JPS6146962B2 - - Google Patents

Info

Publication number
JPS6146962B2
JPS6146962B2 JP52085212A JP8521277A JPS6146962B2 JP S6146962 B2 JPS6146962 B2 JP S6146962B2 JP 52085212 A JP52085212 A JP 52085212A JP 8521277 A JP8521277 A JP 8521277A JP S6146962 B2 JPS6146962 B2 JP S6146962B2
Authority
JP
Japan
Prior art keywords
capacitor element
capacitor
metallized film
resin
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52085212A
Other languages
Japanese (ja)
Other versions
JPS5420358A (en
Inventor
Kazunari Takashima
Katsumi Nishigaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8521277A priority Critical patent/JPS5420358A/en
Publication of JPS5420358A publication Critical patent/JPS5420358A/en
Publication of JPS6146962B2 publication Critical patent/JPS6146962B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は乾式金属化フイルムコンデンサの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a dry metallized film capacitor.

乾式金属化フイルムコンデンサは、周知の通り
表面に真空蒸着により金属膜を形成したプラスチ
ツクフイルムを金属膜が一対の対向電極になるよ
うに巻回してコンデンサ素子を形成し、そのコン
デンサ素子端面にメタリコンを施すとともに、そ
のメタリコン部にリード線を接続することにより
構成されている。
As is well known, dry-type metallized film capacitors are made by winding a plastic film with a metal film formed on its surface by vacuum evaporation so that the metal film forms a pair of opposing electrodes to form a capacitor element, and then applying metallized silicon to the end face of the capacitor element. At the same time, a lead wire is connected to the metallic contact portion.

一般に、このコンデンサ素子は、外部より絶縁
するためやコンデンサを取りまく環境条件による
経時劣化、例えば吸湿による絶縁耐力の低下、あ
るいは構成材料の冷化、その他紫外線、有害ガス
等の影響を防止するため、外気より遮断するため
の外装を行なつている。この外装方法としては、
金属あるいは樹脂よりなる容器に収納し密閉する
方法、熱硬化性あるいは熱可塑性樹脂によりコン
デンサ素子をデイツピングあるいはモールデイン
グ等により包み込む方法、あるいは金属や樹脂よ
りなる容器に素子を収納し、容器空間部、すなわ
ちコンデンサ素子の周りに熱硬化性あるいは熱可
塑性の樹脂を注入して充填する方法、さらにはコ
ンデンサ素子外周に粘着テープ等を巻付け、コン
デンサ素子の露出部分を前記樹脂により封止す
る、方法等がとられている。
In general, capacitor elements are designed to be insulated from the outside, to prevent deterioration over time due to environmental conditions surrounding the capacitor, for example, a decrease in dielectric strength due to moisture absorption, cooling of the constituent materials, and other effects such as ultraviolet rays and harmful gases. The exterior is installed to isolate it from the outside air. As for this exterior method,
A method of storing the capacitor element in a container made of metal or resin and sealing it, a method of wrapping the capacitor element with thermosetting or thermoplastic resin by dipping or molding, or a method of storing the element in a container made of metal or resin and sealing it, That is, a method of injecting and filling a thermosetting or thermoplastic resin around the capacitor element, and a method of wrapping an adhesive tape or the like around the outer circumference of the capacitor element and sealing the exposed part of the capacitor element with the resin. is taken.

このようにコンデンサ素子を外気より隔離し、
コンデンサの周囲環境より受ける悪影響をさけて
いるが、コンデンサ素子内部、すなわち各フイル
ム層間には合成樹脂による包み込みが充填方式を
とつても完全に含浸はされず、フイルム層間およ
びコンデンサ素子端面近傍に空気が存在してい
る。
In this way, the capacitor element is isolated from the outside air,
Although the negative effects of the surrounding environment of the capacitor are avoided, the interior of the capacitor element, that is, the space between each film layer, is not completely impregnated with synthetic resin even if the filling method is used, and air is trapped between the film layers and near the end face of the capacitor element. exists.

したがつて、乾式金属化フイルムコンデンサの
宿命的な欠陥としては、前記空隙の内在のため
に、コロナ放電開始電圧の低いこと、さらにそれ
に起因する静電容量の減少がある。このような理
由により、乾式金属化フイルムコンデンサの使用
電圧はフイルムの耐電圧が高いにも拘わらず、限
定を余儀なくされていた。
Therefore, the fatal defects of dry metallized film capacitors include a low corona discharge starting voltage due to the presence of the voids, and a decrease in capacitance due to this. For these reasons, the operating voltage of dry metallized film capacitors has been forced to be limited, even though the film has a high withstand voltage.

本発明はこのような乾式金属化フイルムコンデ
ンサの欠点を除去するもので、金属化フイルムコ
ンデンサ素子に内在する空隙の耐電力を高め、コ
ンデンサのコロナ放電開始電圧を高めることを目
的とするものである。その手段としては、コンデ
ンサ素子をデイツピング、樹脂の充填、モールデ
イング等の方法により樹脂で外装を行なう際に、
その樹脂の硬化反応時に発生するガスを利用して
コンデンサ素子内の圧力を高めたものである。
The present invention aims to eliminate such drawbacks of dry-type metallized film capacitors, and aims to increase the withstand power of the voids inherent in metallized film capacitor elements and increase the capacitor's corona discharge starting voltage. . As a means of doing so, when the capacitor element is covered with resin by methods such as dipping, resin filling, and molding,
The pressure inside the capacitor element is increased using the gas generated during the curing reaction of the resin.

すなわち、ポリウレタン樹脂の硬化反応時に発
生する炭酸ガスを利用するものである。このポリ
ウレタン樹脂は、2官能性水酸基を持つアルコー
ルとイソシアネイトとの反応によつて得られる
が、このイソシアネイトは水分との反応によつて
炭酸ガスを放出する。
That is, it utilizes carbon dioxide gas generated during the curing reaction of polyurethane resin. This polyurethane resin is obtained by the reaction of an alcohol having a difunctional hydroxyl group with an isocyanate, and this isocyanate releases carbon dioxide gas when it reacts with water.

本発明は、このイソシアネイトと水分との反応
によつて放出される炭酸ガスを利用してコンデン
サ素子に内在する空隙の圧力を高め、コロナ特性
を向上させるもので、乾式金属化フイルムコンデ
ンサの欠点であつた容量減少を抑えるものであ
る。
The present invention utilizes carbon dioxide gas released by the reaction between isocyanate and moisture to increase the pressure in the voids within the capacitor element and improve the corona characteristics, which are disadvantages of dry metallized film capacitors. This suppresses the decrease in capacity that occurs.

次に、本発明の具体的な実施例について述べ
る。
Next, specific examples of the present invention will be described.

実施例 1 第1図に示すように、Al蒸着されたポリプロ
ピレンフイルムからなる金属化フイルムコンデン
サ素子1を容器2内に入れ、この容器2中にアル
コールとイソシアネイトとをそれぞれ水酸基およ
びイソシアネイト基が略同当量になるようにして
アルコール化合物とイソシアネイト化合物を混合
し、この混合した溶液を注入し加熱硬化させて周
囲をポリウレタン樹脂3としたコンデンサについ
て、コンデンサ特性を検討した。
Example 1 As shown in FIG. 1, a metallized film capacitor element 1 made of a polypropylene film deposited with Al was placed in a container 2, and alcohol and isocyanate were placed in the container 2 with hydroxyl groups and isocyanate groups, respectively. The capacitor characteristics were studied for a capacitor in which an alcohol compound and an isocyanate compound were mixed in approximately equivalent amounts, and the mixed solution was injected and cured by heating to surround the polyurethane resin 3.

なお、金属化フイルムコンデンサ素子1は、フ
イルム厚さ9μm、幅60mmで、Al蒸着された金
属化ポリプロピレンフイルムを巻回し、両端面に
メタリコンを施してなる15μFの巻回型のコンデ
ンサ素子を用い、容器2は金属化フイルムコンデ
ンサ素子1が収納できる大きさで、ガラス繊維入
ポリブチレンテレフタレート樹脂製の厚さ2mmの
ものを用いた。また、ウレタン樹脂3の量は35g
であつた。
The metallized film capacitor element 1 is a 15 μF wound type capacitor element with a film thickness of 9 μm and a width of 60 mm, which is made by winding an Al-deposited metalized polypropylene film and applying metallicon on both end faces. The container 2 is large enough to accommodate the metallized film capacitor element 1, and is made of glass fiber-containing polybutylene terephthalate resin and has a thickness of 2 mm. Also, the amount of urethane resin 3 is 35g
It was hot.

さらに、アルコール化合物としては、ひまし油
ポリオールを用い、イソシアネイト化合物として
は、ひまし油ポリオールと有機ジイソシアネイト
からなるウレタンプレポリマーを用い、両者の配
合比を130部対100部とし、水分含有量を500ppm
とした。両者を混合する前に、十分に脱泡し、両
者の混合後、真空脱泡し、容器2に注入する際に
は真空注入により注入した。
Further, as the alcohol compound, castor oil polyol was used, and as the isocyanate compound, a urethane prepolymer consisting of castor oil polyol and organic diisocyanate was used, the blending ratio of both was 130 parts to 100 parts, and the water content was 500 ppm.
And so. Before mixing both, they were sufficiently degassed, and after they were mixed, they were degassed under vacuum, and when injected into the container 2, they were injected by vacuum injection.

また、加熱硬化条件は、60℃で1時間の加熱硬
化を行ない、さらに100℃で1時間の加熱硬化を
行なつた。なお、加熱はフアン付オーブン内で行
なつた。
The heat curing conditions were as follows: heat curing at 60°C for 1 hour, and further heat curing at 100°C for 1 hour. Note that heating was performed in an oven equipped with a fan.

上記のように、アルコール化合物とイソシアネ
イト化合物は、混合する前に脱泡され、混合後に
真空脱泡され、さらに、容器へ真空注入によつて
注入されているので、硬化時に発泡は極めて少な
く、実用上何ら問題はなかつた。また、コンデン
サの内圧の上昇程度を測定しなかつたが、炭酸ガ
スの発生により非常に高い圧力になつていると推
定される。
As mentioned above, the alcohol compound and isocyanate compound are defoamed before mixing, vacuum defoamed after mixing, and then injected into the container by vacuum injection, so there is very little foaming during curing. There were no practical problems. Furthermore, although we did not measure the degree of increase in the internal pressure of the condenser, it is presumed that the pressure was extremely high due to the generation of carbon dioxide gas.

このようにしてポリウレタン樹脂3によりコン
デンサ素子1外周を覆つた金属化フイルムコンデ
ンサのコロナ放電開始電圧および印加電圧
AC550V、60゜、1000時間通電後の静電容量の変
化を従来のエポキシ樹脂を用いたものと比較し
た。この結果を第2図に示す。
Corona discharge starting voltage and applied voltage of the metallized film capacitor whose outer periphery is covered with the polyurethane resin 3 in this way.
The change in capacitance after energizing at AC550V, 60°, for 1000 hours was compared with that using conventional epoxy resin. The results are shown in FIG.

実施例 2 実施例1と同じポリプロピレンフイルムを用い
た金属化フイルムコンデンサ素子1を実施例1と
同じ容器2内に入れ、その容器2内に実施例1で
用いた溶液中に、同溶液100重量部に対し80重量
部の割合の石英粉を混入した溶液を注入し実施例
1と同様に硬化した。このコンデンサのコロナ放
電開始電圧および通電後の静電容量の変化を実施
例1と同様に調べた。その結果も第2図に示す。
なお石英粉は平均粒子径6.7μmであり、水分含
有量は0.02%であつた。
Example 2 A metallized film capacitor element 1 using the same polypropylene film as in Example 1 was placed in the same container 2 as in Example 1, and 100 weight of the same solution was added to the solution used in Example 1 in the container 2. A solution containing 80 parts by weight of quartz powder was injected and cured in the same manner as in Example 1. The corona discharge starting voltage of this capacitor and the change in capacitance after energization were investigated in the same manner as in Example 1. The results are also shown in FIG.
The quartz powder had an average particle diameter of 6.7 μm and a water content of 0.02%.

実施例 3 実施例1と同じポリプロピレンフイルムを用い
た金属化フイルムコンデンサ素子1と実施例1と
同じ容器2内に入れ、その容器2内に実施例1で
用いた溶液中に80重量部の水和アルミナを混入し
た溶液を注入し実施例1と同様に硬化した。この
コンデンサのコロナ放電開始電圧および通電後の
静電容量の変化を実施例1と同様に調べた。その
結果も第2図に示す。なお、水和アルミナは平均
粒子径6.5μmであり、水分含有量は0.09%であ
つた。
Example 3 A metallized film capacitor element 1 using the same polypropylene film as in Example 1 was placed in the same container 2 as in Example 1, and 80 parts by weight of water was added to the solution used in Example 1 in the container 2. A solution containing Japanese alumina was injected and cured in the same manner as in Example 1. The corona discharge starting voltage of this capacitor and the change in capacitance after energization were investigated in the same manner as in Example 1. The results are also shown in FIG. Note that the hydrated alumina had an average particle diameter of 6.5 μm and a water content of 0.09%.

実施例 4 フイルム厚さ9μm、幅60mmのAl蒸着された
金属化ポリエチレンテレフタレートフイルムから
なる金属化フイルムコンデンサ素子1(20μF)
を実施例1と同じ容器2内に収納し、実施例2に
従つて石英粉を混入したアルコールとイソシアネ
イト溶液を注入し同様に加熱硬化させたコンデン
サについて、コンデンサ特性を検討した。このよ
うにしてポリウレタン樹脂によりコンデンサ素子
外周を覆つた金属ポリエチレンテレフタレートフ
イルムコンデンサのコロナ放電開始電圧および印
加電圧AC300V、60℃、1000時間通電後の静電容
量の従来のエポキシ樹脂を用いたものと比較し
た。この結果を第3図に示す。
Example 4 Metallized film capacitor element 1 (20 μF) made of Al-deposited metalized polyethylene terephthalate film with a film thickness of 9 μm and a width of 60 mm.
was stored in the same container 2 as in Example 1, and an alcohol and isocyanate solution mixed with quartz powder was poured in according to Example 2, and the capacitor was cured by heating in the same manner, and the capacitor characteristics were examined. Comparison of the corona discharge starting voltage and capacitance of a metal polyethylene terephthalate film capacitor whose outer periphery of the capacitor element is covered with polyurethane resin and capacitance after 1000 hours of electricity applied at 300 VAC at 60°C with a capacitor using conventional epoxy resin. did. The results are shown in FIG.

第2図および第3図から明らかなように、実施
例1〜4の金属化フイルムコンデンサは、一般に
使用されるエポキシ樹脂のものに比べ著しくコロ
ナ放電開始電圧が高く、容量減少の小さいことが
判る。これはアルコール、イソシアネイトの混合
容液の硬化反応時にイソシアネイトとコンデンサ
素子材料あるいはもともとアルコール中に含まれ
ていた水分、さらには混合撹拌時に空気中に存在
する微量の水分と反応し炭酸ガスを放出してコン
デンサ素子内部に拡散し、これによりフイルム層
間の空気圧が高められた結果であると考える。す
なわち、ポリウレタン樹脂が硬化反応時にイソシ
アネイトと水分との反応によつてできた炭酸ガス
をコンデンサ素子内にとじ込め、コンデンサ素子
内気圧を高めた状態で外気より遮断したものであ
る。勿論、コンデンサ素子内に放出される炭酸ガ
スは、樹脂とコンデンサ素子の接している面より
なされ、樹脂が外気に晒らされている部分より放
出される炭酸ガスは外気に放出されるものであ
る。
As is clear from FIGS. 2 and 3, the metallized film capacitors of Examples 1 to 4 have significantly higher corona discharge initiation voltages and smaller capacitance reductions than those of commonly used epoxy resins. . During the curing reaction of a mixed solution of alcohol and isocyanate, the isocyanate reacts with the capacitor element material or moisture originally contained in the alcohol, and even with trace amounts of moisture present in the air during mixing and stirring, producing carbon dioxide gas. It is thought that this is the result of the air being released and diffusing inside the capacitor element, thereby increasing the air pressure between the film layers. That is, the polyurethane resin traps carbon dioxide gas produced by the reaction between isocyanate and moisture in the capacitor element during the curing reaction, and isolates it from the outside air while increasing the internal pressure of the capacitor element. Of course, the carbon dioxide gas released into the capacitor element is from the surface where the resin and the capacitor element are in contact, and the carbon dioxide gas released from the part of the resin exposed to the outside air is released into the outside air. .

さらに実施例2、3のように、樹脂に酸化金属
の粉末のような充填剤を混入すればさらにその効
果は大きくなる。これは酸化金属粉末は水分が吸
着しやすく、その水分とイソシアネイトとの反応
により、より多くの炭酸ガスの放出がなされたも
のである。
Furthermore, as in Examples 2 and 3, if a filler such as metal oxide powder is mixed into the resin, the effect will be even greater. This is because metal oxide powder easily adsorbs water, and the reaction between that water and isocyanate releases more carbon dioxide gas.

さらに、実施例1〜4に用いたコンデンサ素子
およびポリウレタン樹脂を用い、第4図に示す構
造について実施例1〜4と同様の試験を実施した
結果、ほぼ同様の結果を得たものである。なお、
第4図において、容器は片面を粘着剤処理したポ
リエステルテープで構成したものである。
Furthermore, using the capacitor element and polyurethane resin used in Examples 1 to 4, the same tests as in Examples 1 to 4 were conducted on the structure shown in FIG. 4, and almost the same results were obtained. In addition,
In FIG. 4, the container is constructed of polyester tape treated with an adhesive on one side.

また、ポリウレタン樹脂はコンデンサ素子全体
に接触している必要はなく、少なくとも一部接触
した状態でよい。さらに、加熱硬化条件は上記実
施例に示され条件でなくても良い。
Further, the polyurethane resin does not need to be in contact with the entire capacitor element, but may be in contact with at least a portion of the capacitor element. Furthermore, the heat curing conditions do not have to be those shown in the above examples.

このように本発明の乾式金属化フイルムコンデ
ンサの製造方法によれば、金属化フイルムコンデ
ンサ素子をポリウレタン樹脂に接触させることに
より乾式金属化フイルムコンデンサの宿命であつ
た運転中に起る静電容量の減少を喰いとめると同
時に、コロナ放電開始電圧を向上することがで
き、プラスチツクフイルムの持つ本来の絶縁耐力
に近い定格電圧を設定することができるもので、
その産業性はきわめて高いものである。
As described above, according to the method of manufacturing a dry-type metallized film capacitor of the present invention, by bringing a metallized film capacitor element into contact with a polyurethane resin, the electrostatic capacitance that occurs during operation, which is the fate of dry-type metallized film capacitors, can be reduced. At the same time, it is possible to improve the corona discharge starting voltage and to set a rated voltage close to the original dielectric strength of the plastic film.
Its industrial potential is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による製造方法を用いた金属化
フイルムコンデンサの一実施例の断面図、第2
図、第3図はそれぞれ本発明によるコンデンサと
従来のコンデンサのコロナ放電開始電圧および静
電容量変化率特性図、第4図は本発明による製造
方法を用いた金属化フイルムコンデンサの他の実
施例の断面図である。 1……コンデンサ素子、2……容器、3……ポ
リウレタン樹脂。
FIG. 1 is a cross-sectional view of one embodiment of a metallized film capacitor using the manufacturing method according to the present invention, and FIG.
3 and 3 are corona discharge start voltage and capacitance change rate characteristic diagrams of a capacitor according to the present invention and a conventional capacitor, respectively, and FIG. 4 is another example of a metallized film capacitor using the manufacturing method according to the present invention. FIG. 1... Capacitor element, 2... Container, 3... Polyurethane resin.

Claims (1)

【特許請求の範囲】[Claims] 1 金属化フイルムコンデンサ素子を容器内に収
納するとともに、その容器内にアルコールとイソ
シアネイトとを混合した溶液を注入し、その後そ
の溶液を加熱硬化させることにより金属化フイル
ムコンデンサ素子の外周部をポリウレタン樹脂に
より覆うことを特徴とする乾式金属化フイルムコ
ンデンサの製造方法。
1. A metallized film capacitor element is housed in a container, and a solution containing alcohol and isocyanate is injected into the container, and then the solution is heated and hardened to form a polyurethane material on the outer periphery of the metallized film capacitor element. A method for manufacturing a dry metallized film capacitor characterized by covering it with a resin.
JP8521277A 1977-07-15 1977-07-15 Metallized film capacitor Granted JPS5420358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8521277A JPS5420358A (en) 1977-07-15 1977-07-15 Metallized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8521277A JPS5420358A (en) 1977-07-15 1977-07-15 Metallized film capacitor

Publications (2)

Publication Number Publication Date
JPS5420358A JPS5420358A (en) 1979-02-15
JPS6146962B2 true JPS6146962B2 (en) 1986-10-16

Family

ID=13852264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8521277A Granted JPS5420358A (en) 1977-07-15 1977-07-15 Metallized film capacitor

Country Status (1)

Country Link
JP (1) JPS5420358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237147U (en) * 1988-09-02 1990-03-12

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911615A (en) * 1982-07-12 1984-01-21 岡谷電機産業株式会社 Case sheathing type electronic part
JPS63137407A (en) * 1986-11-28 1988-06-09 松下電器産業株式会社 Metallized film capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4330432Y1 (en) * 1965-07-28 1968-12-12
JPS4930863A (en) * 1972-06-30 1974-03-19
JPS4997834A (en) * 1972-12-28 1974-09-17

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4330432Y1 (en) * 1965-07-28 1968-12-12
JPS4930863A (en) * 1972-06-30 1974-03-19
JPS4997834A (en) * 1972-12-28 1974-09-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237147U (en) * 1988-09-02 1990-03-12

Also Published As

Publication number Publication date
JPS5420358A (en) 1979-02-15

Similar Documents

Publication Publication Date Title
JPS61216417A (en) High voltage capacitor
JPS6146962B2 (en)
US3340446A (en) Electrical capacitor
US2922734A (en) Fabrication of electrical windings
US2320922A (en) High-voltage coil insulation
US3362861A (en) Method of making electrical insulation of wound layers of paper and dry resin film
US2478754A (en) Method of producing electrical condensers
US3689811A (en) High voltage capacitor
US3271221A (en) Method of making an electrical condenser
US6403685B1 (en) Adhesive, elastomeric gel impregnating composition
US3531699A (en) Metallized electrical capacitor
US3854182A (en) Process for manufacturing electrical condensers
JPS6189618A (en) Resin-filled dry type metalized film capacitor
US1817108A (en) Electric condenser
JPS62299010A (en) Manufacture of resin molded coil
JPH11113204A (en) Stator coil of dynamo-electric machine
JPS6130413B2 (en)
JPH10214748A (en) Cased film capacitor
US3250837A (en) Method of molding insulated coils by application of differential fluid pressure
JPH0233912A (en) Method of impregnating electric apparatus with insulating material
JPS6372106A (en) Resin molded coil
JPS5840798Y2 (en) high voltage electronic components
GB2357372A (en) Vacuum stage in wound capacitor manufacture.
JPS63114546A (en) Insulating treating method for heat-resistant rotary electric machine coil
JPH0348411A (en) Manufacture of molded transformer