JPS6148560B2 - - Google Patents

Info

Publication number
JPS6148560B2
JPS6148560B2 JP6565379A JP6565379A JPS6148560B2 JP S6148560 B2 JPS6148560 B2 JP S6148560B2 JP 6565379 A JP6565379 A JP 6565379A JP 6565379 A JP6565379 A JP 6565379A JP S6148560 B2 JPS6148560 B2 JP S6148560B2
Authority
JP
Japan
Prior art keywords
oil
light oil
light
heat exchanger
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6565379A
Other languages
Japanese (ja)
Other versions
JPS55160729A (en
Inventor
Takashi Nishichi
Shigeya Furuya
Shigeto Fujisawa
Kunio Hagiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP6565379A priority Critical patent/JPS55160729A/en
Publication of JPS55160729A publication Critical patent/JPS55160729A/en
Publication of JPS6148560B2 publication Critical patent/JPS6148560B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Industrial Gases (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、コークス炉ガス中の軽油の回収方法
に関するものである。詳しく述べると、コークス
炉ガスから軽油を回収する際に熱交換器の汚損に
よる運転停止をきたすことなく操業を行ない得る
改良された回収方法に関するものである。 従来、コークス炉ガスからベンゼン、トルエ
ン、キシレン等の軽油分を回収するには、第1図
に示すようにタール除去後のコークス炉ガスがラ
イン1よりナフタリン吸収塔2の下部に導入さ
れ、ライン3より塔頂に導入される含軽油吸収油
と向流接触させてナフタリン分を吸収させてライ
ン4より排出させる。主としてナフタリン分を吸
収除去されたコークス炉ガスはライン5より排出
させ、冷却器6で冷却させたのち吸収塔7の下部
に導入され、ライン8より塔頂に導入される脱軽
油吸収油と向流接触させて軽油分を吸収させてラ
イン9より排出させる。吸収塔7で吸収されなか
つたコークス炉ガスはライン10より排出され
る。ライン4からのナフタリン分吸収油およびラ
イン9からの含軽油吸収油はポンプ10′により
吸収油タンク11に送られるが、その一部はライ
ン3によりナフタリン吸収塔2に循環される。 吸収油タンク11内の含軽油吸収油はポンプ1
2によりライン13を経て熱交換器14′で予熱
され、次いで熱交換器14に送られ、ここでライ
ン15より供給される脱軽油吸収油と熱交換して
加熱される。脱軽油吸収油は熱交換器14で冷却
されたのち、さらに冷却器16で冷却され、ライ
ン8を経て吸収塔7に循環される。一方、熱交換
器14′,14で加熱された含軽油吸収油はライ
ン17により脱水塔18へ導入し、フラツシユし
て水分を除去し、軽質分はライン19により脱軽
油塔20に送られる。重質分は塔底よりポンプ2
1よりライン22を経て加熱炉23に送られて所
定の温度に加熱されたのちライン24より脱軽油
塔20に導入され、蒸留に供される。塔頂留分は
熱交換器14′およびコンデンサー25で凝縮さ
れ、得られる粗軽油は、その一部がライン26に
より脱軽油塔20へ還流されるが、大部分はライ
ン27により後続する分離工程(図示せず。)に
送られる。脱軽油塔20の塔底液である脱軽油吸
収液は、ライン28より排出され、ポンプ29に
よりライン15を経て熱交換器14へ送つて含軽
油吸収油の加熱に供される。また、脱軽油吸収油
の一部はライン30より脱ピツチ塔31に送つて
ピツチ分をライン32より排出させ、塔頂留分は
ライン33より脱軽油塔20へ循環する。 しかるに、このような方法を連続的に行なう、
熱交換器14において脱軽油吸収油側(通常シエ
ル側)が汚損されて次第に熱交換効率は低下して
くる。その対応策として複数基(直列)ある熱交
換器の一基を停止し残りを稼動した状態にしてこ
の一基を内部に滞留している吸収油を抜出し、ス
チーム洗浄または薬洗を行なうか、あるいは管束
を抜出してジエツト洗浄する等の方法が行なわれ
ている。しかしながら、前者は薬品等やスチーム
等の熱源を必要とするばかりでなく、手作業を必
要とし、一方、後者は重機作業であるため危険で
あるばかりでなく作業に長時間を要する。また、
これらの方法は、いずれも熱交換器を停止した行
なうのでその間の熱損失が大きい。 本発明は、前記のごとき従来法の諸欠点を解消
するためになされたもので、コークス炉ガスを脱
軽油吸収油と接触させて軽油を回収し、このよう
にして得られる含軽油吸収油を熱交換器において
脱軽油塔からの脱軽油吸収油により加熱し、つい
で脱軽油塔で軽油分を分離する方法において、前
記熱交換器内の脱軽油吸収油流通側が汚損したら
流通路を切換えて該脱軽油吸収油を含軽油吸収油
流通側に流通させると同時に該含軽油吸収油を脱
軽油吸収油流通側に流通させて前記汚損物質を洗
浄することを特徴とする方法である。 つぎに、図面を参照しながら本発明方法を詳細
に説明する。すなわち、第2図に示すように、本
発明方法において使用される熱交換器14は、例
えばシエル側に設けられた脱軽油吸収油導入管1
5および脱軽油吸収油排出管8にそれぞれ弁3
4,35を取付け、またチユーブ側に設けられた
含軽油吸収油導入管13および含軽油吸収油排出
管17にそれぞれ弁36,37を取付ける。しか
して、脱軽油吸収油導入管15の弁34の上流側
と含軽油吸収油排出管17の弁37の上流側と
を、弁38を有する導管39で連結し、また前記
弁34の下流側と弁37の下流側とを、弁40を
有する導管41で連結する。同様に含軽油吸収油
導入管13の弁36の上流側と脱軽油吸収油排出
管8の弁35の上流側とを、弁42を有する導管
43で連結し、また前記弁36の下流側と弁35
の下流側とを、弁44を有する導管45で連結す
る。 本発明方法は、上記のごとく弁および導管を配
設された熱交換器14を用いて、つぎのようにし
て運転される。すなわち、第1図に示すような軽
油の回収方法において、まず弁34,35,3
6,37を開きかつ弁38,40,42,44を
閉じて導管15より高温の脱軽油吸収油を導入す
ると弁34を通過して熱交換器シエル側に流入
し、冷却されたのち、弁35を経て脱軽油吸収油
排出管8より排出される。一方、低温の含軽油吸
収油は導管13より導入され弁36を経て熱交換
器14のチユーブ側に流入して加熱されたのち、
弁37を経て含軽油吸収油排出管17より排出さ
れる。 しかるに、ある期間運転を行なうことにより脱
軽油吸収油流通側が汚損されて熱交換効率が低下
してきたら、弁34,35,36,37を閉じか
つ弁38,40,42,44を開くと、脱軽油吸
収油は導管15より導管39および弁38を経て
熱交換器14の導管に流入し、ついで弁44およ
び導管45を経て導管8より排出される。一方、
含軽油吸収油は導管13より導管43および弁4
2を経て熱交換器14のシエル側に流入し、つい
で弁40および導管41を経て導管17より排出
される。したがつて、その間、切換前と同様に両
吸収液面で熱交換が行なわれると同時にシエル側
に付着している汚損物質を溶解して清浄化する。
そのまま運転を続行し、ある期間経過後脱軽油吸
収油が流通しているチユーブ側が汚損されたら、
逆に弁34,35,36,37を開きかつ弁3
8,40,42,44を閉じることにより最初の
流通路に戻る。 第2図は、1個の熱交換器について述べたが、
複数個の熱交換器を直列に使用する場合でも同様
な原理で洗浄を行なうことができる。例えば第3
図に示すように、6個の熱交換器14を直列に配
列した場合も、両端の熱交換器14,14におい
て第2図の場合と同様な弁および導管を配設すれ
ば同様な結果が得られる。なお、同図における第
2図と同一の符号は同一部材を表わす。 以上述べたように、本発明方法はコークス炉ガ
ス中から軽油を回収する方法において、熱交換器
内の脱軽油吸収油流通側が汚損したら流通路を切
換えて該脱軽油吸収油を含軽油吸収油流通側に流
通させると同時に該含軽油吸収油を脱軽油吸収油
流通側に流通させて前記汚損物質を洗浄するもの
であるから、なんら運転を停止することなく弁の
切換えだけで吸収油の流通路を交替でき、これに
より十分な洗浄を行なうことができる。また、吸
収油の抜出しはないので熱交換器を停止する必要
がなく洗浄のための期間の熱損失はなく、さらに
熱交換器を複数系列設ける必要はないので設備費
も安価となる。 つぎに、実施例を挙げて本発明方法をさらに詳
細に説明する。 実施例 第1図に示すようなコークス炉ガスからの軽油
の回収方法において、熱交換器14を停止し、シ
エル側の汚損物質を機械的に洗浄し、シエル側に
脱軽油吸収油を、チユーブ側に含軽油を通油する
状態で使用を開始したところ、その直後の総括伝
熱係数は130kcal/m2・hr.℃であつた。その後、
運転を継続しているうちに第4図に示すごとく総
括伝熱係数は徐々に低下してき、3個月後には
100kcal/m2・hr.℃程度以下まで低下した。その
時点で、本発明方法にしたがつて第3図に示すよ
うな弁配管に変更し、弁34,35,36,37
を閉じかつ弁38,40,42,44を開いてシ
エル側に含軽油吸収油を、チユーブ側に脱軽油吸
収油を通油する状態として運転を行なつたとこ
ろ、第4図に示すごとく、その総括伝熱係数は1
個月の間に急激に向上し、その後急激に低下した
が、2〜3個月後には120kcal/m2・hr.℃程度ま
で向上した状態で推移した。aおよびb時点での
熱交換器の使用状況は、第1表のとおりであつ
た。
The present invention relates to a method for recovering light oil from coke oven gas. More specifically, the present invention relates to an improved recovery method that allows light oil to be recovered from coke oven gas without shutting down the operation due to fouling of the heat exchanger. Conventionally, in order to recover light oil components such as benzene, toluene, and xylene from coke oven gas, the coke oven gas after tar removal is introduced into the lower part of the naphthalene absorption tower 2 through line 1, as shown in Figure 1. It is brought into countercurrent contact with the light oil-containing absorption oil introduced into the top of the column from line 3 to absorb the naphthalene content, and is discharged from line 4. The coke oven gas from which the naphthalene content has been mainly absorbed and removed is discharged from line 5, cooled by cooler 6, and then introduced into the lower part of absorption tower 7, where it is mixed with the degas oil absorption oil introduced from line 8 to the top of the tower. The light oil is brought into contact with the flow and the light oil is absorbed and discharged from line 9. Coke oven gas not absorbed by the absorption tower 7 is discharged through a line 10. The naphthalene-containing absorbed oil from line 4 and the light oil-containing absorbed oil from line 9 are sent to absorption oil tank 11 by pump 10', and a part of them is circulated to naphthalene absorption tower 2 via line 3. The light oil-containing absorption oil in the absorption oil tank 11 is pumped to the pump 1.
2, the oil is preheated in a heat exchanger 14' via a line 13, and then sent to the heat exchanger 14, where it is heated by exchanging heat with the delight oil absorption oil supplied from a line 15. After being cooled in the heat exchanger 14, the light oil-free absorption oil is further cooled in the cooler 16, and is circulated through the line 8 to the absorption tower 7. On the other hand, the light oil-containing absorbed oil heated in the heat exchangers 14' and 14 is introduced into a dehydration tower 18 through a line 17, where it is flashed to remove moisture, and the light components are sent through a line 19 to a light oil removal tower 20. Heavy components are pumped from the bottom of the tower 2
1 through line 22 to heating furnace 23 and heated to a predetermined temperature, it is introduced through line 24 to light oil removal column 20 and subjected to distillation. The overhead fraction is condensed in a heat exchanger 14' and a condenser 25, and a portion of the resulting crude gas oil is refluxed to the gas oil removal column 20 via line 26, but most of it is recycled via line 27 to the subsequent separation step. (not shown). The light oil-free absorption liquid, which is the bottom liquid of the light oil removal column 20, is discharged from the line 28, and sent by the pump 29 via the line 15 to the heat exchanger 14, where it is used to heat the light oil-containing absorbed oil. Further, a part of the light oil-free absorbed oil is sent to the de-pitching tower 31 through line 30, the pit fraction is discharged through line 32, and the top fraction is circulated to the de-light oil tower 20 through line 33. However, if such a method is carried out continuously,
In the heat exchanger 14, the absorbing oil side (usually the shell side) from which light oil has been removed becomes contaminated, and the heat exchange efficiency gradually decreases. As a countermeasure, you can stop one of the multiple heat exchangers (in series), keep the rest in operation, extract the absorbed oil that has accumulated inside the heat exchanger, and perform steam cleaning or chemical cleaning. Alternatively, a method is used in which the tube bundle is extracted and jet-cleaned. However, the former not only requires chemicals and heat sources such as steam, but also requires manual labor, while the latter requires heavy machinery work, which is not only dangerous but also takes a long time. Also,
In both of these methods, the heat exchanger is stopped, so the heat loss during that time is large. The present invention has been made in order to eliminate the various drawbacks of the conventional methods as described above, and involves recovering light oil by bringing coke oven gas into contact with the light oil-free absorbed oil, and using the light oil-containing absorbed oil obtained in this way. In the method of heating with the stripped light oil absorbed oil from the light oil stripped tower in a heat exchanger and then separating the light oil component in the light oil stripped tower, if the flow side of the stripped light oil absorbed oil in the heat exchanger becomes contaminated, the flow path is switched to remove the light oil. This method is characterized by flowing the light oil-free absorbed oil to the light oil-containing absorbed oil distribution side, and at the same time circulating the light oil-containing absorbed oil to the light oil-free absorption oil distribution side to wash the fouling substances. Next, the method of the present invention will be explained in detail with reference to the drawings. That is, as shown in FIG. 2, the heat exchanger 14 used in the method of the present invention includes, for example, a degas oil absorption oil introduction pipe 1 provided on the shell side.
5 and valve 3 on the light oil absorption oil discharge pipe 8, respectively.
4 and 35, and valves 36 and 37 are respectively attached to the light oil-containing absorption oil inlet pipe 13 and the light oil-containing absorption oil discharge pipe 17 provided on the tube side. Thus, the upstream side of the valve 34 of the light oil-free absorption oil inlet pipe 15 and the upstream side of the valve 37 of the light oil-containing absorption oil discharge pipe 17 are connected by a conduit 39 having a valve 38, and the downstream side of the valve 34 is connected. and the downstream side of the valve 37 are connected by a conduit 41 having a valve 40. Similarly, the upstream side of the valve 36 of the light oil-containing absorption oil introduction pipe 13 and the upstream side of the valve 35 of the light oil-free absorption oil discharge pipe 8 are connected by a conduit 43 having a valve 42, and the downstream side of the valve 36 valve 35
A conduit 45 having a valve 44 connects it to the downstream side of the valve 44 . The method of the invention operates as follows using a heat exchanger 14 equipped with valves and conduits as described above. That is, in the light oil recovery method as shown in FIG.
6 and 37 are opened and valves 38, 40, 42, and 44 are closed to introduce high-temperature light oil-free absorption oil from the conduit 15, it passes through the valve 34 and flows into the heat exchanger shell side, and after being cooled, the valve 35 and is discharged from the light oil removal absorption oil discharge pipe 8. On the other hand, the low-temperature light oil-containing absorption oil is introduced from the conduit 13, passes through the valve 36, flows into the tube side of the heat exchanger 14, and is heated.
It passes through the valve 37 and is discharged from the light oil-containing absorption oil discharge pipe 17. However, if the heat exchange efficiency decreases due to contamination of the degas oil absorbing oil distribution side after a certain period of operation, closing the valves 34, 35, 36, and 37 and opening the valves 38, 40, 42, and 44 will remove the degas oil. The gas oil absorption oil flows from the conduit 15 through the conduit 39 and the valve 38 into the conduit of the heat exchanger 14, and is then discharged from the conduit 8 through the valve 44 and the conduit 45. on the other hand,
Absorbed oil containing light oil is transferred from conduit 13 to conduit 43 and valve 4.
2 into the shell side of the heat exchanger 14 and then exits through the valve 40 and the conduit 41 through the conduit 17. Therefore, during this time, heat exchange is carried out between both absorption liquid surfaces as before the switching, and at the same time, the contaminants adhering to the shell side are dissolved and cleaned.
If operation continues as it is and after a certain period of time, the tube side through which the degas oil-absorbed oil is distributed becomes contaminated,
Conversely, open valves 34, 35, 36, 37 and open valve 3.
8, 40, 42, and 44 to return to the initial flow path. Although Figure 2 describes one heat exchanger,
Even when a plurality of heat exchangers are used in series, cleaning can be performed using the same principle. For example, the third
As shown in the figure, even when six heat exchangers 14 are arranged in series, the same result can be obtained by providing the same valves and conduits as in the case of FIG. can get. Note that the same reference numerals in this figure as in FIG. 2 represent the same members. As described above, the method of the present invention is a method for recovering light oil from coke oven gas, and when the flow side of the stripped light oil-absorbed oil in the heat exchanger becomes contaminated, the flow path is switched and the stripped light oil-absorbed oil is transferred to the light oil-containing absorbed oil. At the same time as the light oil-containing absorbed oil is circulated to the distribution side, the light oil-containing absorbed oil is circulated to the light oil-free absorption oil distribution side to wash away the contaminants. Therefore, the absorption oil can be distributed by simply switching the valve without stopping the operation. The channels can be alternated to ensure sufficient cleaning. Furthermore, since there is no extraction of absorbed oil, there is no need to stop the heat exchanger, and there is no heat loss during the cleaning period.Furthermore, there is no need to provide multiple lines of heat exchangers, so equipment costs are reduced. Next, the method of the present invention will be explained in more detail with reference to Examples. Example In a method for recovering light oil from coke oven gas as shown in FIG. When we started using it with light oil-containing oil flowing through the side, the overall heat transfer coefficient immediately after was 130kcal/ m2・hr.℃. after that,
As the operation continues, the overall heat transfer coefficient gradually decreases as shown in Figure 4, and after 3 months,
The temperature decreased to below 100kcal/m 2・hr.℃. At that point, according to the method of the present invention, the valve piping is changed to the one shown in FIG.
When operation was carried out with the valves 38, 40, 42, and 44 opened to allow light oil-containing absorption oil to flow through the shell side and light oil-free absorption oil through the tube side, as shown in Fig. 4, Its overall heat transfer coefficient is 1
It rapidly improved within a few months, and then sharply decreased, but after 2 to 3 months it remained at around 120 kcal/m 2 ·hr.℃. The usage status of the heat exchanger at points a and b was as shown in Table 1.

【表】 その後、運転を継続し、約2個月毎の弁の切換
操作により各吸収液の流路を変更したままの状態
で運転を継続したところ、第4図に示すような総
括伝熱係数の推移結果が得られた。なお、第4図
における矢印A,B,Cは弁の切換操作時点を示
す。
[Table] After that, the operation was continued, and the flow path of each absorption liquid was changed by switching the valves every two months. As a result, the overall heat transfer as shown in Figure 4 The coefficient transition results were obtained. Note that arrows A, B, and C in FIG. 4 indicate the timing of the valve switching operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のコークス炉ガスから軽油を回収
する工程の概略を示すフローシート、第2〜3図
は本発明方法を行なうための熱交換器の配管系統
図であり、また第4図は熱交換器における総括伝
熱係数の推移を示すグラフである。 7…吸収塔、8…脱軽油吸収油排出管、13…
含軽油吸収油導入管、14,14′…熱交換器、
15…脱軽油吸収油導入管、17…含軽油吸収油
排出管、20…脱軽油塔、39,41,43,4
5…導管、34,35,36,37,38,4
0,42,44…弁。
Fig. 1 is a flow sheet showing an outline of the conventional process of recovering light oil from coke oven gas, Figs. 2 and 3 are piping system diagrams of a heat exchanger for carrying out the method of the present invention, and Fig. 4 is It is a graph showing the transition of the overall heat transfer coefficient in the heat exchanger. 7... Absorption tower, 8... Light oil removal absorption oil discharge pipe, 13...
Light oil-containing absorption oil introduction pipe, 14, 14′...heat exchanger,
15... Gas oil removal absorption oil introduction pipe, 17... Light oil containing absorption oil discharge pipe, 20... Light oil removal tower, 39, 41, 43, 4
5... Conduit, 34, 35, 36, 37, 38, 4
0,42,44...valve.

Claims (1)

【特許請求の範囲】 1 コークス炉ガスを脱軽油吸収油と接触させて
軽油を回収し、このようにして得られた含軽油吸
収油を熱交換器において脱軽油塔からの脱軽油吸
収油により加熱し、ついで脱軽油塔で軽油分を分
離する方法において、前記熱交換器内の脱軽油吸
収油流通側が汚損したら流通路を切換えて該脱軽
油吸収油を含軽油吸収油流通側に流通させると同
時に該含軽油吸収油を脱吸軽油流通側に流通させ
て前記汚損物質を洗浄することを特徴とする軽油
の回収方法。 2 熱交換器は直列に複数個連結されており、か
つその一端に位置している熱交換器には弁を有す
る脱軽油吸収油導入管と、弁を有する含軽油吸収
油排出管と、前記両弁の上流側を連結する弁付き
導管と、前記両弁の下流側を連結する弁付き導管
が、一方他端に位置する熱交換器には弁を有する
含軽油吸収油導入管と弁を有する脱軽油吸収油排
出管と、前記両弁の上流側を連結する弁付き導管
と、前記両弁の下流側を連結する弁付き導管とが
設けられてなるものである特許請求の範囲第1項
に記載の方法。
[Scope of Claims] 1. Light oil is recovered by bringing coke oven gas into contact with the light oil-free absorbing oil, and the light oil-containing absorbed oil thus obtained is treated in a heat exchanger with the light oil-free absorbing oil from the light oil-free tower. In the method of heating and then separating the light oil component in a light oil removing column, if the free light oil absorbed oil distribution side in the heat exchanger becomes fouled, the flow path is switched to allow the free light oil absorbed oil to flow to the light oil containing absorbed oil circulation side. A method for recovering light oil, which comprises simultaneously distributing the light oil-containing absorbed oil to a deabsorbed light oil distribution side to wash the fouling substances. 2 A plurality of heat exchangers are connected in series, and the heat exchanger located at one end includes a gas oil-free absorption oil inlet pipe having a valve, a light oil-containing absorption oil discharge pipe having a valve, and the above-mentioned heat exchanger. A valved conduit connecting the upstream sides of both valves, and a valved conduit connecting the downstream sides of the two valves, and a light oil-containing absorption oil introduction pipe having a valve and a valve at the heat exchanger located at the other end. Claim 1, which is provided with a light oil removal absorption oil discharge pipe having a gas oil removal pipe, a valved conduit connecting the upstream sides of the two valves, and a valved conduit connecting the downstream sides of the two valves. The method described in section.
JP6565379A 1979-05-29 1979-05-29 Recovery of gas oil in coke oven gas Granted JPS55160729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6565379A JPS55160729A (en) 1979-05-29 1979-05-29 Recovery of gas oil in coke oven gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6565379A JPS55160729A (en) 1979-05-29 1979-05-29 Recovery of gas oil in coke oven gas

Publications (2)

Publication Number Publication Date
JPS55160729A JPS55160729A (en) 1980-12-13
JPS6148560B2 true JPS6148560B2 (en) 1986-10-24

Family

ID=13293174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6565379A Granted JPS55160729A (en) 1979-05-29 1979-05-29 Recovery of gas oil in coke oven gas

Country Status (1)

Country Link
JP (1) JPS55160729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064529Y2 (en) * 1986-05-01 1994-02-02 西堀 稔 Halogen bulb mounting structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064529Y2 (en) * 1986-05-01 1994-02-02 西堀 稔 Halogen bulb mounting structure

Also Published As

Publication number Publication date
JPS55160729A (en) 1980-12-13

Similar Documents

Publication Publication Date Title
US2857922A (en) Apparatus for cleaning tube bundles
US6183540B1 (en) Method and apparatus for removing aromatic hydrocarbons from a gas stream prior to an amine-based gas sweetening process
PL96922B1 (en) METHOD OF REMOVING AND EXTRACTING AROMATIC HYDROCARBONS AND WATER FROM A GAS STREAM
RU2480401C2 (en) Method and apparatus for regenerating amine-containing solution to wash incoming gas during purification
US2155853A (en) Method of purifying flue gases
JPH08283757A (en) Method and apparatus for refining natural gas by removing atleast one acidic gas therefrom with solvent
CN108096999B (en) Reboiler method negative pressure crude benzene distillation process
WO1985001671A1 (en) A process for continuously removing and recovering respectively a gas dissolved in a liquid, particularly ammonia from aqueous ammonia waste water
JP3998815B2 (en) How to repair an oil refinery plant
US3773658A (en) Process for regenerating used lubricating oils
JPS5827961B2 (en) Method for rectifying distillable mixtures
US4750916A (en) Method and arrangement for cleansing a flow of hot contaminated gas
CN107890684B (en) Reboiler method negative pressure crude benzol distillation system
DK168395B1 (en) Process for cleaning a mixture of air and vapors from volatile crude oil during recovery of the hydrocarbons and plants for use in the process
CN105779028A (en) Raw coke oven gas heat and chemical product simultaneous recovery method based on washing and rectifying
JPS6148560B2 (en)
TW425313B (en) Method and apparatus for cleaning filters contaminated by polymers and hot-melting resins, in stu, without removing the filtering elements
KR100935829B1 (en) Apparatus for refining waste oil having dualistic packing
US11446603B2 (en) Acid gas removal system for removing acidic gases from gaseous hydrocarbons
US4343777A (en) Method of scrubbing acid gases containing polymerizable organic components
CN114854461B (en) Method for regenerating hot lean oil under negative pressure debenzolization process condition
CA1122135A (en) Process and apparatus for dehydrating tars and hydroarbon oils
KR0166590B1 (en) Method of obtaining a pure aromatic hydrocarbon from a sump product of an extractive distillation of hydrocarbon mixture
CN213492050U (en) Cleaning liquid recovery system of hydrocarbon cleaning and drying equipment
CN105858771A (en) Ammonia stilling device cleaning method and system