]

原子炉や化学装置等各種高温プラントの配管においては
、その周囲温度の変化あるいは管内を流れる流体の温度
変化によって、配管は熱膨張または収紬する。従って、
これによる寸法変化を吸収する手段を講じなければ、配
管に過大な応力が生じたシ、機器類に大きな荷重を与え
たシして、機器・配管を破損させる可能性がある。この
ような問題が生じるのを避けるために、ベンド管による
配管引廻しやベローズ型伸縮管継手がしばしは用いられ
る。このうちベンド管による配管引廻しは、そのための
一定のスペースが必要でアシ、スペースが制限され経済
的配慮を必要とする大規模のプラントになると実際的で
ない。
BACKGROUND ART Piping in various high-temperature plants such as nuclear reactors and chemical equipment undergoes thermal expansion or contraction due to changes in the ambient temperature or changes in the temperature of the fluid flowing inside the pipe. Therefore,
Unless measures are taken to absorb the dimensional changes caused by this, excessive stress may be generated in the piping and a large load may be applied to the equipment, leading to damage to the equipment and piping. In order to avoid such problems, bent pipes or bellows type expansion joints are often used. Among these, piping routing using bent pipes requires a certain amount of space and is not practical in large-scale plants where space is limited and economic considerations are required.

ベローズ型伸縮管継手には、配管の軸方向変位軸直角方
向変位、角変位およびそれらの複合変位に適用するよう
に直管型伸縮管継手、ヒンジ型伸縮管継手の他、ユニバ
ーサル型伸縮管継手などがある。
Bellows type expansion joints include straight pipe type expansion joints, hinge type expansion joints, and universal type expansion joints, which are applicable to axial displacement, perpendicular displacement, angular displacement, and their combined displacements. and so on.

これらは上記変位条件と共に配管形状、運転条件、繰シ
返し寿命、配管ならびに機器の荷重限界、用いられる支
持構造などによシ形状が決定される。
In addition to the above displacement conditions, the shape of the pipe is determined by the shape of the pipe, operating conditions, cycle life, load limits of the pipe and equipment, and the support structure to be used.

さらに、ベローズ型伸縮管継手には一層ペローズ型伸縮
管継手と、二層以上の多層ベローズ型伸縮管継手がある
。多層ベローズ型伸縮管継手はべ・ローズ表面に生じる
応力を軽減するために用いられる。ベローズの表面に生
じる応力σけベローズの板厚tに比例し σ oci           ・・・α)となる。
Furthermore, bellows type expansion pipe joints include single layer bellows type expansion pipe joints and multilayer bellows type expansion pipe joints having two or more layers. Multilayer bellows expansion joints are used to reduce stress on the bellows surface. The stress σ generated on the surface of the bellows is proportional to the plate thickness t of the bellows, and becomes σ oci ...α).

したがってベローズの板厚をうずくし、層数を増やせば
目的の伸縮バネ定数が得られると共に、応力の軽減が可
能となる。さらに層を複数設けることによシ、ベローズ
全体の貫通き裂の発生を未然に防止することができる。
Therefore, by changing the thickness of the bellows and increasing the number of layers, the desired expansion and contraction spring constant can be obtained, and stress can be reduced. Furthermore, by providing a plurality of layers, it is possible to prevent the occurrence of penetrating cracks in the entire bellows.

貫通き裂の発見は各層間の空隙の圧力変化より各層の破
損を検出できることによるものである。
The discovery of penetrating cracks is based on the fact that damage to each layer can be detected from pressure changes in the gaps between each layer.

以上のようなベローズの成形には第2図に示すように液
圧成形法が用いられている。外側に分割した成形金型7
を装置し、ベローズ素管6に液圧を導入し、素管内の液
圧を所定の圧力に上昇させベローズ素管6を圧力によF
)R2出させる。この時、金型7の入っている所は内圧
のフープストレスに耐えるため、その間にあるベローズ
素管6のみが膨出されてくると同時にプレスで軸方向に
圧縮し、ベローズ素管6の膨出した山部4に−なる所を
座屈によシ更にベローズ形状に成形させていく。上記の
液圧成形法では、ベローズ1の谷部3は成形金型7によ
υガイドされて、正確な曲率半径をもつが、山部4は液
圧のみで膨出されるのでその曲率半径ρは谷部3はど正
確ではなく、山部4先端の曲率半径は小さくなるものと
考えられる。
For forming the bellows as described above, a hydropressure forming method is used as shown in FIG. Molding mold 7 divided on the outside
is installed, hydraulic pressure is introduced into the bellows blank tube 6, the hydraulic pressure inside the blank tube is increased to a predetermined pressure, and the bellows blank tube 6 is heated by the pressure.
) Let R2 come out. At this time, in order to withstand the hoop stress of the internal pressure, the part where the mold 7 is placed is bulged out, and at the same time, the bellows material tube 6 is compressed in the axial direction by the press, causing the bellows material tube 6 to expand. The portions corresponding to the protruding peaks 4 are buckled and further formed into a bellows shape. In the above-mentioned hydroforming method, the troughs 3 of the bellows 1 are guided by the molding die 7 and have an accurate radius of curvature, but the peaks 4 are expanded only by the hydraulic pressure, so the radius of curvature ρ It is considered that the trough portion 3 is not precise and the radius of curvature at the tip of the peak portion 4 is small.

以上のような液圧成形法は一層ベローズだけでなく内層
ベローズ2と外層ベロー〆1から成る二層の多層ベロー
ズの成形にも適用されている。このようにしてできた多
層ベローズ9td、、第3図に示すように山谷部3,4
や平行部5における層間が密着状態になっておシ、ペロ
ユズ伸縮時に各層間が摺動し摩耗を起こす可能性がある
。ここで二層ベローズ9の接触を解析的VC調べるため
、第4図に示すモデルを用いて有限要素法によシ弾性解
析を行なった。ベローズ形状は内径が約1000φ調の
大口径ベローズである。第4図に示すようにベローズの
一層を20個の要素に分割し、アイソパラメトリック軸
対称シェル要素(ELEMENTNo。
The above-mentioned hydroforming method is applied not only to single-layer bellows but also to the molding of two-layer multilayer bellows consisting of an inner bellows 2 and an outer bellows 1. The multi-layered bellows 9td made in this way has peaks and valleys 3 and 4 as shown in FIG.
There is a possibility that the layers in the parallel portion 5 are in close contact with each other, and that each layer slides when the peroyuz expands and contracts, causing wear. Here, in order to analyze the contact between the two-layer bellows 9 by analytical VC, an elastic analysis was performed using the finite element method using the model shown in FIG. The bellows shape is a large diameter bellows with an inner diameter of about 1000φ. As shown in FIG. 4, one layer of the bellows is divided into 20 elements and isoparametric axisymmetric shell elements (ELEMENT No.

15)を用いて解析した。解析に用いた材料定数はヤン
グ率E = 1.98 X 10’kg/能2.ポアソ
ン比ν=0.266、比重量γ= 7.97 X 10
−’kg/闘葛である。境界条件として、下部は軸方向
変位を固定して径方向の変位のみを許しておシ、上部は
軸方向変位を負荷して径方向変位も許容している。なお
本解析では二層間の相互干渉はないものと仮定して解析
した。
15). The material constant used in the analysis is Young's modulus E = 1.98 x 10'kg/power2. Poisson's ratio ν = 0.266, specific weight γ = 7.97 x 10
-'kg/kg. As a boundary condition, the lower part fixes the axial displacement and only allows the radial displacement, and the upper part applies the axial displacement and also allows the radial displacement. In this analysis, it was assumed that there was no mutual interference between the two layers.

解析結果の一例を第5図に示す。架件は半白あたシ0.
5mの引張変位である。横軸は第4図に対応する節点番
号、縦軸は外層ベローズ1の外表面の子午線方向応力σ
ムを示す。これよシ最大応力は山及び谷部の頂点で生じ
ており、その二点の絶対値は8kgf/a”程度と弾性
範囲内であることがワカる。次に二層ベローズの接触状
態について調べると第5図に示すように谷部3及び山部
4にかけて接触している。初期状態では二層間の干渉が
ないとして解析したが、引張変位によシ山部4および谷
部3が接触し易いことがわかる。逆に圧縮変位では山部
4および谷部3が接触することがなく、平行部5で接触
し易いことが解析的に確認されている。
An example of the analysis results is shown in FIG. The building is half white and 0.
The tensile displacement is 5m. The horizontal axis is the node number corresponding to FIG. 4, and the vertical axis is the meridional stress σ on the outer surface of the outer layer bellows 1.
Indicates the time. Therefore, the maximum stress occurs at the peaks and valleys, and the absolute value at these two points is approximately 8 kgf/a'', which is within the elastic range.Next, we will examine the contact state of the two-layer bellows. As shown in Fig. 5, the troughs 3 and ridges 4 are in contact with each other.In the initial state, the analysis was performed assuming that there was no interference between the two layers, but due to tensile displacement, the ridges 4 and troughs 3 came into contact. On the other hand, it has been analytically confirmed that the peak portions 4 and the valley portions 3 do not come into contact with each other during compressive displacement, and that the parallel portions 5 are likely to come into contact with each other.

以上のように多層ベローズ8が伸縮するとき、各部が接
触して摺動し、その時に発生する面圧により各層の摺動
面が摩耗し易い。特に最大応力が発生する山部4及び谷
部3での摩耗による減肉は、応力集中の原因となシペロ
ーズの寿命を低下させる。さらに、第2図で示したベロ
ーズ素管6け、平板を溶接によって円筒状にして製作す
るため、溶接部の肉盛シが残る。通常、溶接部の板厚t
wは公称板厚tを用いると、tw = 1.05 t〜
1.20tとなシ、他の部分の板厚よりも厚い。したが
ってベローズ8が伸縮するときの摩耗による応力集中は
、溶接部と接触している山部4及び谷部3で生じ易い。
As described above, when the multilayer bellows 8 expands and contracts, each part contacts and slides, and the sliding surfaces of each layer are likely to wear out due to the surface pressure generated at that time. In particular, thinning due to wear at the peaks 4 and troughs 3 where the maximum stress occurs causes stress concentration and shortens the life of the Siperose. Furthermore, since the six bellows blank tubes shown in FIG. 2 are made into a cylindrical shape by welding a flat plate, overlays remain at the welded portions. Normally, the plate thickness of the welded part t
When w is the nominal plate thickness t, tw = 1.05 t~
At 1.20t, it is thicker than other parts of the plate. Therefore, stress concentration due to wear when the bellows 8 expands and contracts tends to occur at the peaks 4 and valleys 3 that are in contact with the welded portion.

以上のような問題を解決するひとつの方法として、従来
の多層ベローズは特開昭56−127858に記載のよ
うにベローズ8の各層を第6図に示すように等間隔に空
隙を設けるとと艇提案されている。このようなベローズ
8の製造方法は以下に示す通シである。最内層ベローズ
となる円筒の外側に、その外径と近似する内筒を有する
円筒を順次   ゛積層してベローズ素材6とし、この
ベローズ素材6をベローズ形状の低温の成形型に設置す
るとともに、ベローズ素材内に高温の圧力流体を付加す
ることによって極めて短時間で成形する。ついで成形さ
れたベローズ素材6を成形型から取出して室温まで冷却
する。ベローズ素材6の成形時間は極めて短時間である
ので、各円筒が温度差を生じた状態で成形され、室温ま
での収縮量が異なることになシ、室温でのベローズ80
層間に微小な空隙が生じる。以上のようにして各層間に
空隙のある多層ベローズ8を製造することができる。し
かし、この成形法は材料の熱伝導を利用するもので、均
一な温度分布を得ることは難しい。特に成形時に、隣接
するベローズは内圧によシ密着しているため、各層に温
度差をつけることは困難である。
As one method for solving the above-mentioned problems, the conventional multi-layered bellows is constructed by providing spaces in each layer of the bellows 8 at equal intervals as shown in FIG. Proposed. The method for manufacturing such bellows 8 is as follows. On the outside of the cylinder that will become the innermost layer bellows, cylinders having inner cylinders that approximate the outer diameter of the cylinder are sequentially stacked to form a bellows material 6, and this bellows material 6 is placed in a bellows-shaped low-temperature mold, and the bellows is formed into a bellows material. By applying high-temperature pressure fluid into the material, it can be formed in an extremely short time. The molded bellows material 6 is then taken out from the mold and cooled to room temperature. Since the molding time of the bellows material 6 is extremely short, each cylinder is molded with a temperature difference, and the amount of shrinkage up to room temperature is different.
Microscopic voids are created between the layers. In the manner described above, a multilayer bellows 8 having voids between each layer can be manufactured. However, this molding method utilizes the heat conduction of the material, and it is difficult to obtain a uniform temperature distribution. Particularly during molding, since adjacent bellows are brought into close contact due to internal pressure, it is difficult to create a temperature difference between each layer.

さらに第6図に示すように各層のベローズの山部4と谷
部3は、第5図に示した密着状態にあるベローズと比較
して曲率半径の差が大きくなるため、山部4と谷部3で
剛性が異なる。最内層のベローズでは山部4に比較して
谷部3の剛性が低下し、最外層ベローズでは谷部3に比
較して山部4の剛性が低下する。このため層間に空隙の
あるベローズ8は密着状態のベローズ9に比較して同一
負荷変位量に対する山部4および谷部3の応力分布が大
きくばらつくことによシ、応力集中が生じ易く寿命の低
下をまねく可能性がある。
Furthermore, as shown in FIG. 6, the difference in the radius of curvature between the peaks 4 and valleys 3 of the bellows in each layer is larger than that of the bellows in the close contact state shown in FIG. The rigidity is different in part 3. In the innermost layer of bellows, the stiffness of the valley portions 3 is lower than that of the peak portions 4, and in the outermost layer of bellows, the stiffness of the peak portions 4 is lower than that of the valley portions 3. For this reason, the bellows 8 with voids between the layers is more likely to cause stress concentration due to the stress distribution in the peaks 4 and valleys 3 varying greatly for the same amount of load displacement compared to the bellows 9 in a close contact state, resulting in a shortened lifespan. This may lead to

〔発明の目的〕[Purpose of the invention]

本発明の目的は、多層ベローズの応力集中部において伸
縮時に発生する接触をなくシ、さらに各層の山部及び谷
部の剛性の差を最小にして応力分布が均一である多層ベ
ローズを提供することである。
It is an object of the present invention to provide a multilayer bellows that eliminates contact that occurs during expansion and contraction in stress concentration parts of the multilayer bellows, and further minimizes the difference in stiffness between the peaks and valleys of each layer to provide a uniform stress distribution. It is.

〔発明の概要〕[Summary of the invention]

本発明は、ベローズの平行部を密着し、隣接する2つの
ベローズの外側ベローズの内表面の曲率半径と、内側ベ
ローズの外表面の曲率半径が極力等しく、かつ応力集中
部の各層間に空隙を設けることにより、応力集中部にお
いて伸縮時に発生する接触をなくシ、さらに各層の山部
及び谷部の剛性の差が最小となシ応力分布が均一になる
ようにしたものである。
The present invention aims to bring the parallel parts of the bellows into close contact with each other, to ensure that the radius of curvature of the inner surface of the outer bellows of two adjacent bellows is as equal as possible to the radius of curvature of the outer surface of the inner bellows, and to create a void between each layer of the stress concentration part. By providing this, contact that occurs during expansion and contraction in stress concentration areas is eliminated, and the difference in rigidity between the peaks and valleys of each layer is minimized, resulting in a uniform stress distribution.

〔発明の実施例〕−−− 以下、本発明の一実施例番説明する。第1図(a)。[Embodiments of the invention] --- Hereinafter, one embodiment of the present invention will be explained. Figure 1(a).

(b)は、多層ベローズの一種である二層ベローズにつ
いて示したものである。ベローズの平行部5のみにおい
て各層を密着状態とし、外層ベローズ1の内表面の曲率
半径と、内層ベローズ2の外表面の曲率半径が等しく、
かつ応力集中部の山部及び谷部に空隙を設けたものであ
る。
(b) shows a two-layer bellows, which is a type of multilayer bellows. Each layer is in close contact only at the parallel portion 5 of the bellows, and the radius of curvature of the inner surface of the outer bellows 1 is equal to the radius of curvature of the outer surface of the inner bellows 2,
In addition, voids are provided in the peaks and valleys of the stress concentration area.

このときの空隙量は次のようにして簡易計算で求めるこ
とができる。ベローズ8の山部4から谷部3にかけての
早出をモデル化したものを第7図に示す。ベローズ8の
曲率半径をr1平行部長さをt1断面二次モーメントを
11ヤング率をEとする。0点で軸方向反力R1径方向
仮想反力Qおよび曲げモーメントMeが働くとするとB
、D。
The amount of voids at this time can be determined by simple calculation as follows. FIG. 7 shows a model of early release from the peak 4 to the valley 3 of the bellows 8. The radius of curvature of the bellows 8 is r1, the parallel length is t1, the moment of inertia of area is 11, and the Young's modulus is E. If axial reaction force R1 radial virtual reaction force Q and bending moment Me act at point 0, then B
,D.

Fの各点に働く曲はモーメントMi 、 Mn 、 M
Fは Mal =Ma  R(r−1−z−)−rcosθ)
 −Q r (2−sinθ)・・・(2) Mo=Mo  R(j  x+r)      ・・−
(a)MF =MO−Rr (1−sinの−Q rc
O5θ  ・(4)となる。ここで点Gが回転しない条
件よシとなる。これよシ Mu=R(r+−)          ・・・(6)
となる。次に式(2)〜(4)より曲シはシのひずみエ
ネルギーUは ・・・(7) となる。Ca5t:gI:auoノ定理よ、9G点のQ
方向(径方向)の変位δは δ=〔δU/aQ)Q=0 =Rr!(r+(−−1)t)/EI  ・(8)とな
る。ここで第4図で述べた二層ベローズのモデルを用い
て500°Cの実験結果よシ求めた局方向の単位長さあ
たシの引張条件における反力R=0.178 (kg 
f/wn ) 、山部の平均半径r = 11.75(
mm)、E = 16200 (kgf/i爾2)、板
厚t = 1.5閣として工= t’/ 12 = 0
.281 (Wan’)、t=35(w)を用いるとδ
二0.171 (B)となる。ここで平行部の中心点が
変位しないものとすると第7図に示した谷部3の径方向
の変位量δ′は、対称性よシ式(8)に示したδより δl=δ/2 =几r2(r+(−−1)/J/2EI  ・(9)と
なる。このモデルを外層ベローズ1の谷部3に適用する
とδ’ = 0.08ytas 外11i1に変位する
ことになる。次に反力几、平行部a1ヤング率E1断面
二次モーメン)Iが等しく、半径r。(〉r)なる内層
ベローズ2の谷部3に適用すると、そのとき[の径方向
変位δ。′は上と同じく δo’ =Rro” (’o + (21) ’)/2
EI ・・(10)で表わすことができる。明らかに引
張変位R,>0なる条件のもとて外層ベローズlと内層
ベローズ2の径方向の変位差Δδは Δδ=δ0′−δ′〉0      ・・・(11)と
なり、互いに接触することになる。例えば内層ベローズ
2の径方向変位量δ。′は、半径r。−13,25■(
>r=1x、75咽)と上述の条件よシ、δ。′=0.
11調 となる。したがって Δδ= 0.11−0.08 =0.03■         ・・・(12)となる
The songs acting on each point of F are moments Mi, Mn, M
F is Mal = Ma R(r-1-z-)-rcosθ)
-Q r (2-sin θ)...(2) Mo=Mo R(j x+r)...-
(a) MF = MO-Rr (-Q rc of 1-sin
O5θ ・(4). Here, there is a condition that point G does not rotate. This is it Mu=R(r+-)...(6)
becomes. Next, from equations (2) to (4), the strain energy U of the curve 1 is...(7). Ca5t:gI:auo theorem, Q at 9G point
The displacement δ in the direction (radial direction) is δ=[δU/aQ)Q=0 =Rr! (r+(--1)t)/EI (8). Here, reaction force R = 0.178 (kg
f/wn), average radius of the peak r = 11.75 (
mm), E = 16200 (kgf/i2), plate thickness t = 1.5 mm = t'/12 = 0
.. 281 (Wan'), using t = 35 (w), δ
20.171 (B). Here, assuming that the center point of the parallel portion is not displaced, the radial displacement amount δ' of the valley portion 3 shown in FIG. = 几r2(r+(--1)/J/2EI ・(9).If this model is applied to the valley part 3 of the outer layer bellows 1, it will be displaced to the outside 11i1 by δ' = 0.08ytas.Next The reaction force is equal to the parallel part a1 Young's modulus E1 moment of inertia of area) I is equal, and the radius r. When applied to the valley portion 3 of the inner layer bellows 2 where (>r), then the radial displacement δ of [. ' is the same as above, δo' = Rro'('o + (21) ')/2
EI can be expressed as (10). Obviously, under the condition that the tensile displacement R is >0, the radial displacement difference Δδ between the outer layer bellows 1 and the inner layer bellows 2 becomes Δδ=δ0′−δ′〉0 (11), and they are in contact with each other. become. For example, the amount of radial displacement δ of the inner bellows 2. ' is the radius r. -13,25■(
> r = 1x, 75 degrees) and the above conditions, δ. '=0.
It will be in the 11th key. Therefore, Δδ=0.11−0.08=0.03■ (12).

上で述べた曲シはシによる径方向変位量δは、アイソパ
ラメトリック軸対称シェル要素を用いた有限要素法によ
る詳細解析とほぼ等しい値となっている。また従来の多
層ベローズにおいて、層間の空隙は0.005〜0.0
1m+あるとされていることよシ、上で求めたΔδ=0
.03mよりも空隙は小さく、各層の伸縮による谷部の
接触は十分あり得る。
The above-mentioned radial displacement amount δ due to the curve is approximately the same value as in the detailed analysis using the finite element method using isoparametric axisymmetric shell elements. In addition, in conventional multilayer bellows, the gap between the layers is 0.005 to 0.0
It is said that there is 1m + Δδ = 0 calculated above.
.. The void is smaller than 03m, and there is sufficient possibility of contact between the valleys due to expansion and contraction of each layer.

さらに空隙量Δδ= 0.03 vaはベローズの山高
さ60mの0.01と小さく、空隙によるベローズ剛性
の変化は無視できる。
Furthermore, the amount of voids Δδ=0.03 va is as small as 0.01 when the height of the bellows is 60 m, and the change in the rigidity of the bellows due to the voids can be ignored.

以上のように多層ベローズ8の谷部における空隙量Δδ
は次の式で求めることができる。
As described above, the amount of voids Δδ in the valleys of the multilayer bellows 8
can be calculated using the following formula.

ここでRは周方向の単位長さあた勺の反力である。。Here, R is the reaction force of the force applied by the unit length in the circumferential direction. .

Eけ材料のヤング率、■は板厚によって求まる断面二次
モーメント、aは平行部長さであり 、r。
E is the Young's modulus of the material, ■ is the moment of inertia determined by the plate thickness, a is the length of the parallel section, and r.

およびrは隣接するベローズの山部あるいは谷部の曲率
半径である。上で述べた計算例はベローズ8の谷部31
C適用した場合であるが、山部4にも適用することがで
きる。この場合、内層ベローズ、2の曲率半径r1を用
いて、山部4の径方向変位量δ、は δr=f(r、”cr++<−−x)’t〕/2Ex 
  ・(14)となる。次に外層ベローズ1の曲率半径
r、を用いると、山部4の径方向変位量δ2は δ2=Rr2’ 〔r2+(−1)t〕/2EI   
−(15)となる。このときの変位方向は山部4が内側
へ変位する。したがって内層ベローズ2と外層ベローズ
1の変位差Δδは、r2〉rlなる関係よりΔa:δ、
−δ、>0        ・・・(16)となり、接
触することがわかる。したがって接触しないための空隙
量は式(13)を用いて求めることができる。
and r is the radius of curvature of the peak or valley of the adjacent bellows. The above calculation example is based on the valley 31 of bellows 8.
This is the case where C is applied, but it can also be applied to the mountain portion 4. In this case, using the radius of curvature r1 of the inner bellows 2, the radial displacement amount δ of the peak portion 4 is δr=f(r, "cr++<--x)'t]/2Ex
・(14) becomes. Next, using the radius of curvature r of the outer bellows 1, the radial displacement amount δ2 of the peak portion 4 is δ2=Rr2' [r2+(-1)t]/2EI
−(15). The direction of displacement at this time is that the peak portion 4 is displaced inward. Therefore, the displacement difference Δδ between the inner layer bellows 2 and the outer layer bellows 1 is Δa:δ from the relationship r2>rl.
-δ,>0 (16), which indicates that they are in contact. Therefore, the amount of voids required for non-contact can be determined using equation (13).

以上のように多層ベローズ8の谷部3および山部4で伸
縮によって接触しないための空隙量は式(13)によシ
求めることができる。
As described above, the amount of voids in the troughs 3 and peaks 4 of the multilayer bellows 8 to avoid contact due to expansion and contraction can be determined using equation (13).

このようなベローズ8の成形法の例を第8図に示す。外
側に2つ割シの成形金型7を装置し、ベローズ素管6に
液圧を導入し、素管内の液圧を所定の圧力に上昇させ、
ベローズ素管6を圧力により膨出させる。さらに注入管
10Vcよシ層間に液体又はガスを注入する。このとき
注入する液体又はガスの容量は山部4または谷部3の空
隙によシできる容量で、内部液圧とバランスを保ちなが
ら成形してゆく。金型7の入っている所は内圧のフープ
ストレスに耐えるため、その間にあるベローズ素管6の
みが膨出されてくると同時にプレスで軸方向に圧縮し、
ベローズ素管6の膨出した山部4になる所を座屈によシ
更にベローズ形状に成形させていく。この場合、内外層
ベローズ1,2間の注入液体ないしガスは、座屈しやす
い(変形しやすい)山谷部3,4へ移動する性質が有る
のてその山谷部3,4に注入液体ないしはガスが集中し
て所定のベローズ間隔が得られる。
An example of a method for forming such a bellows 8 is shown in FIG. A two-split molding die 7 is installed on the outside, and hydraulic pressure is introduced into the bellows blank tube 6 to increase the hydraulic pressure inside the blank tube to a predetermined pressure.
The bellows blank tube 6 is expanded by pressure. Further, liquid or gas is injected between the layers through the injection pipe 10Vc. The volume of liquid or gas injected at this time is the volume that can be filled in the voids in the peaks 4 or troughs 3, and molding is carried out while maintaining a balance with the internal liquid pressure. In order to withstand the hoop stress of the internal pressure, the part where the mold 7 is contained is bulged out only by the bellows material tube 6 between them, and at the same time is compressed in the axial direction by a press.
The parts of the bellows blank tube 6 that will become the bulging peaks 4 are buckled and further formed into a bellows shape. In this case, the liquid or gas injected between the inner and outer layer bellows 1 and 2 has the property of moving to the peaks and valleys 3 and 4, which are easily buckled (easily deformed). A predetermined bellows spacing can be obtained in a focused manner.

以上の実施例は山部4と谷部3の両方の応力集中部に所
定の空隙を設けるようにしたが、最も破搦し易い山部4
あるいは谷部3のどちらかに空隙を設けてもよい。谷部
3に空隙を設けたときの実施例を第9図に示す。
In the above embodiment, a predetermined gap is provided in the stress concentration parts of both the peak part 4 and the valley part 3, but the peak part 4, which is most likely to rupture,
Alternatively, a gap may be provided in either of the valleys 3. An embodiment in which a gap is provided in the valley portion 3 is shown in FIG.

本発明の実施例によればベローズの平行部を密着し、隣
接する2つのベローズの外側−°ローズの内表面の曲率
半径と、内側ベローズの外表面の曲率半径が等しく、か
つ応力集中部の各層間に所定の空隙を設けることにより
、応力集中部において伸縮時に発生する接触をなくシ、
さらに各層の山部及び谷部の剛性の差が最小となシ、応
力分布が均一になる。
According to an embodiment of the present invention, the parallel parts of the bellows are brought into close contact with each other, and the radius of curvature of the inner surface of the outer bellows is equal to the radius of curvature of the outer surface of the inner bellows, and the stress concentration part is By providing a predetermined gap between each layer, contact that occurs during expansion and contraction in stress concentration areas can be eliminated.
Furthermore, the difference in stiffness between the peaks and valleys of each layer is minimized, and the stress distribution is uniform.

さらに本発明の実施例による多層ベローズの製造方法は
従来の液圧成形法を基本として、層間に所定の液圧また
はガス圧を加えるだけでよく、従来のベローズの製造装
置を用いることによシ簡単に製造することができる。ま
たベローズ全体に空隙を設ける場合に比べて、山部ある
いは谷部だけに空隙があるので層間に注入すべき液体ま
たはガスの容量が少なくてすみ、さらに急速な冷却を必
要とすることもないので、製造コストの低減を計ること
ができる。
Furthermore, the method for manufacturing the multilayer bellows according to the embodiment of the present invention is based on the conventional hydroforming method, and only requires applying a predetermined liquid or gas pressure between the layers, and can be easily manufactured using conventional bellows manufacturing equipment. Can be easily manufactured. In addition, compared to the case where the bellows has voids throughout the bellows, since there are voids only in the peaks or valleys, the volume of liquid or gas that needs to be injected between the layers is smaller, and rapid cooling is not required. , it is possible to reduce manufacturing costs.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明によれば、多層ベローズの山部ない
しは谷部又は画部分に他部よりも大きい各ベローズ間隔
を有する形状であるから、外側ベローズの内表面と内側
ベローズの外表面との曲率半径が等しくなる傾向を得ら
れ、ベローズの伸縮時による接触や応力の局部発生が防
止されてベロ第1図(a)Fi本発明の一実施例による
多層ベローズの全体図、第1図(b)は第1図のY部縦
断面図、第2図は従来のベローズの液圧成形法を示す縦
断面図、第3図は多層ベローズの従来例を示す縦断面図
、嬉4図は従来の二層ベローズの解析モデル図、第5図
はベローズの応力分布図、第6図は他の従来例による多
層ベローズの縦断面図、第7図はベローズのけシモデル
、第8図は本発明の一実施例の製造方法の一例を示す縦
断面図、第9図は本発明の他の実施例による多層ベロー
ズの縦断面図である。
As described above, according to the present invention, since the multilayer bellows has a shape in which each bellows has a larger spacing in the peaks, valleys, or picture parts than in other parts, the inner surface of the outer bellows and the outer surface of the inner bellows are The radius of curvature tends to be the same, and contact and local stress caused by expansion and contraction of the bellows are prevented. b) is a longitudinal cross-sectional view of the Y section in Fig. 1, Fig. 2 is a longitudinal cross-sectional view showing a conventional hydroforming method for bellows, Fig. 3 is a longitudinal cross-sectional view showing a conventional example of multilayer bellows, and Fig. 4 is a vertical cross-sectional view showing a conventional example of multilayer bellows. An analysis model diagram of a conventional two-layer bellows, Figure 5 is a stress distribution diagram of the bellows, Figure 6 is a vertical cross-sectional view of a multi-layer bellows according to another conventional example, Figure 7 is a bellows cage model, and Figure 8 is a diagram of the present invention. FIG. 9 is a vertical cross-sectional view showing an example of a manufacturing method according to an embodiment of the present invention, and FIG. 9 is a vertical cross-sectional view of a multilayer bellows according to another embodiment of the present invention.

1・・・外層ベローズ、2・・・内層ベローズ、3・・
・ベローズ谷部、4・・・ベローズ山部、5・・・ベロ
ーズ平行部、6・・・ベローズ素管、7・・・成形金型
、8・・・多層ベローズ、9・・・多層ベローズ、10
・・・注入管、11・・・パツキン、12・・・液圧管
1... Outer layer bellows, 2... Inner layer bellows, 3...
・Bellows valley, 4... Bellows peak, 5... Bellows parallel part, 6... Bellows blank tube, 7... Molding mold, 8... Multilayer bellows, 9... Multilayer bellows , 10
...Injection pipe, 11...Packing, 12...Hydraulic pressure pipe.

Claims (1)

【特許請求の範囲】[Claims] 1、2層以上のベローズから成る多層ベローズにおいて
、多層ベローズの山部ないしは谷部またはその両部に他
部よりも大きな各ベローズ間隔を設けたことを特徴とし
た多層ベローズの構造。
A structure of a multilayer bellows comprising one, two or more layers of bellows, characterized in that each bellows is provided with a larger spacing between peaks and/or valleys of the multilayer bellows, or both of them, than in other areas.
JP16785784A 1984-08-13 1984-08-13 Structure of multilayer bellows Pending JPS6148668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16785784A JPS6148668A (en) 1984-08-13 1984-08-13 Structure of multilayer bellows

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16785784A JPS6148668A (en) 1984-08-13 1984-08-13 Structure of multilayer bellows

Publications (1)

Publication Number Publication Date
JPS6148668A true JPS6148668A (en) 1986-03-10

Family

ID=15857377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16785784A Pending JPS6148668A (en) 1984-08-13 1984-08-13 Structure of multilayer bellows

Country Status (1)

Country Link
JP (1) JPS6148668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010264A1 (en) * 2010-07-19 2012-01-26 Eagleburgmann Germany Gmbh & Co. Kg Bellows-type compensator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012010264A1 (en) * 2010-07-19 2012-01-26 Eagleburgmann Germany Gmbh & Co. Kg Bellows-type compensator

Similar Documents

Publication Publication Date Title
López et al. Numerical model and experimental tests on single-layer latticed domes with semi-rigid joints
US4044186A (en) Shear flexibility for structures
Pagar et al. Experimental investigations on meridional and circumferential stresses of bellows due to internal pressure
GB2056006A (en) Corrosion resistant heat exchanger element and method of manufacture
US6703154B2 (en) Solid oxide fuel cell compression bellows
JPS6148668A (en) Structure of multilayer bellows
CN109241642B (en) Method for judging instability bearing capacity of shell-and-tube heat exchanger
JPS61165091A (en) Expansion pipe joint
JPS61159230A (en) Manufacturing device of multilayer bellows
CN211012615U (en) Heat exchanger with thermal expansion extension protection
JPS60172796A (en) Multilayer bellows type expansion pipe joint
JPH064463U (en) Multi-layered bellows
Liu et al. Research on numerical simulation technology of spiral plate heat exchanger
Ding The thermoelastic dynamic response of thick closed laminated shell
Nishiguchi et al. A simplified method for predicting creep collapse of a tube under external pressure
JPH066823U (en) Multi-layered bellows
Babu et al. GETSLOCK-Advanced Front Closure Design for Multi-Tube Hairpin Heat-Exchanger
Cook et al. Application of Performance and Reliability Concepts to the Design of Ceramic Regenerators
Neto et al. Finite element analysis of buried pipelines subjected to buckling
JPH01234679A (en) Manufacture of three layer pipe
Abdulaliyev et al. Deformations of Cylindrical Corrugated Pipes
Hyde et al. Thermal ratchetting of a tube with non-uniform thickness
Kordkheili et al. Local Imperfection Effects on Thermal Buckling Behavior of Composite Fiber Reinforced Truncated Conical Liner
TR2023002081A2 (en) MULTIPLE CONNECTED PTFE-STEEL COMPOSITE ENVIRONMENTALLY WELDLESS CIRCULAR LENS METAL EXPANSION COMPENSATOR
Kadam et al. Analysis and Weight Optimization of Split Dish Reactor Using Thermo-Structural Coupled FEA