JPS6148210B2 - - Google Patents

Info

Publication number
JPS6148210B2
JPS6148210B2 JP56031332A JP3133281A JPS6148210B2 JP S6148210 B2 JPS6148210 B2 JP S6148210B2 JP 56031332 A JP56031332 A JP 56031332A JP 3133281 A JP3133281 A JP 3133281A JP S6148210 B2 JPS6148210 B2 JP S6148210B2
Authority
JP
Japan
Prior art keywords
sample
electron microscope
scanning electron
partition plate
positively charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56031332A
Other languages
Japanese (ja)
Other versions
JPS57147857A (en
Inventor
Koichi Kanetani
Kiichi Hojo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3133281A priority Critical patent/JPS57147857A/en
Publication of JPS57147857A publication Critical patent/JPS57147857A/en
Publication of JPS6148210B2 publication Critical patent/JPS6148210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/026Means for avoiding or neutralising unwanted electrical charges on tube components

Description

【発明の詳細な説明】 この発明は、電子顕微鏡、特に走査型電子顕微
鏡による試料観察方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for observing a sample using an electron microscope, particularly a scanning electron microscope.

走査型電子顕微鏡で試料を観察する場合、試料
表面が一次電子により帯電すると種々の像傷害を
引起すことは良く知られている。
It is well known that when observing a sample with a scanning electron microscope, if the sample surface is charged by primary electrons, various image damage will occur.

そこで、従来から試料の帯電を防止するため
に、下記に示す方法にしたがつて試料を処理する
ことが試みられている。すなわち、 試料表面に真空蒸着法やスパツタリング法に
よつて、導電性金属を蒸着する方法。
Therefore, in order to prevent the sample from being electrically charged, attempts have been made to treat the sample according to the method described below. In other words, a method in which conductive metal is deposited on the surface of a sample by vacuum evaporation or sputtering.

界面活性剤を試料表面にスプレーして被膜を
形成する方法。
A method in which a surfactant is sprayed onto the surface of a sample to form a film.

試料(特に生物試料)内に重金属を化学吸着
させて、試料組織間の電気導電性を良くする方
法。
A method of chemically adsorbing heavy metals into samples (especially biological samples) to improve electrical conductivity between sample tissues.

ところが、上記〜の従来の試料処理方法に
は次のような問題があつた。すなわち、 の方法では、試料表面に数10Å〜数100Åの
導電性金属の被膜が形成されるので、試料の帯電
は確かに防止できるが、走査型電子顕微鏡の最大
の特徴である試料表面の直接観察が行えない。ま
た、医、生物試料等の熱変形の受け易い試料で
は、蒸着する際の熱によつて試料表面が変形する
虞れがある。さらに、蒸着金属粒子が試料表面に
均一に蒸着されていないために、高倍率で表面形
態の観察を行うことができない。
However, the conventional sample processing methods mentioned above have the following problems. In other words, in the method described above, a conductive metal film with a thickness of several 10 Å to several 100 Å is formed on the sample surface, which can certainly prevent the sample from being charged. Observation is not possible. Furthermore, in the case of samples that are susceptible to thermal deformation, such as medical or biological samples, there is a risk that the sample surface may be deformed by the heat during vapor deposition. Furthermore, since the deposited metal particles are not uniformly deposited on the sample surface, the surface morphology cannot be observed at high magnification.

の方法では、界面活性剤を試料表面にスプレ
ーするために、凹凸の激しい試料表面では界面活
性剤が細部にまで行きわたらず、充分な帯電防止
効果が期待できない。また、界面活性剤は水の分
子を吸着することによつて試料表面の導電効果を
保つているために、走査型電子顕微鏡による観察
には不適当である。すなわち、電子線が試料表面
を走査すると、試料表面が界面活性剤によつて汚
され解像力が低下する。
In the method described above, since the surfactant is sprayed onto the sample surface, the surfactant does not reach every detail on the sample surface with severe irregularities, and a sufficient antistatic effect cannot be expected. Furthermore, since surfactants maintain the conductive effect of the sample surface by adsorbing water molecules, they are unsuitable for observation with a scanning electron microscope. That is, when the electron beam scans the sample surface, the sample surface is contaminated by the surfactant, reducing resolution.

の方法は、グルタールアルデヒドと四酸化オ
スミウムとタンニン酸で試料組織の三重固定を行
い、オスミウムとタンニンとの化学作用によつ
て、試料に導電性を持たせ試料表面の帯電を防止
する方法であるが、この方法は試料の固定処理が
非常に複雑であり、高倍率での観察では、試料の
固定処理状態の違いによつて、部分的な帯電現象
の問題が顕著に現われる。また、試料の固定処理
が繰返えされることによつて、試料表面に有機物
の汚れが堆積し、帯電防止効果が低下する。
In this method, the sample tissue is triple-fixed with glutaraldehyde, osmium tetroxide, and tannic acid, and the chemical action of the osmium and tannins makes the sample conductive and prevents charging on the sample surface. However, in this method, the fixing process of the sample is very complicated, and when observing at high magnification, the problem of partial charging phenomenon becomes noticeable due to differences in the fixing process of the sample. Furthermore, as the sample fixation process is repeated, organic dirt accumulates on the sample surface, reducing the antistatic effect.

本願発明者等は、上記問題点を解決すべく鋭意
研究を重ねた。その結果、試料表面に正電荷をも
つた粒子、すなわち正電荷のイオンを照射して試
料表面を予め正に帯電させておけば、観察に際し
て一次電子(負電子)による試料表面の帯電を中
和することができるので、支障なく試料表面の観
察が行えるといつた知見を得た。
The inventors of the present application have conducted extensive research in order to solve the above problems. As a result, if the sample surface is positively charged in advance by irradiating positively charged particles, that is, positively charged ions, the charge on the sample surface caused by primary electrons (negative electrons) can be neutralized during observation. We have obtained the knowledge that the surface of the sample can be observed without any problems.

この発明は、上記知見に基づきなされたもので
あつて、 走査型電子顕微鏡により試料を観察するに際し
て、前記試料の表面に正電荷のイオンを照射する
ことによつて、前記試料表面を予め正に帯電させ
ておき、一次電子による帯電を中和し、かくして
帯電による像傷害を防止することに特徴を有す
る。
The present invention has been made based on the above findings, and includes the following steps: When observing a sample using a scanning electron microscope, the surface of the sample is irradiated with positively charged ions to make the surface of the sample positive in advance. It is characterized in that it is charged, neutralizes the charge caused by primary electrons, and thus prevents damage to the image due to charging.

この発明の方法の一態様を図面を参照しながら
説明する。
One embodiment of the method of this invention will be explained with reference to the drawings.

第1図は、この発明の方法にしたがつて試料を
観察している状態を示す断面図である。
FIG. 1 is a sectional view showing a state in which a sample is observed according to the method of the present invention.

第1図において、1は走査型電子顕微鏡本体で
あり、2は試料室、3は電子レンズ、4は排気
口、5は試料室2内の電子レンズ3直下に設けら
れた試料台、6は試料室の側部に設けられた、外
部から抜出し自在なステンレス製の内部仕切板、
7は試料室2の側部に内部仕切板6を介して連設
された予備試料室、8は予備試料室7の中央上部
に設けたイオン照射装置、9はイオン照射装置8
のイオン引出し用電極、10は静電電極、11は
イオン照射装置8のガス導入口、12は予備試料
室7の側部に設けられた、透明ガラス製の外部仕
切板、13は外部仕切板12の中央部を貫通して
外部から出入れ自在な試料台移動アーム、14は
試料台移動アーム13の先端に水平に取付けられ
た試料ホルダー、そして、15は予備試料室7の
下部に設けられた排気口を示す。
In FIG. 1, 1 is a scanning electron microscope main body, 2 is a sample chamber, 3 is an electron lens, 4 is an exhaust port, 5 is a sample stage provided directly below the electron lens 3 in the sample chamber 2, and 6 is a A stainless steel internal partition plate is installed on the side of the sample chamber and can be removed from the outside.
7 is a preliminary sample chamber connected to the side of the sample chamber 2 via an internal partition plate 6; 8 is an ion irradiation device installed in the upper center of the preliminary sample chamber 7; 9 is an ion irradiation device 8
10 is an electrostatic electrode, 11 is a gas inlet of the ion irradiation device 8, 12 is an external partition plate made of transparent glass provided on the side of the preliminary sample chamber 7, and 13 is an external partition plate. A sample stage moving arm 12 is penetrating through the center and can be taken in and out from the outside; 14 is a sample holder horizontally attached to the tip of the sample stage moving arm 13; and 15 is a sample holder provided at the bottom of the preliminary sample chamber 7. Shows the exhaust port.

先づ、外部仕切板12を取外して試料ホルダー
14上に試料16を載せ、試料16がイオン照射
装置8の直下に位置するまで試料台移動アーム1
3を移動させ、この後、外部仕切板12を固定す
る。そして、排気口15から排気を行つて、予備
試料室7内の真空度を1×10-2トール以上にす
る。その後、ガス導入口11から、Arガス、N2
ガス等を予備試料室7内に導入し、前記導入ガス
をイオン化する。イオン化の方法は、熱電子によ
る方法あるいは電界による方法何れでも良い。導
入ガスをイオン化した後、イオン照射装置8のイ
オン引出し用電極9に負または零電圧を印加して
正電荷のイオンのみを引出し、試料16の表面全
面に照射する。尚、引出したイオンを必要に応じ
て静電電極10によつて収束させて試料16の表
面に照射しても良い。このように、正電荷のイオ
ンを試料16の表面に照射することによつて、試
料16の表面は正に帯電する。イオン照射条件
は、試料16の種類によつて異なるが、通常、イ
オン電流は数10μA以上、イオン照射時間は数10
秒で充分である。イオン電流、イオン照射時間を
ともに増加させれば、試料16の帯電防止効果は
一層顕著に現われる。次に、内部仕切板6を開放
し、試料移動アーム13を更に奥に移動させて、
走査型電子顕微鏡本体1の試料室2内の試料台5
上に、表面が正に帯電した試料16を載せる。次
に、試料室2内を排気口4からの排気によつて所
定の真空度に保ち、通常の方法で試料16の観察
を行う。このとき、内部仕切板6は閉鎖してお
く。
First, remove the external partition plate 12, place the sample 16 on the sample holder 14, and move the sample stage moving arm 1 until the sample 16 is located directly below the ion irradiation device 8.
3 is moved, and then the external partition plate 12 is fixed. Then, exhaust is performed from the exhaust port 15 to make the degree of vacuum in the preliminary sample chamber 7 1×10 -2 Torr or higher. After that, from the gas inlet 11, Ar gas, N 2
A gas or the like is introduced into the preliminary sample chamber 7, and the introduced gas is ionized. The ionization method may be either a method using thermal electrons or a method using an electric field. After the introduced gas is ionized, a negative or zero voltage is applied to the ion extraction electrode 9 of the ion irradiation device 8 to extract only positively charged ions, and the entire surface of the sample 16 is irradiated with the ions. Note that the extracted ions may be focused by the electrostatic electrode 10 and irradiated onto the surface of the sample 16, if necessary. In this way, by irradiating the surface of the sample 16 with positively charged ions, the surface of the sample 16 becomes positively charged. Ion irradiation conditions vary depending on the type of sample 16, but usually the ion current is several tens of μA or more and the ion irradiation time is several tens of microamps.
Seconds are enough. If both the ion current and the ion irradiation time are increased, the antistatic effect of the sample 16 will be more pronounced. Next, open the internal partition plate 6, move the sample moving arm 13 further back,
Sample stage 5 in the sample chamber 2 of the scanning electron microscope main body 1
A sample 16 whose surface is positively charged is placed on top. Next, the inside of the sample chamber 2 is maintained at a predetermined degree of vacuum by exhausting air from the exhaust port 4, and the sample 16 is observed in the usual manner. At this time, the internal partition plate 6 is kept closed.

以上の説明は、走査型電子顕微鏡本体の試料室
に予備試料室を連設し、予備試料室内で試料にイ
オンを照射する場合であるが、試料を別の場所で
イオン照射処理しても良いことは云うまでもな
い。
The above explanation is for the case where a preliminary sample chamber is connected to the sample chamber of the main body of a scanning electron microscope, and the sample is irradiated with ions in the preliminary sample chamber, but the sample may also be ion-irradiated at another location. Needless to say.

以上説明したように、この発明によれば、予め
試料表面を、正電荷のイオン照射によつて正に帯
電させることにより、観察時の一次電子が中和さ
れる結果、一次電子による試料表面の帯電が完全
に防止できる。従つて、導電性金属を試料表面に
蒸着する方法では不可能であつた試料表面の直接
観察が行えることは勿論、試料の種類あるいは試
料表面の形状を問わず、しかも、試料表面が有機
物等によつて汚れる虞れがなく、容易かつ確実に
観察が行えるといつたきわめて有用な効果がもた
らされる。
As explained above, according to the present invention, by positively charging the sample surface in advance by irradiating positively charged ions, the primary electrons during observation are neutralized. Static electricity can be completely prevented. Therefore, it is not only possible to directly observe the sample surface, which was not possible with the method of vapor depositing conductive metal on the sample surface, but it is also possible to directly observe the sample surface regardless of the type of sample or the shape of the sample surface. This brings about extremely useful effects such as being able to perform observations easily and reliably without the risk of contamination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一態様を示す断面図であ
る。図面において、 1……走査型電子顕微鏡本体、2……試料室、
3……電子レンズ、4……排気口、5……試料
台、6……内部仕切板、7……予備試料室、8…
…イオン照射装置、9……イオン引出し用電極、
10……静電電極、11……ガス導入口、12…
…外部仕切板、13……試料台移動アーム、14
……試料ホルダー、15……排気口、16……試
料。
FIG. 1 is a sectional view showing one embodiment of the present invention. In the drawings, 1... Scanning electron microscope main body, 2... Sample chamber,
3...electronic lens, 4...exhaust port, 5...sample stand, 6...internal partition plate, 7...preliminary sample chamber, 8...
...Ion irradiation device, 9...Ion extraction electrode,
10... Electrostatic electrode, 11... Gas inlet, 12...
... External partition plate, 13 ... Sample stage moving arm, 14
...Sample holder, 15...Exhaust port, 16...Sample.

Claims (1)

【特許請求の範囲】[Claims] 1 走査型電子顕微鏡により試料を観察するに際
して、前記試料の表面に正電荷のイオンを照射
し、前記試料表面を予め正に帯電させておくこと
によつて、観察中の一次電子による前記試料表面
の帯電を中和し、かくして、帯電による像傷害を
防止したことを特徴とする走査型電子顕微鏡によ
る試料観察方法。
1. When observing a sample with a scanning electron microscope, by irradiating the surface of the sample with positively charged ions and positively charging the sample surface in advance, the surface of the sample due to the primary electrons being observed is A method for observing a sample using a scanning electron microscope, characterized in that the electrostatic charge is neutralized, thereby preventing damage to the image due to electrostatic charge.
JP3133281A 1981-03-06 1981-03-06 Sample observation through scanning electron microscope Granted JPS57147857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3133281A JPS57147857A (en) 1981-03-06 1981-03-06 Sample observation through scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3133281A JPS57147857A (en) 1981-03-06 1981-03-06 Sample observation through scanning electron microscope

Publications (2)

Publication Number Publication Date
JPS57147857A JPS57147857A (en) 1982-09-11
JPS6148210B2 true JPS6148210B2 (en) 1986-10-23

Family

ID=12328297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3133281A Granted JPS57147857A (en) 1981-03-06 1981-03-06 Sample observation through scanning electron microscope

Country Status (1)

Country Link
JP (1) JPS57147857A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172363B1 (en) 1996-03-05 2001-01-09 Hitachi, Ltd. Method and apparatus for inspecting integrated circuit pattern
EP2587515A1 (en) 2000-06-27 2013-05-01 Ebara Corporation Inspection system by charged particle beam and method of manufacturing devices using the system
JP4629207B2 (en) * 2000-10-20 2011-02-09 株式会社ホロン Mask inspection device
US6627884B2 (en) 2001-03-19 2003-09-30 Kla-Tencor Technologies Corporation Simultaneous flooding and inspection for charge control in an electron beam inspection machine
US7880144B2 (en) 2006-01-20 2011-02-01 Juridical Foundation Osaka Industrial Promotion Organization c/o Mydome Osaka Liquid medium for preventing charge-up in electron microscope and method of observing sample using the same
US9557253B2 (en) * 2011-09-09 2017-01-31 Japan Science And Technology Agency Electron microscopic observation method for observing biological sample in shape as it is, and composition for evaporation suppression under vacuum, scanning electron microscope, and transmission electron microscope used in the method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127981A (en) * 1974-09-02 1976-03-09 Mitsui Shipbuilding Eng JIKUBARIKIKEI

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5127981A (en) * 1974-09-02 1976-03-09 Mitsui Shipbuilding Eng JIKUBARIKIKEI

Also Published As

Publication number Publication date
JPS57147857A (en) 1982-09-11

Similar Documents

Publication Publication Date Title
JP3860954B2 (en) Plasma processing apparatus with real-time particle filter
US4992661A (en) Method and apparatus for neutralizing an accumulated charge on a specimen by means of a conductive lattice deposited on the specimen
US4727029A (en) Apparatus and method for the pretreatment of biological specimens for use in scanning electron microscopes
CA1107234A (en) Method and apparatus for rejuvenating ion sources
JPS6148210B2 (en)
JPH0729819A (en) Focus ion beam process involving electric charge control
US6576894B1 (en) Structure for FIB based microanalysis and method for manufacturing it
Tsai et al. Study of surface contamination produced during high dose ion implantation
JPH0456761A (en) Thin film forming device
Odom Secondary ion mass spectrometry imaging
Yonehara et al. Application of ion‐beam etching techniques to the fine structure of biological specimens as examined with a field emission SEM at low voltage
US7317606B2 (en) Particle trap for electrostatic chuck
JPS6350854B2 (en)
Malm et al. A study of contamination on electroplated gold, copper, platinum, and palladium
JPH05295522A (en) Formation of thin film
Akahori et al. Osmium-metal coating device using hollowcathode plasma CVD method
JPH1154078A (en) Scanning electron microscope incorporating plasma ion shower function, and device similar thereto
JPH10242072A (en) Method and apparatus for preventing laser entrance window from contamination
TW494533B (en) Focus ion beam apparatus and method for picking small piece of test sample
JPH0734926Y2 (en) Ion processing device
Fulker et al. A comparison of two ion etching methods for biological tissue
JP2696987B2 (en) Thin film manufacturing method
JP4104241B2 (en) Electronic element
JPH10142400A (en) Ion implanter
JPH0581268U (en) Ion implanter sample holder