JPS6148211B2 - - Google Patents

Info

Publication number
JPS6148211B2
JPS6148211B2 JP12598779A JP12598779A JPS6148211B2 JP S6148211 B2 JPS6148211 B2 JP S6148211B2 JP 12598779 A JP12598779 A JP 12598779A JP 12598779 A JP12598779 A JP 12598779A JP S6148211 B2 JPS6148211 B2 JP S6148211B2
Authority
JP
Japan
Prior art keywords
current
channel
secondary electron
resistor
multiplication gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12598779A
Other languages
Japanese (ja)
Other versions
JPS5650044A (en
Inventor
Katsuhiko Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP12598779A priority Critical patent/JPS5650044A/en
Publication of JPS5650044A publication Critical patent/JPS5650044A/en
Publication of JPS6148211B2 publication Critical patent/JPS6148211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/06Electrode arrangements
    • H01J43/18Electrode arrangements using essentially more than one dynode
    • H01J43/24Dynodes having potential gradient along their surfaces

Landscapes

  • Electron Tubes For Measurement (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Description

【発明の詳細な説明】 この発明はチヤネル型二次電子増倍装置に関
し、出力電流を大きくしたときに生じる増倍利得
の低下を改善したものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a channel type secondary electron multiplier, and is intended to improve the reduction in multiplication gain that occurs when the output current is increased.

直線状、スパイラル状、ウエーブ状、あるいは
平行平板状の各種形状からなるチヤネル型二次電
子増倍装置において、従来、二次電子の放出に寄
与するチヤネルは、その電流電圧特性が線型性を
示す二次電子放出能を有する抵抗体で構成されて
いた。この場合、単位時間当りの入射荷電粒子数
が増加して、出力電流がチヤネルに流れる素子電
流と同程度に大きくなると、増倍利得が低下する
ことはよく知られていることである。
Conventionally, in channel-type secondary electron multipliers that have various shapes such as linear, spiral, wave, or parallel plate shapes, the current-voltage characteristics of the channels that contribute to the emission of secondary electrons exhibit linearity. It was composed of a resistor that has the ability to emit secondary electrons. In this case, it is well known that when the number of incident charged particles per unit time increases and the output current becomes as large as the element current flowing through the channel, the multiplication gain decreases.

このような現象が発生する原因は次のように説
明できる。第1図は動作状態における二次電子増
倍装置に流れる各電流および電荷の流れを模式的
に示したものである。荷電粒子が入射しないと
き、チヤネルCには素子固有の定常電流idp(図
示せず)が流れる。次に、チヤネルCの入力端1
側から粒子が入射すると二次電子放出現象が生
じ、素子電流の一部がチヤネルCの内部に放出さ
れることになり、チヤネルCの出力端2に近づく
ほどチヤネルC内の空間電流is(X)が増え、
素子電流id(X)が減少することになる。
The reason why such a phenomenon occurs can be explained as follows. FIG. 1 schematically shows the flow of each current and charge flowing through the secondary electron multiplier in an operating state. When no charged particles are incident, a steady current i dp (not shown) unique to the device flows through the channel C. Next, input end 1 of channel C
When particles are incident from the side, a secondary electron emission phenomenon occurs, and a part of the device current is emitted into the channel C, and the closer to the output end 2 of the channel C, the spatial current i s ( X) increases,
The element current i d (X) will decrease.

すなわち、第1図から明らかなように、次のよ
うな式が成り立つ。
That is, as is clear from FIG. 1, the following equation holds.

i+ii=is(X)+id(X) ii≪i ip=is(l) ただし、 i:チヤネル入力端に供給される電流 ii:入射粒子による電流 is(X):チヤネル内空間電流 id(X):素子電流 ip:出力電流 チヤネルCの入力端をX=0、チヤネルCの出
力端をX=lとする。
i + i i = i s (X) + i d (X) i i ≪ i i p = i s (l) where i: current supplied to the channel input end i i : current due to incident particles i s (X): Space current in channel i d (X): element current i p : output current Let the input end of channel C be X=0, and the output end of channel C be X=l.

したがつて、入射粒子数が少なくて、これに伴
なう出力電流ipがip≪i〓idpのときは、id
(O)〓id(l)で、素子電流はチヤネルCの全
長にわたつてほぼ一様である。
Therefore, when the number of incident particles is small and the accompanying output current i p satisfies i p ≪i〓i dp , i d
(O)〓i d (l), the element current is approximately uniform over the entire length of the channel C.

しかるに、入射粒子数が増大して出力電流が増
え、ip〓iになると、id(O)=i、id(l)
=i−ipであるからid(l)≪id(O)とな
り、チヤネルCの入力端付近にくらべて出力端付
近の素子電流が著るしく小さくなる。
However, when the number of incident particles increases and the output current increases and becomes i p 〓i, i d (O) = i, i d (l)
= i - i p , so i d (l) << i d (O), and the element current near the output end of channel C becomes significantly smaller than near the input end.

第2図において、破線は線型性を有する従来の
抵抗体よりなる二次電子増倍装置の電流−電位勾
配の特性を模型的に示したものである。上記した
ように、入射粒子数が増えて出力端付近のチヤネ
ルに流れる素子電流が小さくなると、従来の線型
性抵抗体よりなる二次電子増倍装置では電位勾配
も比例して小さくなり、その結果空間電荷効果に
より、増倍作用が十分に行われなくなり、増倍利
得が低下するのである。
In FIG. 2, the broken line schematically shows the current-potential gradient characteristics of a secondary electron multiplier made of a conventional linear resistor. As mentioned above, when the number of incident particles increases and the element current flowing through the channel near the output end decreases, in a conventional secondary electron multiplier made of a linear resistor, the potential gradient also decreases proportionally. Due to the space charge effect, the multiplication effect is not sufficiently performed, and the multiplication gain decreases.

したがつて、この発明は上記した従来の二次電
子増倍装置が有していた欠点を除去したもので、
チヤネル抵抗体の電流電圧特性において非線型性
をもたせることにより、出力電流を大きくしたと
きに生じる増倍利得の低下を改善したものであ
る。
Therefore, this invention eliminates the drawbacks of the conventional secondary electron multiplier described above.
By imparting nonlinearity to the current-voltage characteristics of the channel resistor, the decrease in multiplication gain that occurs when the output current is increased is improved.

このように増倍装置の電流電圧特性に非線型性
をもたせた場合、第2図の実線で示したように、
出力端付近において増倍作用が行われるために必
要な最小の電位勾配をElimitとすると、これに必
要な素子電流は従来の線型性の抵抗体ではIL
あるが、この発明による非線型性の抵抗体ではI
Lよりはるかに小さいINである。云い換えれば、
この発明では大きな出力電流になるまで増倍利得
の低下が起こらないと云える。
When the current-voltage characteristics of the multiplier are made nonlinear in this way, as shown by the solid line in Figure 2,
If Elimit is the minimum potential gradient required for multiplication to occur near the output terminal, the element current required for this is I L in the conventional linear resistor, but with the nonlinear resistor of this invention, the element current required for this is I L. In the resistor of I
I N is much smaller than L. In other words,
In this invention, it can be said that the multiplication gain does not decrease until the output current becomes large.

このことを確認するため、以下この発明を一実
施例に従つて説明する。
In order to confirm this, the present invention will be described below according to one embodiment.

非線型性を有する抵抗体を用いて作製したチヤ
ネル型二次電子増倍装置の電流電圧特性を第3図
において実線で示した。この増倍装置には、印加
電圧が4.5KVのとき素子電流が0.5μA流れるよ
うに、つまり9×109Ωの値を示す抵抗値を有す
るものを用いた。
The current-voltage characteristics of a channel-type secondary electron multiplier manufactured using a resistor having nonlinearity are shown by a solid line in FIG. This multiplier had a resistance value of 9×10 9 Ω so that an element current of 0.5 μA would flow when the applied voltage was 4.5 KV.

このような特性を有する増倍装置について、増
倍利得と出力電流の関係を測定したところ、第4
図の実線で示すような特性が得られた。第4図に
おいて、横軸は入射粒子がないときの素子固有の
電流idpで規格化(id/idp)し、たて軸は出力
電流が十分に少ないときの増倍利得Gpで規格化
(G/Gp)した。また動作電圧は4.5KV、動作真
空度は1.6×10-6Torrに設定した。
When we measured the relationship between multiplication gain and output current for a multiplier with such characteristics, we found that the fourth
Characteristics as shown by the solid line in the figure were obtained. In Figure 4, the horizontal axis is normalized by the element-specific current i dp when there are no incident particles (i d /i dp ), and the vertical axis is the multiplication gain G p when the output current is sufficiently small. Normalized (G/G p ). The operating voltage was set to 4.5KV, and the operating vacuum level was set to 1.6×10 -6 Torr.

なお、比較参考として従来例、つまり線型性を
有する抵抗体を用いて作製したチヤネル型二次電
子増倍装置の電流電圧特性を第3図において破線
で示した。また、上記した実施例と同様に、増倍
利得と出力電流との関係を測定し、その結果を同
じく第4図において破線で示した。
As a comparative reference, the current-voltage characteristics of a conventional example, that is, a channel type secondary electron multiplier manufactured using a resistor having linearity, are shown by broken lines in FIG. Further, similarly to the above embodiment, the relationship between the multiplication gain and the output current was measured, and the results are also shown by the broken line in FIG.

第4図から明らかなように、従来のものでは出
力電流が素子電流と同程度になると、増倍利得が
急激に減少するが、この発明によれば素子電流と
同程度の出力電流ではまだ増倍利得の低下が見ら
れず、出力電流の大きいところで増倍利得が改善
されている。
As is clear from FIG. 4, in the conventional system, when the output current becomes about the same as the element current, the multiplication gain decreases rapidly, but according to the present invention, when the output current is about the same as the element current, the multiplication gain still increases. No decrease in the multiplication gain is observed, and the multiplication gain is improved at large output currents.

なお、この発明によれば増倍装置の形状はチヤ
ネル型であればよく、直線状、スパイラル状、ウ
エーブ状、あるいは平行平板状であつても、電流
電圧特性に非線型性をもたせれば同様な効果が得
られる。
According to the present invention, the shape of the multiplier may be a channel type, and the shape of the multiplier may be linear, spiral, wave, or parallel plate, as long as the current-voltage characteristics have nonlinearity. You can get the following effect.

以上のようにこの発明によれば、チヤネル型二
次電子増倍装置において、チヤネル抵抗体の電流
電圧特性を非線型性のものとすることにより、出
力電流を大きくしたときに生じる増倍利得の低下
を改善できるという効果を有しており、実用上き
わめて有用である。
As described above, according to the present invention, in a channel-type secondary electron multiplier, by making the current-voltage characteristics of the channel resistor nonlinear, the multiplication gain that occurs when the output current is increased is reduced. It has the effect of improving the decline, and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はチヤネル型二次電子増倍装置の概略断
面図、第2図は二次電子増倍装置の電流−電位勾
配特性の模式図、第3図はこの発明にかかる二次
電子増倍装置の電流−電位勾配特性図、第4図は
同じく増倍利得−出力電流特性図である。
Fig. 1 is a schematic cross-sectional view of a channel type secondary electron multiplier, Fig. 2 is a schematic diagram of current-potential gradient characteristics of the secondary electron multiplier, and Fig. 3 is a secondary electron multiplier according to the present invention. The current-potential gradient characteristic diagram of the device, FIG. 4, is also a multiplication gain-output current characteristic diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 チヤネル型二次電子増倍装置であつて、チヤ
ネル抵抗体の電流電圧特性が非線型性のものであ
ることを特徴とするチヤネル型二次電子増倍装
置。
1. A channel-type secondary electron multiplier, characterized in that the current-voltage characteristics of a channel resistor are nonlinear.
JP12598779A 1979-09-29 1979-09-29 Channel type secondary electron amplifier Granted JPS5650044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12598779A JPS5650044A (en) 1979-09-29 1979-09-29 Channel type secondary electron amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12598779A JPS5650044A (en) 1979-09-29 1979-09-29 Channel type secondary electron amplifier

Publications (2)

Publication Number Publication Date
JPS5650044A JPS5650044A (en) 1981-05-07
JPS6148211B2 true JPS6148211B2 (en) 1986-10-23

Family

ID=14923916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12598779A Granted JPS5650044A (en) 1979-09-29 1979-09-29 Channel type secondary electron amplifier

Country Status (1)

Country Link
JP (1) JPS5650044A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626234B2 (en) * 2012-02-15 2014-11-19 株式会社オートネットワーク技術研究所 Overcurrent protection device

Also Published As

Publication number Publication date
JPS5650044A (en) 1981-05-07

Similar Documents

Publication Publication Date Title
US3374380A (en) Apparatus for suppression of ion feedback in electron multipliers
US2160797A (en) Electron discharge apparatus
US2401779A (en) Summing amplifier
US4568853A (en) Electron multiplier structure
US2871392A (en) Travelling wave tubes
US2200722A (en) Electron discharge device
US3229143A (en) Electron multiplier device
JPS6148211B2 (en)
US1962159A (en) Grid-controlled gaseous discharge tube
US4473772A (en) Color display tube having improved color selection strucure
US3260878A (en) Electron multiplier
US3321660A (en) Electron multiplier having resistive secondary emissive surface which is adapted to sustain a potential gradient, whereby successive multiplication is possible
US2143146A (en) Repeater
US2245614A (en) Electron discharge device
US2813992A (en) Gas discharge device utilizing controlled electron trapping
US2796531A (en) Gain stabilizing circuit for electron multiplier phototubes
US2617088A (en) Electrical regulator device and network therefor
US2992395A (en) Feedback amplifier circuit
US2597363A (en) Cathode-ray storage tube
US3253183A (en) Ionization manometer
US4636629A (en) Image-storage microchannel device with gating means for selective ion feedback
US1920274A (en) Wave translating system
JP3376080B2 (en) Withstand voltage treatment method for cathode ray tube
Washington Improving the resolution of high gain channel plate arrays for particle and photon counting
JP2809646B2 (en) X-ray image tube