JPS6146927A - Space optical modulating tube - Google Patents

Space optical modulating tube

Info

Publication number
JPS6146927A
JPS6146927A JP16864284A JP16864284A JPS6146927A JP S6146927 A JPS6146927 A JP S6146927A JP 16864284 A JP16864284 A JP 16864284A JP 16864284 A JP16864284 A JP 16864284A JP S6146927 A JPS6146927 A JP S6146927A
Authority
JP
Japan
Prior art keywords
crystal
face
spacer
spatial light
light modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16864284A
Other languages
Japanese (ja)
Other versions
JPH0422482B2 (en
Inventor
Tsutomu Hara
勉 原
Nobuhiro Morita
森田 伸廣
Hiroshi Okamoto
博 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP16864284A priority Critical patent/JPS6146927A/en
Publication of JPS6146927A publication Critical patent/JPS6146927A/en
Publication of JPH0422482B2 publication Critical patent/JPH0422482B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE:To obtain a space optical modulating tube which can execute a coherent operation without a trouble by providing plural slots on one end face of a cylindrical spacer, sticking a crystal part to its end face, and sticking the other end face to the inside wall of an output surface of a vacuum vessel. CONSTITUTION:Plural slots 20a are provided on one end face of a cylindrical spacer 20, an electro-optical crystal 8 of LiNbO3, etc. is stuck by an epoxy compound adhesive agent, etc., and the other end face is stuck and fixed to a glass surface plate 12 of a vacuum vessel 3 for forming an output surface of a space optical modulating tube. In such a way, a ''0''-order component on a Fourier transforming surface of the time when a lens whose focal distance is 1,000mm. has been used becomes a circular spot shape, therefore, no influence is exerted on a higher order component, and a coherent optical operation is executed easily. Also, a deformation caused by a difference of coefficients of thermal expansion of the crystal 8 and the spacer 20 is absorbed by the slot part 20a, therefore, a distortion is scarcely generated in the crystal 8, and an optical operation processing is executed easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、真空容器内面に形成された光電面に対して電
気光学結晶を配置し、光電面に形成された光像に対応し
て放射される光電子を前記結晶表面に蓄積し、前記結晶
に前記蓄積電荷に対応する屈折率の変化を発生させ、そ
の屈折率変化をレーザで読み出す空間光変調管に関する
Detailed Description of the Invention (Industrial Application Field) The present invention provides an electro-optic crystal that is arranged on a photocathode formed on the inner surface of a vacuum container, and emits light corresponding to the optical image formed on the photocathode. The present invention relates to a spatial light modulation tube that accumulates photoelectrons generated on the surface of the crystal, causes a change in refractive index corresponding to the accumulated charge in the crystal, and reads out the change in refractive index with a laser.

(従来の技術) まず空間光変調管の基本的な動作を簡単に説明する。(Conventional technology) First, the basic operation of the spatial light modulation tube will be briefly explained.

第3図は従来の空間光変調管を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing a conventional spatial light modulation tube.

空間光変調管のガラス容器3の内面の光電面4にインコ
ヒーレント光で照明された入カバターン、1かりの像が
し/ズ2を介して入射させられる。
An image of an incident cover turn illuminated with incoherent light is made incident on the photocathode 4 on the inner surface of the glass container 3 of the spatial light modulation tube via the lens 2.

光電面4は入射像に対応した光電子を放出する。The photocathode 4 emits photoelectrons corresponding to the incident image.

その光電子は加速・集束電子レンズ系5を介して、マイ
クロチャンネルプレート6に入射させられ、数千倍に増
倍される。
The photoelectrons are made incident on the microchannel plate 6 via the accelerating/focusing electron lens system 5, and are multiplied several thousand times.

前記増倍された電子は、LiNbO3などの電気光学結
晶8の表面に蓄積され、結晶8の屈折率を電荷像に対応
して変化させる。結晶8の一面8aには、透明導電膜が
一様に蒸着されている。
The multiplied electrons are accumulated on the surface of an electro-optic crystal 8 such as LiNbO3, and change the refractive index of the crystal 8 in accordance with the charge image. A transparent conductive film is uniformly deposited on one surface 8a of the crystal 8.

レーザ光源10からのレーザ光をハーフミラ−9を介し
て結晶8に照射すると、レーザ光の像11(コヒーレン
ト像)が得られる。このレーザ光の像11は、コヒーレ
ント並列光演算を行うことができる。
When the crystal 8 is irradiated with laser light from the laser light source 10 via the half mirror 9, a laser light image 11 (coherent image) is obtained. This laser beam image 11 can be used to perform coherent parallel optical calculations.

前記のような空間光変調管に内蔵される結晶8は、従来
、出力ガラス面板12に直接密着させて、あるいはリン
グ状のスペーサを介してばねによって機械的に固定され
ていた。
Conventionally, the crystal 8 built into the above-mentioned spatial light modulation tube has been mechanically fixed directly to the output glass face plate 12 or by a spring via a ring-shaped spacer.

空間光変調管の解像度を向上させるために電気光学結晶
を極力薄くしたいと言う要請があり、電気光学結晶を薄
くすると前記固定方法では問題が生じる。
There is a desire to make the electro-optic crystal as thin as possible in order to improve the resolution of the spatial light modulation tube, and when the electro-optic crystal is made thinner, problems arise with the above-mentioned fixing method.

例えば、直径25mmで厚さは300μm程度の結晶を
前記固定構造で固定すると、固定時に結晶が歪んでしま
ったり、さらに動作電圧を印加すると、静電力により結
晶が歪んでしまう。
For example, if a crystal with a diameter of 25 mm and a thickness of about 300 μm is fixed using the above fixing structure, the crystal will be distorted during fixing, and further, when an operating voltage is applied, the crystal will be distorted due to electrostatic force.

そのため出力像が歪んでしまい、正常な光演算が困難と
なる。
As a result, the output image is distorted, making normal optical calculation difficult.

例えばレンズでフーリエ変換すると、0次光がスポット
状に集光しなくなり、高次光と分離不可能となる。
For example, when Fourier transform is performed using a lens, zero-order light is no longer focused into a spot, and cannot be separated from higher-order light.

(発明の目的) 本発明の目的は電気光学結晶の支持構造を改善して、コ
ヒーレント演算が支障なく実行できる空間光変調管を提
供することにある。
(Object of the Invention) An object of the present invention is to provide a spatial light modulation tube that can perform coherent calculations without problems by improving the support structure of an electro-optic crystal.

(発明の構成) 前記目的を達成するために、本発明による空間光変調管
は、真空容器中に形成された光電面と、光電面から放出
された光電子を蓄積し、光学的変化を生ずる電気光学結
晶部から成る空間光変調管において、前記結晶部は一端
側から複数の摺り割りが設けられた円筒状のスペーサの
前記摺り割りが設けられた端面側に一体に接着され、前
記スペーサの他端面を前記容器の出力面内壁に接続する
        1ことにより、前記結晶部を前記光電
面に対向させて構成されている。
(Structure of the Invention) In order to achieve the above object, the spatial light modulation tube according to the present invention includes a photocathode formed in a vacuum container and an electric current that accumulates photoelectrons emitted from the photocathode and causes an optical change. In a spatial light modulation tube including an optical crystal section, the crystal section is integrally bonded to the end face side of a cylindrical spacer provided with a plurality of slots from one end side, and the other side of the spacer is provided with a plurality of slots. By connecting the end face to the inner wall of the output surface of the container, the crystal part is configured to face the photocathode.

(実施例) 以下、図面等を参照して本発明をさらに詳しく説明する
(Example) Hereinafter, the present invention will be described in more detail with reference to the drawings and the like.

本発明による空間光変調管の基本的構成は、先に第3図
で説明したものと異ならない。
The basic configuration of the spatial light modulation tube according to the invention does not differ from that previously described in FIG.

第1図は本発明による空間光変調管で使用する電気光学
結晶とスペーサを展開的に示した斜視図である。
FIG. 1 is a perspective view showing an electro-optic crystal and a spacer used in a spatial light modulation tube according to the present invention.

第2図は真空容器に固定した状態を示す断面図である。FIG. 2 is a sectional view showing the state fixed to a vacuum container.

固定対象の電気光学結晶8は55°カツトのLINb0
3結晶である。
The electro-optic crystal 8 to be fixed is a 55° cut LINb0.
It is 3 crystals.

この電気光学結晶8の直径は26mm、厚さは0゜3m
mであり、一方の面″(第1図において下側)に透明導
電膜が形成されている。
This electro-optic crystal 8 has a diameter of 26 mm and a thickness of 0°3 m.
m, and a transparent conductive film is formed on one surface (lower side in FIG. 1).

この結晶8を支持するスペーサ20として外径25mm
、内径21mm、高さ5mmのガラス円筒を用いる。こ
の円筒の一方の端面から複数の摺り割り20a・・・2
0aが設けられている。
A spacer 20 that supports this crystal 8 has an outer diameter of 25 mm.
, a glass cylinder with an inner diameter of 21 mm and a height of 5 mm is used. A plurality of slots 20a...2 are formed from one end surface of this cylinder.
0a is provided.

この実施例では8個の摺り割りを設けたがこの程度の大
きさの場合は8〜16個を均等な角度配分で設けるのが
適当である。
In this embodiment, eight slots were provided, but in the case of this size, it is appropriate to provide 8 to 16 slots evenly distributed at angles.

摺り割り20aが設けられている端面に電気光学結晶8
の透明導電膜が設けられている側の面をエポキシ系接着
剤あるいはポリイミド系接着剤で接着する。
An electro-optic crystal 8 is placed on the end face where the slot 20a is provided.
The side on which the transparent conductive film is provided is adhered with an epoxy adhesive or a polyimide adhesive.

この接着して一体化したものをスペーサ20で真空容器
3の出力面であるガラス面板12に接着して固定する。
This bonded and integrated structure is bonded and fixed to the glass face plate 12, which is the output surface of the vacuum container 3, using a spacer 20.

以上のようにして電気光学結晶8が装着された空間光変
調管では従来、焦点距!1000mmのレンズを用いた
時のフーリエ変換面での0火成分が長楕円形あるいは三
角形状となっていたものが、小さな円形のスポット状に
なる。
Conventionally, the spatial light modulation tube equipped with the electro-optic crystal 8 as described above has a focal length of ! When a 1000 mm lens is used, the 0-fire component on the Fourier transform surface is shaped like an oblong or triangular shape, but it becomes a small circular spot.

そのため高次の成分に影響を与えることが無くtったの
で、コヒーレント光演算が実行しやす(なった。
As a result, it does not affect higher-order components, making it easier to perform coherent light calculations.

次にスペーサ20に形成されている複数の摺り割り20
aの技術的な意味を説明する。
Next, a plurality of slots 20 formed in the spacer 20
Explain the technical meaning of a.

空間光変調管は、ガス抜きのため、あるいは光電面を作
るため、200℃以上の高温でベーキングされる。
The spatial light modulation tube is baked at a high temperature of 200° C. or higher for degassing or for creating a photocathode.

通常ガラスと電気光学結晶の熱膨張率は次のとおり異な
っている。
The thermal expansion coefficients of normal glass and electro-optic crystal are different as follows.

ガラス・・・・・・・50X10−7/度LiNbO3
55°カット板 X軸・・・・・・・・120xlO−7/度y軸・・・
・・・・・・30X10−7/度この熱膨張率の差で従
来は接着しであると結晶が割れたり、接着部分がはがれ
てくるなどの問題が発生していたと考えられる。
Glass・・・・・・50X10-7/degree LiNbO3
55° cut plate X-axis...120xlO-7/degree y-axis...
......30 x 10-7/degree It is thought that this difference in thermal expansion coefficient caused problems such as cracking of the crystals and peeling of the bonded portion when bonding in the past.

本発明では前記複数の摺り割りで熱膨張係数の差による
変形量の差が吸収され従来の問題は完全に解決される。
In the present invention, the difference in the amount of deformation due to the difference in thermal expansion coefficients is absorbed by the plurality of slits, and the conventional problem is completely solved.

      ・ (変形例) 以上詳しく説明した実施例につき、本発明の範囲内で種
々の変形を施すことができる。
- (Modifications) Various modifications can be made to the embodiments described in detail above within the scope of the present invention.

前記実施例ではスペーサ20を真空容器3の出力面であ
るガラス面板12に接着して固定したが、これは機械的
な固定であっても良い。
In the embodiment described above, the spacer 20 was fixed by adhering to the glass face plate 12 which is the output surface of the vacuum container 3, but this may be fixed mechanically.

またスペーサ20としてガラス円筒の例を示したが、セ
ラミック、金運を同様の形状にしたものを用いることも
できる。
Further, although a glass cylinder is shown as an example of the spacer 20, a ceramic cylinder or a cylinder having a similar shape may also be used.

電気光学結晶もL i N b O3に限らず、LiT
aO3、B i+z S l 020 (BSO)など
を用いることができる。
Electro-optic crystals are not limited to LiNbO3, but also LiT
aO3, B i+z S l 020 (BSO), etc. can be used.

(発明の効果) 以上詳しく説明したように本発明による空間光変調管で
は、前記結晶部は一端側から複数の摺り割りが設けられ
た円筒状のスペーサの前記摺り割りが設けられた端面側
に一体に接着され、前記スペーサの他端面を前記容器の
出力面内壁に接続することにより、前記結晶部を前記光
電面に対向させて構成しである。
(Effects of the Invention) As explained above in detail, in the spatial light modulation tube according to the present invention, the crystal portion is formed on the end face side of the cylindrical spacer provided with the plurality of slots from one end side, where the slots are provided. The spacer is bonded together and the other end surface of the spacer is connected to the inner wall of the output surface of the container, so that the crystal part faces the photocathode.

したがワて、熱膨張係数の差による変形は前記摺り割り
部分で吸収され、薄い電気光学結晶を歪の発生しにくい
状態で支持することができ、光学演      1算処
理に適した空間光変調管を提供することかできる。
However, deformation due to the difference in thermal expansion coefficients is absorbed by the slits, and the thin electro-optic crystal can be supported in a state where distortion is less likely to occur, resulting in spatial light modulation suitable for optical arithmetic processing. Can you provide tubes?

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による空間光変調管で使用する電気光学
結晶とスペーサを展開的に示した斜視図である。 第2図は真空容器に固定した状態を示す断面図である。 第3図は空間光変調管の基本的な構成を示す断面図であ
る。 1・・・入カバターン      2・・・レンズ3・
・・ガラス容器       4・・・入射面5・・・
集束レンズ系 6・・・マイクロチャンネルプレート 7・・・メツシュ電極      8・・・電気光学結
晶9・・・ハーフミラ−10・・・レーf光fi11・
・・出カバターン     12・・・出力面20・・
・スペーサ       20a・・・摺り割り特許出
願人 浜松ホトニクス株式会社 代理人 弁理士  井 ノ ロ  毒 牙1図 第2図
FIG. 1 is a perspective view showing an electro-optic crystal and a spacer used in a spatial light modulation tube according to the present invention. FIG. 2 is a sectional view showing the state fixed to a vacuum container. FIG. 3 is a sectional view showing the basic configuration of the spatial light modulation tube. 1...Enter cover turn 2...Lens 3.
...Glass container 4...Incidence surface 5...
Focusing lens system 6...Micro channel plate 7...Mesh electrode 8...Electro-optic crystal 9...Half mirror 10...Ray f light fi11.
...Output pattern 12...Output surface 20...
・Spacer 20a... Sliding patent applicant: Hamamatsu Photonics Co., Ltd. Agent Patent attorney: Inoro Dokuga Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)真空容器中に形成された光電面と、光電面から放
出された光電子を蓄積し、光学的変化を生ずる電気光学
結晶部から成る空間光変調管において、前記結晶部は一
端側から複数の摺り割りが設けられた円筒状のスペーサ
の前記摺り割りが設けられた端面側に一体に接着され、
前記スペーサの他端面を前記容器の出力面内壁に接続す
ることにより、前記結晶部を前記光電面に対向させて構
成した空間光変調管。
(1) In a spatial light modulation tube consisting of a photocathode formed in a vacuum container and an electro-optic crystal part that accumulates photoelectrons emitted from the photocathode and produces an optical change, the crystal part has a plurality of crystal parts starting from one end. is integrally adhered to the end surface side of a cylindrical spacer provided with the slot, where the slot is provided;
The spatial light modulation tube is configured such that the other end surface of the spacer is connected to the inner wall of the output surface of the container so that the crystal portion faces the photocathode.
(2)前記電気光学結晶は、LiNbO_3、LiTa
O_3、Bi_1_2SiO_2_0結晶のいずれかで
ある特許請求の範囲第1項記載の空間光変調管。
(2) The electro-optic crystal is made of LiNbO_3, LiTa
The spatial light modulation tube according to claim 1, which is any one of O_3, Bi_1_2SiO_2_0 crystal.
(3)前記電気光学結晶は、LiNbO_3の55°カ
ットの結晶である特許請求の範囲第1項記載の空間光変
調管。
(3) The spatial light modulation tube according to claim 1, wherein the electro-optic crystal is a 55° cut crystal of LiNbO_3.
(4)前記真空容器の出力面はガラスであり前記スペー
サはガラスである特許請求の範囲第1項記載の空間光変
調管。
(4) The spatial light modulation tube according to claim 1, wherein the output surface of the vacuum container is made of glass, and the spacer is made of glass.
JP16864284A 1984-08-10 1984-08-10 Space optical modulating tube Granted JPS6146927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16864284A JPS6146927A (en) 1984-08-10 1984-08-10 Space optical modulating tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16864284A JPS6146927A (en) 1984-08-10 1984-08-10 Space optical modulating tube

Publications (2)

Publication Number Publication Date
JPS6146927A true JPS6146927A (en) 1986-03-07
JPH0422482B2 JPH0422482B2 (en) 1992-04-17

Family

ID=15871820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16864284A Granted JPS6146927A (en) 1984-08-10 1984-08-10 Space optical modulating tube

Country Status (1)

Country Link
JP (1) JPS6146927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089883B1 (en) 2009-11-24 2011-12-05 삼성전기주식회사 Lens assembly and camera module using the same
KR101113549B1 (en) 2009-12-04 2012-02-24 삼성전기주식회사 Lens assembly and camera module using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101089883B1 (en) 2009-11-24 2011-12-05 삼성전기주식회사 Lens assembly and camera module using the same
KR101113549B1 (en) 2009-12-04 2012-02-24 삼성전기주식회사 Lens assembly and camera module using the same

Also Published As

Publication number Publication date
JPH0422482B2 (en) 1992-04-17

Similar Documents

Publication Publication Date Title
US4348079A (en) Acousto-optic device utilizing Fresnel zone plate electrode array
US4698602A (en) Micromirror spatial light modulator
US4637684A (en) Method of making an optical coupler device utilizing volatile liquid to achieve optical contact
JP2001515646A (en) Optical shutter
US3727087A (en) Means for securing planar member to cathode ray tube faceplate
JPS6146927A (en) Space optical modulating tube
US3210462A (en) Electro-optical film-scanning system
GB1431280A (en) X-ray image converter
US4569571A (en) Amplifier assembly for electromagnetic radiation, preferably in the actinic spectrum
JPS59166916A (en) Manufacture of space optical modulation tube
JPH058807B2 (en)
US4119848A (en) Ionographic recording of X-ray images
US3346756A (en) Electrode support for an optical fiber disc
US4923287A (en) Spatial light modulating devices utilizing electro-optic crystal
US4618217A (en) Electron-bombarded silicon spatial light modulator
JPS608823A (en) Spatial optical modulator
US4199616A (en) Ionographic recording of X-ray images
Johnson et al. Microchannel plate inverter image intensifiers
JPS6242117A (en) Spatial optical modulation tube
JP3989294B2 (en) Camera and image sensor unit used therefor
JPS608822A (en) Spatial optical modulation tube
JPS61122627A (en) Space optical modulating tube
JPS5971033A (en) Optical recorder
RU1841109C (en) Membrane mirror
RU2037233C1 (en) Electron-optical converter