JPS614837A - Electronic fuel injector - Google Patents

Electronic fuel injector

Info

Publication number
JPS614837A
JPS614837A JP59125560A JP12556084A JPS614837A JP S614837 A JPS614837 A JP S614837A JP 59125560 A JP59125560 A JP 59125560A JP 12556084 A JP12556084 A JP 12556084A JP S614837 A JPS614837 A JP S614837A
Authority
JP
Japan
Prior art keywords
signal
injection time
fuel injection
exhaust pressure
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59125560A
Other languages
Japanese (ja)
Other versions
JPH025900B2 (en
Inventor
Eiji Taguchi
英治 田口
Hiroshi Irino
入野 博史
Kazutoshi Nishizawa
西沢 一俊
Hiroyuki Makino
博行 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP59125560A priority Critical patent/JPS614837A/en
Publication of JPS614837A publication Critical patent/JPS614837A/en
Publication of JPH025900B2 publication Critical patent/JPH025900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent incorrect combustion of engine by adding an exhaust pressure correction factor based on the differential pressure between the supercharge pressure and the exhaust pressure for the correction of basic fuel injection time signal thereby performing A/F control under acceleration of engine associated with supercharger highly accurately. CONSTITUTION:An electronic fuel injector will determine the basic fuel injection time Ti from an injection time memory 17 with correspondence to the output signals ne, thetath from an engine rotation detector 15 and a throttle valve opening sensor 9. Then the injection time Ti is corrected through an arithmetic unit 20 with correspondence to the output signals P2, T2 from a supercharge pressure sensor 13 and a supercharge temperature sensor 14 thus to operate the injection time Tif for proper air/fuel ratio. Here, the differential pressure signal between the output signal Pr from an exhaust pressure sensor 21 and the signal P2 is obtained through a subtractor 23 to read out the exhaust pressure correction factor B from an exhaust pressure correction factor memory 25 with correspondence to said differential pressure signal and the rotation signal Ne. Then the injection time Tif is corrected through an arithmetic unit 26 with correspondence to said factor B.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子式燃料噴射装置に関するものであり、特
に、ターボ・チャージャ付エンジンの加速時におりる空
燃比(A/F)を、好適に制御できる電子式燃料噴射装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electronic fuel injection device, and in particular, to a method for adjusting the air-fuel ratio (A/F) during acceleration of a turbocharged engine to a suitable level. This invention relates to an electronic fuel injection device that can be controlled in a controlled manner.

(従来の技術) 第3図は、従来のターボ・チャージャ付エンジンの一例
を示す概略構成図である。
(Prior Art) FIG. 3 is a schematic configuration diagram showing an example of a conventional turbocharged engine.

同図において、1はシリンダ、2はシリンダ1内を上下
動づるピストン、3.4はシリンダ1の上部に設(プら
れている吸入弁及び排気弁、5は吸入管、6は1」]気
管である。
In the figure, 1 is a cylinder, 2 is a piston that moves up and down inside the cylinder 1, 3.4 is a suction valve and exhaust valve installed at the top of the cylinder 1 (intake valve and exhaust valve are closed, 5 is an intake pipe, 6 is 1''). It is the trachea.

7は、吸入管5の途中に設けられ、その中に燃料を噴!
i)1 ?Iるインジェクタ、8はアクセル(図示ゼず
)の動作に応じてその開度を可変されるスロットル・バ
ルブ、9はスロットル間g tンリである。
7 is provided in the middle of the suction pipe 5, and fuel is injected into it!
i) 1? 1 is an injector; 8 is a throttle valve whose opening degree is varied according to the operation of an accelerator (not shown); and 9 is a throttle gap.

10は排気管6の排気圧力によって回転Jる排気タービ
ン、11は排気タービン10と同軸に取付けられ、該排
気タービン10の回動と共に回転して、新気を吸入管5
に圧送する加給機(コンプレッサ)、12は逃がし弁(
ウェスミルゲート)、13は過給圧力センサ、14は過
給温反ヒンサである。
Reference numeral 10 denotes an exhaust turbine which is rotated by the exhaust pressure of the exhaust pipe 6. Reference numeral 11 is installed coaxially with the exhaust turbine 10, and rotates with the rotation of the exhaust turbine 10 to supply fresh air to the intake pipe 5.
12 is a relief valve (
13 is a supercharging pressure sensor, and 14 is a supercharging temperature sensor.

又、第4図は、電子式燃料噴射装置の従来の制御系統の
一例をを示すブロック図である。
Further, FIG. 4 is a block diagram showing an example of a conventional control system of an electronic fuel injection device.

図において、第3図と同一の符号は、同一または同等部
分をあられしている。
In the figure, the same reference numerals as in FIG. 3 represent the same or equivalent parts.

15は、例えば点火コイル−次側のパルス信号、からエ
ンジン回転数を検知し、それに応じたエンジン回転数検
出信号Neを出力するエンジン回転数検出回路である。
Reference numeral 15 denotes an engine rotation speed detection circuit that detects the engine rotation speed from, for example, a pulse signal on the next side of the ignition coil, and outputs an engine rotation speed detection signal Ne corresponding to the detected engine rotation speed.

16は、スロットル開麿センザ9の出ツノであるスロッ
トル開度信号θthと、前記エンジン回転数検出信号N
 (4とから求められる予定のアドレス信号を出力づる
アドレス変換器、また、17は、前記スロットル開度信
号θthとエンジン回転数検出信号Neとに応じて決ま
る基本的燃料噴射時間信号Tiが格納されている噴射時
間メモリである。
16 is a throttle opening signal θth which is the output of the throttle opening sensor 9, and the engine rotation speed detection signal N.
(17 is an address converter that outputs a scheduled address signal obtained from 4), and 17 stores a basic fuel injection time signal Ti determined according to the throttle opening signal θth and the engine rotation speed detection signal Ne. The injection time is in memory.

18は、過給圧力センサ13からの出力であるアナログ
過給圧信号を、デジタルの過給圧信号P2に変換器る第
1のA/D変換器、19は、過給温度センリ14からの
出力であるアナログ過給温度信号を、デジタルの過給温
度信号T2に変換する第2のΔ/[〕変換器、20は前
記基本的燃料噴射時間信号Ti、過給圧信号P2及び過
給温度信号T2をそれぞれ入力とし、吸気の圧力および
温度補正を行なう演算器である。
18 is a first A/D converter that converts an analog boost pressure signal output from the boost pressure sensor 13 into a digital boost pressure signal P2; 19 is a signal from the boost temperature sensor 14; A second Δ/[] converter converts the output analog supercharging temperature signal into a digital supercharging temperature signal T2, 20 indicates the basic fuel injection time signal Ti, the supercharging pressure signal P2, and the supercharging temperature. This is a computing unit that receives the signal T2 and corrects the pressure and temperature of the intake air.

従来の電子式燃料噴射装置では、前記構成の説明から明
らか4に様に、スロットル・バルブ8の開度に対応する
スロットル開度信号θthと、エンジン回転数を示すエ
ンジン回転数検出信号NOとをアドレス変換器16に供
給する。
In the conventional electronic fuel injection device, as is clear from the above description of the configuration, the throttle opening signal θth corresponding to the opening degree of the throttle valve 8 and the engine rotation speed detection signal NO indicating the engine rotation speed are used. The address converter 16 is supplied with the address converter 16.

アドレス変換器16では、前記両信号O[1)及びNe
に応じたアドレス信号を@開時間メモリ17に出力する
。この結果、噴射時間メモリ17からは、スばットル開
度及びエンジン回転数に応じて決まる予定の基本的燃料
噴射時間信号7−iが出力される。
In the address converter 16, both the signals O[1] and Ne
An address signal corresponding to the address signal is output to @open time memory 17. As a result, the injection time memory 17 outputs a basic fuel injection time signal 7-i that is scheduled to be determined according to the throttle opening and the engine speed.

次に、演算器20では、前記基本的燃料噴射11.1間
化号Tiを基本として、過給圧信号P2及び過給温度信
号T2により、前記信号T1に補正を加え、適正空燃比
の燃料噴射時間信号1−1[を作り、該信号を出力する
Next, the computing unit 20 corrects the signal T1 based on the basic fuel injection 11.1 signal Ti based on the supercharging pressure signal P2 and the supercharging temperature signal T2. Create an injection time signal 1-1 and output the signal.

この時の補正演算の一例を(1)式に示″tJ。An example of the correction calculation at this time is shown in equation (1).

Tif−Ti xP2/POxTO/−r2・−・−・
−(1)ただし、POは760mmH(1(定数)、T
oは298°K(定数)、である。
Tif-Ti xP2/POxTO/-r2・-・-・
-(1) However, PO is 760mmH (1 (constant), T
o is 298°K (constant).

なお、この演0器20の出力である補正された燃料噴射
114間イ、を号TI[から、実際にインジェクタ7に
印加づる燃料噴射時間制御信号は、周知の適宜の方法に
より作成されるので、ここではその説明を省略りる。こ
の点については、特開昭56−1/18633j3公報
などに、具体的に説明されている。
Note that the fuel injection time control signal actually applied to the injector 7 is created by a well-known appropriate method based on the corrected fuel injection time 114, which is the output of the generator 20, from the signal TI. , the explanation thereof will be omitted here. This point is specifically explained in Japanese Unexamined Patent Publication No. 56-1/18633j3.

以上の説明から明らかな様に、従来のターボ・チャージ
i; (=1エンジンの電子式燃料噴射装置では、基本
的燃料噴射時間信号Tiを基本にして、過給圧信号P2
及び過給温度信号T2により補正を加え、これによって
得られた信号にJ:リインジエクタ7の開弁時間を制御
するものである。
As is clear from the above explanation, in the conventional turbo charge i; (=1) engine electronic fuel injection system, the boost pressure signal P2 is
and the supercharging temperature signal T2, and the valve opening time of the J: reinjector 7 is controlled by the signal obtained thereby.

(発明が解決しようとする問題点) 上記しだ従来の技術は、次のような問題点を有していた
(Problems to be Solved by the Invention) The above-mentioned conventional technology had the following problems.

(1)  加速11.1において、スロットル・バルブ
8を、例えば開の状態から急開すると、これに応じてイ
ンジェクタ7の燃料噴射量は増える。しかし、排気ター
ビン10の回転立上がりは、前記スロットル・バルブ8
の急開よりも羅れる。
(1) During acceleration 11.1, when the throttle valve 8 is suddenly opened from the open state, for example, the amount of fuel injected by the injector 7 increases accordingly. However, when the exhaust turbine 10 starts rotating, the throttle valve 8
It's better than the sudden onset of.

この為に、吸入管5への新気の圧送も遅れるので、従来
の過給圧及び過給温度の補正のみでは、A/Fが過濃と
なり、エンジンが不正燃焼状態となる。
For this reason, the pressure feeding of fresh air to the suction pipe 5 is also delayed, so if only the conventional correction of the supercharging pressure and supercharging temperature is performed, the A/F becomes too rich and the engine is in an incorrect combustion state.

(2)  そして、前記傾向は、吸入弁3及び排気弁4
の両方が問いている期間、すなわちバルブオーバラップ
を大きくし、高出力を狙った大型のターボ・チャージャ
付エンジンの場合には、特に顕著に発生する。
(2) And, the above-mentioned tendency is
This is especially noticeable during periods when both problems occur, that is, in the case of large turbocharged engines that aim for high output with large valve overlap.

本発明は、前述の問題点を解決するためになされたもの
である。
The present invention has been made to solve the above-mentioned problems.

(問題点を解決するための手段および作用)前記の問題
点を解決するために、本発明は、排気タービンの回転立
上がり遅れによる排気圧力の一時的なF昇に着目して、
前記基本的燃料噴射時間信号T1の補正に、過給圧と排
気圧力との差圧をちととするtJI圧補正係数を追加し
てターボ・チャージャ付1ンジンの加速時におけるA/
Fを、にり一層精度高く制御し、その結果、エンジンの
不正燃焼状態の発生を防止するようにした点に特徴があ
る。
(Means and operations for solving the problems) In order to solve the above problems, the present invention focuses on the temporary increase in exhaust pressure by F due to the delay in the rotation start-up of the exhaust turbine, and
A tJI pressure correction coefficient, which is based on the differential pressure between the boost pressure and the exhaust pressure, is added to the correction of the basic fuel injection time signal T1 to calculate the A/
The present invention is characterized in that F is controlled with even higher precision, thereby preventing the occurrence of improper combustion in the engine.

(実施例) 以下に、図面を参照して、本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は、本発明の一実施例のターボ・チャージャ付エ
ンジンの概略構成図である。図において、第3図と同一
の符号は、同一または同等部分をあられしている。同図
において、21は排気圧力センサである。。
FIG. 1 is a schematic diagram of a turbocharged engine according to an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 3 represent the same or equivalent parts. In the figure, 21 is an exhaust pressure sensor. .

又、第2図は、電子式燃料噴射装置の本発明の制御系統
の一実施例を示すブロック図である。図において、第1
図及び第4図と同一の符号は、同一または同等部分をあ
られしている。
Further, FIG. 2 is a block diagram showing an embodiment of the control system of the present invention for an electronic fuel injection device. In the figure, the first
The same reference numerals as in the figures and FIG. 4 refer to the same or equivalent parts.

第2図において、22は、排気圧力センリ21からの出
力であるアナログ排気圧力信号をデジタルの排気圧力信
号prに変換する第3のA/D変換器、23は、前記排
気圧力信号prと第1のA/D変換器18の出力である
過給圧信号P2とを入力され、その差圧信号(P 2−
 p r信号)信号を出力する減算器である。
In FIG. 2, 22 is a third A/D converter that converts the analog exhaust pressure signal output from the exhaust pressure sensor 21 into a digital exhaust pressure signal pr; 23 is a third A/D converter that converts the analog exhaust pressure signal output from the exhaust pressure sensor 21; The supercharging pressure signal P2 which is the output of the A/D converter 18 of No. 1 is input, and the differential pressure signal (P2-
This is a subtracter that outputs a p r signal) signal.

24は、前記(P2−Pr )信号とエンジン回転数検
出回路15からのエンジン回転数検出信号Neとをパラ
メータとして求められる予定のアドレス信号を出力する
第2のアドレス変換器である。
A second address converter 24 outputs an address signal to be determined using the (P2-Pr) signal and the engine speed detection signal Ne from the engine speed detection circuit 15 as parameters.

25は、前記(P2−Pr )信号とエンジン回転数検
出信号Neとに応じて決まる排圧補正係数Bが格納され
ている排圧補正係数メモリ、26は、前記演算器20か
らの補正された燃料噴射時間信号Ti[と排圧補正係数
Bとを入力どし、過給圧と排気圧力との差圧に基づく補
正を行なう、第2の演算器である。
25 is an exhaust pressure correction coefficient memory in which an exhaust pressure correction coefficient B determined according to the (P2-Pr) signal and the engine rotation speed detection signal Ne is stored; This is a second computing unit that inputs the fuel injection time signal Ti[ and the exhaust pressure correction coefficient B, and performs correction based on the differential pressure between the boost pressure and the exhaust pressure.

本実施例の電子式燃料噴9A装置では、前記構成の説明
から明らか’cK様に、減算器23において、過給圧信
号[〕2と排気圧力信号Prの差圧信号、すなわち(1
’2”−Pr)信号を作成する。
In the electronic fuel injection device 9A of this embodiment, as is clear from the above description of the configuration, the subtracter 23 generates a differential pressure signal between the boost pressure signal []2 and the exhaust pressure signal Pr, that is, (1
'2''-Pr) signal is created.

第2のアドレス変換器24では、前記(P2−Pr)信
号と、エンジン回転数検出回路15からのエンジン回転
数検出信号Neとに応じたアドレス信号を、JJt圧補
正係数メモリ25に出力する。
The second address converter 24 outputs an address signal corresponding to the (P2-Pr) signal and the engine rotation speed detection signal Ne from the engine rotation speed detection circuit 15 to the JJt pressure correction coefficient memory 25.

この結果、1ノ1圧補正係数メモリ25からは、過給圧
力ど1111気汗ツノとの差に応じて決まる予定の排圧
補正係数13が読み出されることになる。
As a result, the exhaust pressure correction coefficient 13, which is scheduled to be determined according to the difference between the supercharging pressure 1111 and the sweat peak, is read out from the 1-1 pressure correction coefficient memory 25.

なお、このようにして、読み出される排圧補正係数は、
経験的あるいは実験的に求めて排圧補正係数メモリ2巳
]の所定番地に格納されるものである。ただし、この排
圧補正係数は、一般的には、エンジンの高負荷、高回転
で大となる傾向を有づる。
Note that the exhaust pressure correction coefficient read out in this way is
The exhaust pressure correction coefficient is obtained empirically or experimentally and stored at a predetermined location in the exhaust pressure correction coefficient memory 2. However, this exhaust pressure correction coefficient generally tends to increase when the engine load is high and the engine rotation is high.

次に、第2の演算器26では、演算器20からの補正さ
れた燃料噴射時間信号Tifに対して、前記排圧補正係
数Bにより、さらに補正を加え、本実施例の燃料噴射時
間信号、すなわち最適空燃比の燃料噴射時間信号Tix
を発生する。
Next, the second arithmetic unit 26 further corrects the corrected fuel injection time signal Tif from the arithmetic unit 20 using the exhaust pressure correction coefficient B to obtain the fuel injection time signal of this embodiment. In other words, the fuel injection time signal Tix at the optimum air-fuel ratio
occurs.

この時の補正演算の一例を(2)式に示す。An example of the correction calculation at this time is shown in equation (2).

T ix= T if (14B ) −・・12)な
お、この第2の演篩器26の出力である最適空燃比の燃
料噴射時間信号Tixから、実際にインジェクタ7に印
加する燃料噴射時間制御信号は、周知の適宜の方法によ
り作成されることは、従来例と同様である。したがって
、この説明は省略する。
T ix = T if (14B) -...12) Note that the fuel injection time control signal actually applied to the injector 7 is determined from the fuel injection time signal Tix at the optimum air-fuel ratio, which is the output of the second sieve 26. is created by a well-known appropriate method, as in the conventional example. Therefore, this explanation will be omitted.

以上の説明から明らかなように、本実施例によれば、 
ターボ・チャージャ付エンジンの加速時において、排気
タービン10の回転遅れにより、吸入管5に圧送される
空気量が適正量に比べて少なくなってb1吸入空気量の
減少に相応して、燃料噴射量をマイナス方向へ適正に補
正制御り−ることかできる。
As is clear from the above description, according to this embodiment,
When the turbocharged engine accelerates, the amount of air forced into the intake pipe 5 becomes smaller than the appropriate amount due to the rotation delay of the exhaust turbine 10, and the amount of fuel injection decreases in proportion to the decrease in the amount of intake air b1. It is possible to appropriately control the correction in the negative direction.

又、減速時におけるコンプレッサは、慣性により、回転
を急激に低減させることはできないので、圧送される空
気量は適正量に比べ多くなる。しかし、この11、rも
、本実施例を用いれば、燃料噴射量をプラス方向へ適正
に制御することができることになる。
Further, during deceleration, the compressor cannot rapidly reduce its rotation due to inertia, so the amount of air to be pumped is larger than the appropriate amount. However, if this embodiment is used, the fuel injection amount can also be appropriately controlled in the positive direction.

(発明の効果) 以上の説明から明らかなように、本発明によれば、つぎ
のにうな効果が達成される。
(Effects of the Invention) As is clear from the above description, according to the present invention, the following effects are achieved.

(1)加速11.1においては、燃料噴射量をマイナス
方向へ適正に制御することができ、また減速時において
も、所望により、燃料噴射向をプラス方向へ適正に制御
することができるので、最適なA/Fを4!することが
でき、したがってエンジンの不正燃焼状態を防止するこ
とができる。
(1) During acceleration 11.1, the fuel injection amount can be appropriately controlled in the negative direction, and even during deceleration, the fuel injection direction can be appropriately controlled in the positive direction if desired. Optimal A/F 4! Therefore, it is possible to prevent an incorrect combustion state of the engine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるターボ・チャージャ付エンジンの
一実施例を示す概略構成図、第2図は電子式燃料噴射装
置の本発明の制御系統の一実施例を示すブロック図、第
3図は従来のターボ・チャージャ付エンジンの一例を示
す概略構成図、第4図は電子式燃料噴射装置の従来の制
御系統の一例のを示すブロック図である。 9・・・スロットル開度センサ、13・・・過給圧力は
ンサ、14・・・過給温度センサ、15・・・エンジン
回転数検出回路、16.24・・・アドレス変換器、1
7・・・噴射時間メモリ、18.19.22・・・A/
D変換器、20.26・・・演算器、21・・・tII
気圧カセンサ、23・・・減算器、25・・・1ノ1圧
補正係数メモリ 代理人弁理士  平木通人 外1名 第1図 才2図 第3図
FIG. 1 is a schematic configuration diagram showing an embodiment of a turbocharged engine according to the present invention, FIG. 2 is a block diagram showing an embodiment of a control system of the present invention for an electronic fuel injection device, and FIG. FIG. 4 is a schematic configuration diagram showing an example of a conventional turbocharged engine, and FIG. 4 is a block diagram showing an example of a conventional control system for an electronic fuel injection device. 9... Throttle opening sensor, 13... Boost pressure sensor, 14... Boost temperature sensor, 15... Engine rotation speed detection circuit, 16.24... Address converter, 1
7...Injection time memory, 18.19.22...A/
D converter, 20.26... Arithmetic unit, 21...tII
Atmospheric pressure sensor, 23...Subtractor, 25...1 no 1 pressure correction coefficient memory Patent attorney Michito Hiraki and 1 other person Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)スロットル開度信号及びエンジン回転数検出信号
から基本的燃料噴射時間信号を作成する手段と、過給圧
信号を発生する手段と、過給温度信号を発生させる手段
と、前記基本的燃料噴射時間信号に、前記過給圧信号及
び過給温度信号による補正を加え、補正された燃料噴射
時間信号を出力する手段とを有する電子式燃料噴射装置
において、排気圧力信号を発生する手段と、前記過給圧
信号と排気圧力信号との差圧信号を出力する減算器と、
前記差圧信号及びエンジン回転数検出信号をパラメータ
として排圧補正係数を記憶している排圧補正係数メモリ
と、前記メモリから読み出された排圧補正係数及び前記
補正された燃料噴射時間信号から最適空燃比の燃料噴射
時間信号を発生する手段とを具備したことを特徴とする
電子式燃料噴射装置。
(1) Means for creating a basic fuel injection time signal from a throttle opening signal and an engine speed detection signal, a means for generating a supercharging pressure signal, a means for generating a supercharging temperature signal, and the basic fuel In an electronic fuel injection device, means for generating an exhaust pressure signal in an electronic fuel injection device having means for adding correction to the injection time signal using the boost pressure signal and the supercharging temperature signal and outputting a corrected fuel injection time signal; a subtracter that outputs a differential pressure signal between the boost pressure signal and the exhaust pressure signal;
An exhaust pressure correction coefficient memory that stores an exhaust pressure correction coefficient using the differential pressure signal and engine speed detection signal as parameters, and an exhaust pressure correction coefficient read from the memory and the corrected fuel injection time signal. 1. An electronic fuel injection device comprising means for generating a fuel injection time signal at an optimum air-fuel ratio.
JP59125560A 1984-06-19 1984-06-19 Electronic fuel injector Granted JPS614837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59125560A JPS614837A (en) 1984-06-19 1984-06-19 Electronic fuel injector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125560A JPS614837A (en) 1984-06-19 1984-06-19 Electronic fuel injector

Publications (2)

Publication Number Publication Date
JPS614837A true JPS614837A (en) 1986-01-10
JPH025900B2 JPH025900B2 (en) 1990-02-06

Family

ID=14913217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125560A Granted JPS614837A (en) 1984-06-19 1984-06-19 Electronic fuel injector

Country Status (1)

Country Link
JP (1) JPS614837A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113202648A (en) * 2021-04-30 2021-08-03 广西玉柴机器股份有限公司 Strategy capable of realizing closed-loop control of exhaust back pressure of diesel engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113202648A (en) * 2021-04-30 2021-08-03 广西玉柴机器股份有限公司 Strategy capable of realizing closed-loop control of exhaust back pressure of diesel engine

Also Published As

Publication number Publication date
JPH025900B2 (en) 1990-02-06

Similar Documents

Publication Publication Date Title
US4763264A (en) Engine control system
JP4583038B2 (en) Supercharging pressure estimation device for an internal combustion engine with a supercharger
US4501240A (en) Idling speed control system for internal combustion engine
US4485625A (en) Control means for internal combustion engines
JP2003328861A (en) Control device for internal combustion engine
JPS614837A (en) Electronic fuel injector
JP3302719B2 (en) Control device for engine with turbocharger
JP3780614B2 (en) Internal combustion engine having a turbocharger and an exhaust gas recirculation device
JPH0235863B2 (en)
JPH0311137A (en) Fuel controller for engine
JP2757199B2 (en) Knock control device for internal combustion engine
JP2530647B2 (en) Ignition timing control device for supercharged engine
JPS63105264A (en) Ignition timing control device for electronic controlled fuel injection type internal combustion engine
JPS6161965A (en) Knocking suppressing device of engine
JP3123334B2 (en) Supercharging pressure control device for internal combustion engine
JP2855005B2 (en) Fuel control method
JPH10288064A (en) Internal combustion engine provided with turbo charger and exhaust re-circulation device
JP3538825B2 (en) EGR control device for internal combustion engine
JP2881607B2 (en) Engine fuel control device
JPH01200033A (en) Fuel injector for internal combustion engine
JPS62261638A (en) Fuel-ratio controller for internal combustion engine
JPH08218948A (en) Exhaust gas recirculation device for diesel engine
KR950019087A (en) Fuel supply control device of internal combustion engine with supercharger
JP2001193514A (en) Controller for engine
JPH0327743B2 (en)