JPS6148229B2 - - Google Patents

Info

Publication number
JPS6148229B2
JPS6148229B2 JP12817478A JP12817478A JPS6148229B2 JP S6148229 B2 JPS6148229 B2 JP S6148229B2 JP 12817478 A JP12817478 A JP 12817478A JP 12817478 A JP12817478 A JP 12817478A JP S6148229 B2 JPS6148229 B2 JP S6148229B2
Authority
JP
Japan
Prior art keywords
embedded
groove
insulating material
hot plate
calcium carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12817478A
Other languages
Japanese (ja)
Other versions
JPS5553888A (en
Inventor
Hiromichi Ito
Noboru Naruo
Yoshiaki Maeda
Yoshihiro Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12817478A priority Critical patent/JPS5553888A/en
Publication of JPS5553888A publication Critical patent/JPS5553888A/en
Publication of JPS6148229B2 publication Critical patent/JPS6148229B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Description

【発明の詳細な説明】 本発明は埋込型熱板に関し、特に、マグネシア
粉末の吸湿性を抑え、絶縁特性の良い埋込型熱板
を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an embedded hot plate, and in particular, it is an object of the present invention to suppress the hygroscopicity of magnesia powder and provide an embedded hot plate with good insulation properties.

一般に、熱板としてはシーズヒータを鋳込んだ
もの、マイカータを金属板に密着させたもの、電
熱線を電気絶縁材により金属製の外殻内に埋込ん
だものの三種類があるが、寿命、熱板の温度分布
の点で第三者の埋込型熱板が他のものに比し優れ
ている。
Generally, there are three types of heating plates: those with sheathed heaters cast into them, those with micata adhered to a metal plate, and those with heating wires embedded in a metal shell with electrical insulation material. In terms of temperature distribution of the hot plate, third-party embedded type hot plates are superior to others.

ところが、この種の埋込型熱板の場合、開口面
積、すなわち、大気と接する面積が広いため、電
気絶縁材であるマグネシア粉末が吸湿しやすく、
良好な絶縁特性が得られないという欠点があつ
た。
However, in the case of this type of embedded heating plate, the opening area, that is, the area in contact with the atmosphere, is large, so the magnesia powder, which is an electrical insulating material, easily absorbs moisture.
The drawback was that good insulation properties could not be obtained.

通常のシーズヒータにマグネシア粉末を用いた
場合には、端部に吸湿防止のための封口を施せば
よいが、この種の埋込型熱板の場合、封口を施す
ことができず、封口型のシーズヒータに比し、絶
縁特性が悪いという欠点があり、実用に供し得な
いものであつた。例えば、この種の埋込型熱板を
温度40℃、相対湿度95%の恒温恒湿室に投入する
と、投入後、1〜2時間後には絶縁抵抗値が1M
Ω以下になつてしまう。
When magnesia powder is used in a normal sheathed heater, it is sufficient to seal the ends to prevent moisture absorption, but in the case of this type of embedded heating plate, sealing cannot be applied, and the sealing type Compared to the sheathed heater, it had the disadvantage of poor insulation properties and could not be put to practical use. For example, if this type of embedded heat plate is placed in a constant temperature and humidity room at a temperature of 40℃ and a relative humidity of 95%, the insulation resistance value will decrease to 1M within 1 to 2 hours.
It becomes less than Ω.

本発明は上記従来の埋込型熱板の欠点を解消す
るもので、以下に本発明の実施例について添付図
面を参照して説明する。
The present invention eliminates the drawbacks of the conventional embedded hot plate described above, and embodiments of the present invention will be described below with reference to the accompanying drawings.

図において、1は上面に開口を有する金属製の
外殻であり、内部には隔室2によりうず巻き状の
溝3が形成されている。この溝3に電気絶縁材4
によりコイル状の電熱線5が埋込まれている。こ
の電気絶縁材4としては炭酸カルシウム
(CaCO3)と酸化ホウ素(B2O3)を700〜1200℃の
温度であらかじめ熱処理したものを、一担粉砕
し、これをマグネシア粉末(MgO)に2〜30%
の割合で添加したものを用いている。6は電熱線
5の端部に接続された端子である。
In the figure, reference numeral 1 denotes a metal outer shell having an opening on the upper surface, and a spiral groove 3 is formed by a compartment 2 inside. Electrical insulating material 4 is placed in this groove 3.
A coiled heating wire 5 is embedded therein. The electrical insulating material 4 is made of calcium carbonate (CaCO 3 ) and boron oxide (B 2 O 3 ) that have been heat-treated at a temperature of 700 to 1200°C, which is then ground into two pieces of magnesia powder (MgO). ~30%
It is used that has been added at a ratio of . 6 is a terminal connected to the end of the heating wire 5.

次に上記構成の埋込型熱板の製造方法について
簡単に説明する。
Next, a method for manufacturing the embedded hot plate having the above structure will be briefly described.

まず、外殻1の溝3内に上記電気絶縁板4を注
入する。この場合、外殻1に振動加速度5〜20G
程度の振動を加え、電気絶縁材4の表面の高さ、
および密度を均一にするとよい。この後、第2図
に示すように溝付型7を備えたプレス機により、
第3図に示すように上記電気絶縁材4に電熱線5
が挿入される溝8を形成する。この溝8に電熱線
5を挿入し(第4図)、さらに上記電気絶縁材4
を溝3に注入し、第5図に示すように電熱線5を
覆う。この後、平型9を備えたプレス機によりプ
レスし、電気絶縁材4の充填密度を高める(第6
図)。この後、900〜1150℃の温度で5〜120分間
熱処理を施すことにより埋込型熱板が完成され
る。
First, the electrically insulating plate 4 is injected into the groove 3 of the outer shell 1. In this case, the vibration acceleration for outer shell 1 is 5 to 20G.
By applying a certain degree of vibration, the height of the surface of the electrical insulating material 4,
It is good to make the density uniform. After this, as shown in FIG. 2, a press machine equipped with a grooved mold 7 is used to
As shown in FIG. 3, a heating wire 5 is attached to the electrical insulating material 4.
A groove 8 is formed into which the material is inserted. Insert the heating wire 5 into this groove 8 (Fig. 4), and then insert the electric insulating material 4
is injected into the groove 3 to cover the heating wire 5 as shown in FIG. After that, it is pressed using a press machine equipped with a flat die 9 to increase the packing density of the electrical insulating material 4 (sixth
figure). Thereafter, heat treatment is performed at a temperature of 900 to 1150°C for 5 to 120 minutes to complete the embedded hot plate.

この最終熱処理時に炭酸カルシウム、酸化ホウ
素が溶融硬化するので熱処理後には電気絶縁材4
がこぼれ落ちることがなく、また、衝撃が加わつ
ても脱落することがなく、従つて、裏板等を設け
て封口を施すことが不要である。
During this final heat treatment, calcium carbonate and boron oxide are melted and hardened, so the electrical insulation material 4
It does not spill out, and it does not fall off even if an impact is applied, so there is no need to provide a back plate or the like to seal the opening.

なお、電気絶縁材4に電熱線5が挿入される溝
8を鮮明に形成するために、プレス圧、溝8の形
状を変えたり、電気絶縁材4に少量の有機溶剤等
を添加したりすると良い。
In addition, in order to clearly form the groove 8 into which the heating wire 5 is inserted in the electrical insulating material 4, the pressing pressure and the shape of the groove 8 may be changed, or a small amount of organic solvent or the like may be added to the electrical insulating material 4. good.

また、電熱線5は溝8に挿入する以前にあらか
じめ、溝8の長さに伸ばしておき、第7図に示す
ように耐熱性の磁器等で形成された成型器10に
溝8と同様にうず巻き状で幅の狭い溝11を形成
し、この溝11に上記電熱線5を挿入し、電流を
流した後、冷却することにより、第8図に示すよ
うに電熱線5を溝8に沿つたうず巻き状としてお
くと良い。
The heating wire 5 is stretched to the length of the groove 8 before being inserted into the groove 8, and as shown in FIG. By forming a narrow spiral groove 11, inserting the heating wire 5 into the groove 11, passing a current through it, and cooling it, the heating wire 5 is guided along the groove 8 as shown in FIG. It is best to make it into a spiral shape.

本実施例の埋込型熱板を温度40℃、相対湿度95
%の恒温恒湿雰囲気中に7日間投入後の絶縁抵抗
値は100〜2000MΩ以上でありきわめて高い絶縁
特性を示した。
The embedded heat plate of this example was installed at a temperature of 40°C and a relative humidity of 95°C.
After being placed in a constant temperature and humidity atmosphere for 7 days, the insulation resistance value was 100 to 2000 MΩ or more, indicating extremely high insulation properties.

なお、炭酸カルシウムや酸化ホウ素を電気絶縁
材として用いたシーズヒータでは上記と同様の条
件で絶縁抵抗値を測定すると1〜20MΩであり、
本実施例の熱板の方が優れた絶縁特性を示すこと
が明らかとなつた。
In addition, in a sheathed heater that uses calcium carbonate or boron oxide as an electrical insulator, the insulation resistance value is 1 to 20 MΩ when measured under the same conditions as above.
It became clear that the hot plate of this example exhibited superior insulation properties.

また、この種の埋込型熱板においてメチール系
シリコン樹脂を添加した電気絶縁材を用いた場
合、連続使用では表面温度250〜350℃までが限界
であり、一般に表面温度450〜550℃を要求される
熱板としては実用に供し得ないものであつた。
In addition, when using electrical insulation material containing methyl silicone resin in this type of embedded heating plate, the surface temperature is limited to 250 to 350°C for continuous use, and generally a surface temperature of 450 to 550°C is required. However, it could not be put to practical use as a hot plate.

しかし、本実施例の場合、表面温度600〜700℃
までで長時間使用が可能であり、熱板として充分
に実用に供し得るものである。
However, in the case of this example, the surface temperature was 600 to 700℃.
It can be used for a long time, and can be put to practical use as a hot plate.

なお、電気絶縁材4に関し、マグネシア粉末に
対する炭酸カルシウムおよび酸化ホウ素の割合が
2%以下であると、熱処理を施してもマグネシア
粉末に炭酸カルシウムや酸化ホウ素が完全に覆わ
ず、保護皮膜として充分に作用しない。
Regarding the electrical insulating material 4, if the ratio of calcium carbonate and boron oxide to the magnesia powder is 2% or less, the magnesia powder will not be completely covered with calcium carbonate and boron oxide even after heat treatment, and will not be sufficient as a protective film. Doesn't work.

また、同割合が30%以上であると、絶縁特性が
劣化するとともに充填密度があまり高くならな
い。
Furthermore, if the ratio is 30% or more, the insulation properties deteriorate and the packing density does not become very high.

以上の説明から明らかなように、本発明によれ
ば、電気絶縁材としてマグネシア粉末に炭酸カル
シウム、酸化ホウ素を添加したものを用いている
ので絶縁特性が良く、表面温度600〜700℃まで長
時間使用が可能で、熱板として充分に実用に供し
得、その工業的価値は大なるものである。
As is clear from the above explanation, according to the present invention, magnesia powder with calcium carbonate and boron oxide added is used as an electrical insulating material, so it has good insulation properties and can maintain a surface temperature of 600 to 700°C for a long time. It can be used practically as a hot plate, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す埋込型熱板の
断面図、第2〜6図は同埋込型熱板の製造工程を
示す要部工程断面図、第7図は同製造工程に用い
られる成型器の断面図、第8図は同成型器により
成型された電熱線の斜視図である。 1……外殻、3……溝、4……電気絶縁材、5
……電熱線。
Fig. 1 is a sectional view of an embedded hot plate showing an embodiment of the present invention, Figs. 2 to 6 are sectional views of main parts showing the manufacturing process of the embedded hot plate, and Fig. 7 is a sectional view of the same manufacturing process. FIG. 8 is a sectional view of a molding device used in the process, and a perspective view of a heating wire molded by the same molding device. 1... Outer shell, 3... Groove, 4... Electrical insulation material, 5
...Heating wire.

Claims (1)

【特許請求の範囲】 1 金属製の外殻に一面に開口を有する溝を形成
し、この溝に電熱線を電気絶縁材により埋めてな
る埋込型熱板において、前記電気絶縁材はマグネ
シア粉末に炭酸カルシウムおよび酸化ホウ素を添
加し、熱処理を施したものであることを特徴とす
る埋込型熱板。 2 マグネシア粉末に対する炭酸カルシウムおよ
び酸化ホウ素の割合が2〜30%であることを特徴
とする特許請求の範囲第1項に記載の埋込型熱
板。
[Claims] 1. An embedded heating plate in which a groove having an opening on one side is formed in a metal outer shell, and heating wires are buried in the groove with an electrically insulating material, wherein the electrically insulating material is magnesia powder. An embedded hot plate characterized in that it is made by adding calcium carbonate and boron oxide to it and subjecting it to heat treatment. 2. The embedded hot plate according to claim 1, wherein the proportion of calcium carbonate and boron oxide to magnesia powder is 2 to 30%.
JP12817478A 1978-10-17 1978-10-17 Push type heating plate Granted JPS5553888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12817478A JPS5553888A (en) 1978-10-17 1978-10-17 Push type heating plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12817478A JPS5553888A (en) 1978-10-17 1978-10-17 Push type heating plate

Publications (2)

Publication Number Publication Date
JPS5553888A JPS5553888A (en) 1980-04-19
JPS6148229B2 true JPS6148229B2 (en) 1986-10-23

Family

ID=14978231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12817478A Granted JPS5553888A (en) 1978-10-17 1978-10-17 Push type heating plate

Country Status (1)

Country Link
JP (1) JPS5553888A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204685U (en) * 1981-06-24 1982-12-27
JPS60236485A (en) * 1985-04-16 1985-11-25 松下電器産業株式会社 Buried heater
JPS6231986A (en) * 1985-08-02 1987-02-10 松下電器産業株式会社 Buried heater

Also Published As

Publication number Publication date
JPS5553888A (en) 1980-04-19

Similar Documents

Publication Publication Date Title
US2375058A (en) Electrical heating element and process for producing the same
ES460231A1 (en) Apparatus for manufacturing electric wire having wire-enamel-type insulation
DE69027113D1 (en) ELECTRIC HEATING ARRANGEMENT AND METHOD FOR THE PRODUCTION THEREOF
CA2095874A1 (en) Heater, a method of manufacturing the same, and an anti-condensation mirror incorporating the same
MX158570A (en) IMPROVEMENTS TO THERMOSENSITIVE ELECTRIC CABLE AND METHOD TO MANUFACTURE IT
JPS6148229B2 (en)
US4263577A (en) Electric tubular heating body and process for its manufacture
GR3025462T3 (en) Method of manufacturing a radiant electric heater.
JPH0338715B2 (en)
US1767084A (en) Electric heating device and method of producing the same
FR2355487A1 (en) Electrically heated plastics cooking vessel - has resistance wires embedded in plastics base so requiring no insulating sheath
JPS6226785A (en) Manufacture of flat sheathed heater
US3050833A (en) Method of making electrically insulated heating units
JPS6216516B2 (en)
ATE13376T1 (en) METHOD OF MAKING AN ELECTRIC HEATING ELEMENT.
US2130156A (en) Electrical resistance unit
JPS6231995Y2 (en)
US848954A (en) Process of making resistance devices.
ATE224630T1 (en) HEATING ELEMENT AND HOUSEHOLD APPLIANCE, IN PARTICULAR STEAM IRON, HAVING SUCH AN ELEMENT AND METHOD FOR PRODUCING THE STEAM IRON
JPS5917515B2 (en) How to seal a sheathed heater
JPS6231987Y2 (en)
JPS6410593A (en) Sheath heater
JPH048904B2 (en)
GB1431386A (en) Method of producing electrical resistance heating elements
GB249858A (en) Improvements relating to electric heaters