JPS6148608A - Contactedly moving guide shaft for bearing - Google Patents
Contactedly moving guide shaft for bearingInfo
- Publication number
- JPS6148608A JPS6148608A JP16995584A JP16995584A JPS6148608A JP S6148608 A JPS6148608 A JP S6148608A JP 16995584 A JP16995584 A JP 16995584A JP 16995584 A JP16995584 A JP 16995584A JP S6148608 A JPS6148608 A JP S6148608A
- Authority
- JP
- Japan
- Prior art keywords
- shaft
- frame body
- bearing
- guide shaft
- contact guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000033001 locomotion Effects 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims 1
- 238000009751 slip forming Methods 0.000 abstract 1
- 238000005452 bending Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000007723 transport mechanism Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000002566 clonic effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 etc. Chemical compound 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Landscapes
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Abstract
Description
【発明の詳細な説明】
こq発明は一般の機械装置における直線すべり機構のす
べり案内軸受系の性能の向上と、併せて製造価格の低廉
化のために発明したものであって軸受と接動用案内軸と
の接触抵抗を小さく押えるために接触面積を小さくし且
つ一般に使用されている丸軸と変らず寧ろ優れた動作緒
特性を備える〜
ものである。[Detailed Description of the Invention] This invention was invented to improve the performance of sliding guide bearing systems for linear sliding mechanisms in general machinery and to reduce manufacturing costs. In order to reduce the contact resistance with the guide shaft, the contact area is made small, and it has operating characteristics that are superior to those of commonly used round shafts.
従来軸受用接動案内軸においては、滑らかさと曲り防止
のための加工法として、旋盤仕上のままでは使用に耐え
られぬため研磨加工を施すか、最も良い状態のものは超
仕上法即ちスーパーフィニツシユを追加工として施しい
るのが普通である。Conventional contact guide shafts for bearings have been processed using a polishing process to ensure smoothness and prevent bending, as lathe finish cannot withstand use, or the best condition is a superfinishing process. Tsushiyu is usually applied as an additional work.
従って非常な高原価を招く事になるにもかかわらず、近
時の装置の高性能化に伴って、更により滑かであり且つ
曲りの極小である事が要求されるため更に高原価なもの
になっている。Therefore, although this results in a very high cost, as the performance of recent equipment has improved, smoothness and minimal bending are required, making it even more expensive. It has become.
此の現状を踏えて、此の発明は抵抗値が低く。Based on this current situation, this invention has a low resistance value.
加工の容易な接動案内軸を製造する事を目的とするもの
である。The purpose is to manufacture a contact guide shaft that is easy to process.
先づ図を使用して発明の詳細な説明を行う。First, a detailed explanation of the invention will be given using figures.
第一第二図は搬送機構の簡略の平面図である。一般の搬
送機構のベースフレーム体(1)は此の体内又はフレー
ム体(1)と一体で且つ突出した軸受部(2)を有し軸
受部(2)に軸受(3)を挿入している。Figures 1 and 2 are simplified plan views of the transport mechanism. The base frame body (1) of a general transport mechanism has a bearing part (2) that is protruded from the body or is integral with the frame body (1), and a bearing (3) is inserted into the bearing part (2). .
軸受(3)はすべり用材料の節約及び加工性の点がら、
又フレーム体(1)の駆動の走行の安定を求めるために
第一図の如く2つに分割されているものが多いが、比較
的小型の間代フレーム(1′)は前述の2分割型式を使
用せず軸受(3)の形状が一本のパイプになっている第
二図のものも見られる。The bearing (3) is designed to save sliding material and to be easy to process.
In addition, in order to stabilize the drive running of the frame body (1), many frames are divided into two parts as shown in Figure 1, but the comparatively small clonic frame (1') is of the two-part type described above. There is also one shown in Figure 2 in which the bearing (3) is shaped like a single pipe without using a bearing.
これ等基本的なすべり運動のフレーム体け)げ)の形式
は、フレーム体(1)げ)に乗せた駆動源即ち例えばフ
レーム体(1)+ 1’)に固定しているモーターのピ
ニオレギアと噛合ったラックを装置内の所定の静止固定
場所にネジ止め等を施して駆動機構等を構成しているの
が此の一例である。The form of these basic sliding motions is the drive source mounted on the frame body (1), i.e., the pinion gear of the motor fixed to the frame body (1) + 1'). One example of this is to construct a drive mechanism or the like by screwing the meshed racks to predetermined stationary fixed locations within the device.
前述フレーム体(1)げ)の直線案内は大半のものが所
定の長さを持った第五図の如き合金製丸軸(4)を使用
してあり、丸軸(4)は前述の軸受穴(3)と軸受穴、
を ゛
(3)を貫通して装置内の固定部分にネジは使用して止
めである。軸(4)の断面の外周は凸凹がなく円形で表
面は全周滑らかであり、全長に渉っても同じである。又
曲がり及びよじれについても厳しい精度が要求されてい
る。Most linear guides for the frame body (1) mentioned above use an alloy round shaft (4) with a predetermined length as shown in Figure 5, and the round shaft (4) is fitted with the aforementioned bearing. Hole (3) and bearing hole,
゛(3) Use a screw to pass through the fixed part inside the device and fasten it. The outer periphery of the cross section of the shaft (4) is circular with no unevenness, and the surface is smooth all the way around, and the same is true over the entire length. Strict precision is also required for bending and twisting.
その理由はフレーム体(1)げ)がすべり運動をすると
き磨擦抵抗が多くなると、場所によっては抵抗が大きす
ぎて部分的に円滑な動きを妨げてしまうからである。The reason for this is that if the frictional resistance increases when the frame body (1) slides, the resistance will be too large depending on the location and will partially impede smooth movement.
抵抗値が低く且き加工の容易な接動案内軸の具体案につ
いて説明を行う。A specific proposal for a contact guide shaft that has a low resistance value and is easy to process will be explained.
第六図にある軸(4)は発明の接動案内用の軸(4′)
であり図はその一部である。軸(4′)は全長或は略全
長の外周に螺旋状のミゾ(5)を連続施しであることが
特徴である。The shaft (4) in Fig. 6 is the shaft (4') for the contact guide of the invention.
The figure is a part of it. The shaft (4') is characterized by continuous spiral grooves (5) on the outer periphery of the entire length or approximately the entire length.
一見するとネジ棒を想像出来るがネジピッチの極小のも
のは発明の軸(4つには不適当であり、逆にネジピッチ
の大きいもの程軸(4′)としては有効性を発揮し、一
般の丸軸(4′)に比して著しく良好且つ優れたものに
なって行くであろう。At first glance, you can imagine a threaded rod, but one with a very small thread pitch is unsuitable for the shaft (4') of the invention; on the other hand, the larger the thread pitch is, the more effective it is as a shaft (4'), It will become significantly better and better than the shaft (4').
その理由は2機能性即ち真直度と滑らかさを求めるには
、その加工法と不即不離の関係にあるからで、軸等を曲
りなく且つ表面を滑らかに仕上る場合研削中に発生する
熱は可及的速かに逃がすか除去する必要がある。即ち表
面の部分局所に加工応力が残って2曲り及びそりの原因
となるし研削性も劣って滑らかさを求め難くなる事はよ
く知らりている現象であり、熱の伝わり難いステンレス
等では更に困難である。The reason for this is that the requirement for two functions, straightness and smoothness, is in an immediate and inseparable relationship with the processing method.If the shaft, etc. is not bent and the surface is finished smooth, the heat generated during grinding is Must be released or removed as soon as possible. In other words, it is a well-known phenomenon that machining stress remains locally on the surface, causing bending and warping, and that grindability is also poor, making it difficult to obtain smoothness. Have difficulty.
従って表面積の大きくなっているネジ棒等の外径部のみ
を加工すると此の加工中、加工の行われないネジの谷部
方向へ加工熱は素早く伝導によって逃がせるし、砥石車
の当らない此の部分は研削液が充分に注がれて一層効果
は向上する。Therefore, if only the outer diameter part of a threaded rod, etc., which has a large surface area, is processed, the processing heat can be quickly conducted away to the trough of the screw, which is not processed, and the grinding wheel will not touch this area. The grinding fluid is sufficiently poured into the area, which further improves the effect.
一般に加工時間を短縮し高精度を求めるには。Generally, to shorten machining time and obtain high accuracy.
芯無し研削法を行うか、此の加工法は外径仕上加工を必
要とする前述のネジ状軸が最もふされしい被加工物であ
る。単純形状の丸軸(4)は砥石面全面に被加工物が接
するため熱放散は劣り9曲り滑らかさが失なわれ且つ全
表面積の多い分加工時間が多くなる事は明白で、その加
工時間の多い事が更にその分発熱につながり良い結果は
期待し得なくなる。A centerless grinding method is used, or the above-mentioned threaded shaft, which requires outer diameter finishing, is the most suitable workpiece for this processing method. With the simple shape of the round shaft (4), since the workpiece is in contact with the entire surface of the grinding wheel, heat dissipation is poor, the smoothness is lost due to bending, and it is obvious that the machining time increases due to the large total surface area. If there is a large amount of heat, it will lead to more heat generation, and good results cannot be expected.
従って前述したネジピッチの小さい被加工物はど曲りの
少ない滑らかな軸(4′)が求められる事になるが一方
すべり軸(4ツに使用する時は別の見方をしなければな
らない。Therefore, a smooth shaft (4') with little bending is required for the aforementioned workpiece with a small thread pitch, but on the other hand, when using a sliding shaft (4'), a different perspective must be taken.
即ち軸受穴(31(3)を軸(4′)に貫通して軸(4
′)上を動かすとき双方の軸芯の直線度は必ず幾分かの
誤差を生じているため、軸(4′)の外径表面とネジ斜
面の交の
点のエツジに軸穴(3)(3)−3−側面のエツジ部が
、はめ合いスキマとの関係も手伝って量の多寡は別にし
て当るため特にネジピッチの極小の場合には前述のネジ
エツジは軸受の長さにも関係するが、半周以上に渉って
、ひっかかり気味に当る場合も考えられるので円滑なす
べりを求め難くなる。That is, the shaft (4') is inserted through the shaft (4') through the bearing hole (31(3)).
’) When moving the top, there will always be some error in the straightness of both shaft axes, so insert the shaft hole (3) at the edge of the intersection of the outer diameter surface of the shaft (4’) and the threaded slope. (3)-3- The edge part of the side surface is affected by the amount depending on the relationship with the fitting clearance, so especially when the thread pitch is extremely small, the above-mentioned thread edge is also related to the length of the bearing. However, there may be cases where the ball gets stuck over more than half the circumference, making it difficult to obtain a smooth slide.
前述の理由からネジピッチは大きくし複条ネジを使用す
ると゛き加工性及び機能性も向上したすべり軸(4′)
を求められる。Due to the above-mentioned reasons, the thread pitch is increased and double-thread threads are used to improve workability and functionality of the sliding shaft (4').
is required.
本発明の軸(4′)のネジミゾ(5)は一般のネジ溝を
使用していない。即ちネジ溝の形状は如何なる形状を用
いようと自由である。よく見受けられるボールネジの如
き半円径であっても又一般ネジの梯形三角或は角形等で
も勿論よい。The screw groove (5) of the shaft (4') of the present invention does not use a general screw groove. That is, the shape of the thread groove is free to use any shape. Of course, it may be a semi-circular diameter like a commonly seen ball screw, or a trapezoidal triangular or square shape like a common screw.
又推力伝導用に使用する目的ではないため非常に浅いミ
ゾの螺旋形状の使用が可能であって此の場合切削加工時
間の大巾節約につなげることが出来る。Furthermore, since it is not intended to be used for thrust transmission, it is possible to use a spiral shape with very shallow grooves, and in this case, a large amount of cutting time can be saved.
やや深いミゾ(5)を採用するときの加工法は転造法を
用いれば有効に加工時間を短縮できる事は知が し
られる通りである口、カかし前述ミゾ(5)を深くする
事は転造金型の寿命上の問題があるため前述の如く推力
伝導用ではない事から考えて出来るだけ浅くする方が良
い。As is known, when using a slightly deep groove (5), the processing time can be effectively shortened by using the rolling method. Because of the problem with the life of the rolling die, it is better to make it as shallow as possible considering that it is not used for thrust transmission as mentioned above.
金属材料の中で塑性加工の容易な銅系アルミニウム系の
材料を用いた場合の前述しである研磨加工の行わないネ
ジミゾ(5)については、外径寸法及び滑らかさが同時
に求められる転造軸(4′)を考え得るが此の場合は成
形後表面にメッキ等によって耐磨耗性等の材料を皮膜す
る。When using a copper-based aluminum-based material that is easily plastically worked among metal materials, the screw groove (5) that does not require polishing is a rolled shaft that requires both outer diameter and smoothness. (4') can be considered, but in this case, the surface is coated with an abrasion-resistant material by plating or the like after molding.
一般に金、ロジウム、ニッケルクローム等或はシリコン
系、炭素系化合物等のコーテングが用いられている。他
にほどほどの耐磨耗性を備えていれば用途してさしつか
えないときは、ステンレス形のときに生じる組織の塑性
流動は大きな加工応力を与えるためネジ(5)の谷は深
い設計にしない事が望ましい。Generally, a coating of gold, rhodium, nickel chrome, etc., or a silicon-based, carbon-based compound, etc. is used. If it is acceptable for other applications as long as it has moderate wear resistance, the screw (5) should not be designed with a deep valley because the plastic flow of the structure that occurs in the case of stainless steel type gives a large processing stress. is desirable.
谷径に対して山径の差は小さい程良く2発明の接動案内
軸(4′)は前述の如(力の伝導等には用いないので、
かえって浅(した場合の方が経年変化の歪もなくなって
都合が良い。The smaller the difference between the peak diameter and the valley diameter, the better.
On the contrary, it would be more convenient if it were shallow, since there would be no distortion due to aging.
理由は前述の他の合金の場合と同じである。The reason is the same as for the other alloys mentioned above.
以上種々の接動案内軸(4′)の製作方法及主要ポイン
トを述べたが1次に当該接動案内軸を利用した場合の機
能上の利益を説明する。The manufacturing methods and main points of various contact guide shafts (4') have been described above, and first, the functional benefits of using the contact guide shafts will be explained.
今迄に少し述べであるが軸(4′)と軸受穴(3)の内
面との接触面積を少なくしであるので軽負荷の直線案内
軸受系を用いると接触抵抗を少なく出来るので、小さい
駆動力を加えただけで軽(円滑なすべり運動ができる。As mentioned previously, the contact area between the shaft (4') and the inner surface of the bearing hole (3) is reduced, so if a light-load linear guide bearing system is used, the contact resistance can be reduced, resulting in a small drive. A light (smooth) sliding motion can be made just by applying force.
一般丸軸(4)はその点において不利な事は明瞭である
。It is clear that the general round shaft (4) is disadvantageous in this respect.
他を見逃せないもう一つの利点は丸軸(4)と軸受穴(
3)との組合せは、いずれの面も微視すると円筒誤差を
有しているため凸凹が必ず存在するので。Another advantage that cannot be overlooked is the round shaft (4) and the bearing hole (
In combination with 3), if you look closely at any surface, there will be a cylindrical error, so there will always be unevenness.
これ等がすべり運動を行うと互に接触し合って円滑な動
きを妨げる事になる。If these slide, they will come into contact with each other and prevent smooth movement.
従って発明の接動案内軸(4′)を採用した場合少なく
とも円滑な動きを妨げている一方の誤差はなくする事が
可能となる。Therefore, when the contact guide shaft (4') of the invention is employed, it is possible to eliminate at least one of the errors that impede smooth movement.
他に潤滑油を用いるとき丸軸(4)では普通潤滑油の粘
性のために推力を大きくする必要があるが軸(4′)で
は小さくして良いという利益を得られる。Another benefit is that when lubricating oil is used, the thrust force must be increased for the round shaft (4) due to the viscosity of the lubricating oil, but it can be reduced for the shaft (4').
て
このように種々の利益を求められ看しかも低廉で精度の
高い円滑な動きを行えると同時に耐久性もある直線すべ
り運動のための接動案内軸を発明した。We have invented a contact guide shaft for linear sliding motion that is inexpensive, can perform highly accurate and smooth motion, and is durable as well.
第一図第三図は発明の説明を支えるために表わした。一
般的な機械装置内に使っている直線往復運動を行うフレ
ーム体(1)げ)の簡略平面図である。
第二図第四図はそれぞれ第一図第三図の側面図である。
第五図は一般に使用している上記フレーム体(1)げ)
用の直線案内用の接動案内軸(4)を表わした図である
。断面は表していないが円形である。
第六図第七図は発明の−、二の応用例の接動案内軸(4
′)でありこの一部分を簡単に表わしたものである。Figures 1 and 3 are shown to support the explanation of the invention. FIG. 2 is a simplified plan view of a frame body (1) that performs linear reciprocating motion used in a general mechanical device. Figures 2 and 4 are side views of Figures 1 and 3, respectively. Figure 5 shows the frame body (1) generally used.
FIG. 4 is a diagram illustrating a contact guide shaft (4) for linear guide. Although the cross section is not shown, it is circular. Figure 6 and Figure 7 show the contact guide shaft (4) of the second application example of the invention.
'), and this part is simply expressed.
Claims (1)
該フレーム体に設けたすべり軸受穴内を貫通して当該フ
レーム体を内装する装置の所定静止部分に固定する接動
用案内軸において推力発生、伝達或は締結用に使用する
一般ねじ規格における外径と谷径値外の値をもち、且つ
適宜上記両径の差値を縮少した山或は谷形状をもたせて
、当該フレーム体の駆動推進力には関係しない螺旋条溝
を当該軸の外周に全長或は所定長にわたって設けて、上
記のフレーム体すべり軸受内筒面と当該軸外周面との接
触通動抵抗を小さくするように計った上記接動用案内軸
。 2 請求範囲(1)の接動用案内軸の材料に合金材料を
使用したものであること。 3 請求範囲(1)の接動用案内軸の材料に合金材料を
使用して且つ当該表面に他材質を単一或は複数重合皮膜
したものであること。[Scope of Claims] 1. A contact guide that penetrates through a sliding bearing hole provided in a frame body and is fixed to a predetermined stationary part of a device in which the frame body is installed, in order to guide the linear reciprocating motion, etc. of the frame body. Having a value outside the outer diameter and valley diameter values in the general screw standard used for thrust generation, transmission, or fastening in the shaft, and having a peak or valley shape that reduces the difference between the two diameters as appropriate, A spiral groove that is not related to the driving force of the frame body is provided on the outer periphery of the shaft over the entire length or a predetermined length to reduce the contact passage resistance between the frame body sliding bearing inner cylindrical surface and the shaft outer peripheral surface. The above-mentioned contact guide shaft was designed to be small. 2. An alloy material is used as the material of the contact guide shaft in claim (1). 3. An alloy material is used as the material of the contact guide shaft according to claim (1), and the surface thereof is coated with a single or multiple polymeric coating of other materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16995584A JPS6148608A (en) | 1984-08-16 | 1984-08-16 | Contactedly moving guide shaft for bearing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16995584A JPS6148608A (en) | 1984-08-16 | 1984-08-16 | Contactedly moving guide shaft for bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6148608A true JPS6148608A (en) | 1986-03-10 |
Family
ID=15895946
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16995584A Pending JPS6148608A (en) | 1984-08-16 | 1984-08-16 | Contactedly moving guide shaft for bearing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6148608A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5125636A (en) * | 1989-01-30 | 1992-06-30 | Minolta Camera Kabushiki Kaisha | Copying machine capable of copying two originals on one sheet of paper |
US5327149A (en) * | 1992-05-18 | 1994-07-05 | Hughes Missile Systems Company | R.F. transparent RF/UV-IR detector apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5612127B2 (en) * | 1973-09-26 | 1981-03-19 |
-
1984
- 1984-08-16 JP JP16995584A patent/JPS6148608A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5612127B2 (en) * | 1973-09-26 | 1981-03-19 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5125636A (en) * | 1989-01-30 | 1992-06-30 | Minolta Camera Kabushiki Kaisha | Copying machine capable of copying two originals on one sheet of paper |
US5327149A (en) * | 1992-05-18 | 1994-07-05 | Hughes Missile Systems Company | R.F. transparent RF/UV-IR detector apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN206884805U (en) | Automotive seat level(l)ing device | |
JP2000088072A (en) | Ball screw nut, linear guide device using it, ball screw for steering, and manufacture of ball screw nut | |
JP2000120825A (en) | Ball screw mechanism and linear motion device | |
US5636549A (en) | Wire wound threaded elements including lead screws, roller not assemblies and process | |
EP0698744A1 (en) | Slide member | |
US4566345A (en) | Tool carrier assembly | |
CN203272651U (en) | Lead screw shaft and ball screw | |
US20030070297A1 (en) | Method for fabricating external-tooth gears | |
DE102015119582A1 (en) | transmission | |
KR20010033713A (en) | Method of fabricating pin retaining ring for internal gear, internal meshing planetary gear structure, and hydraulic motor pump | |
JPWO2014167984A1 (en) | Nut processing method for sliding screw device | |
US20170037944A1 (en) | Lead screw drive with asymmetrical internal and external thread and corresponding spindle nut | |
JPS62242126A (en) | Direct driven rolling bearing | |
KR100822130B1 (en) | Ball screw device | |
JPS6148608A (en) | Contactedly moving guide shaft for bearing | |
JP2005083549A (en) | Ball screw nut and its manufacturing method | |
JP3077823B2 (en) | Worm, worm wheel and method of manufacturing the same | |
JPWO2006104015A1 (en) | Ball screw | |
JP2009121562A (en) | Planetary roller screw device | |
US3313172A (en) | Worms for worm and worm wheel assembly and method of forming the same | |
US8381607B2 (en) | Roller screw | |
CN115459547A (en) | Guides for linear motors | |
JP4280376B2 (en) | Linear motion rolling guide unit | |
CN117823586B (en) | Embedded self-lubricating sliding block and preparation method thereof | |
JPS60494Y2 (en) | plain bearing |