JPS6146833A - Method for controlling air heat source thermal recovery type heat pump - Google Patents

Method for controlling air heat source thermal recovery type heat pump

Info

Publication number
JPS6146833A
JPS6146833A JP59168816A JP16881684A JPS6146833A JP S6146833 A JPS6146833 A JP S6146833A JP 59168816 A JP59168816 A JP 59168816A JP 16881684 A JP16881684 A JP 16881684A JP S6146833 A JPS6146833 A JP S6146833A
Authority
JP
Japan
Prior art keywords
hot water
compressor
pump
temperature
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59168816A
Other languages
Japanese (ja)
Inventor
Isamu Kano
勇 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59168816A priority Critical patent/JPS6146833A/en
Publication of JPS6146833A publication Critical patent/JPS6146833A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide an efficient operation and save energy by a method wherein a compressor is controlled to a lower capacity side only when a hot water temperature is less than the desired value in case that an evaporator cooling pump and an air heat exchanger are set to a thermal recovery requiring condition during their operation and then the condensor hot water pump is operated. CONSTITUTION:When all the condensed heat is radiated by an air heat exchanger 14 and a thermal recovery requiring signal is outputted during a cooling operation, a hot water temperature in the condensor 3 sensed by a temperature sensor 17 is less than the desired value, an amount of coolant gas sucked into the compressor 1 by a vane motor is set to a low capacity side. With this arrangement, low temperature water is flowed into the condensor 3 and even if a rapid decrease of the discharging pressure is found, a decrease in sucking pressure of the compressor 1 is restricted, an operation of the protective relay is prevented and an efficient operation and a saving of energy can be attained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、空気熱源熱回収式ヒートポンプの制御方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of controlling an air source heat recovery type heat pump.

(従来の技術) 従来の空気熱源熱回収式ヒートポンプは第2図に示すよ
うな系統図となっている。即ち、ヒートポンプは圧縮機
1、蒸発器2、凝縮器3、及び第1の膨張弁4等から構
成されている。前記蒸発器2は、冷房負荷側と直接又は
冷水槽5と冷水配管6.7を介して連結されている。一
方の冷水配管7には、冷水ポンプ8が介装されている。
(Prior Art) A conventional air source heat recovery type heat pump has a system diagram as shown in FIG. That is, the heat pump includes a compressor 1, an evaporator 2, a condenser 3, a first expansion valve 4, and the like. The evaporator 2 is connected to the cooling load side directly or via the cold water tank 5 and cold water piping 6.7. A cold water pump 8 is interposed in one of the cold water pipes 7 .

前記凝縮器3は暖房負荷と直接又は温水槽9と温水配管
10.11を介して連結されている。一方の温水配管1
0には、温水ポンプ12が介装されている。
The condenser 3 is connected either directly to the heating load or to the hot water tank 9 via hot water pipes 10.11. One hot water pipe 1
0 is equipped with a hot water pump 12.

また、図中の13は、前記圧縮iiからの冷媒ガスを前
記蒸発器2、前記凝縮器3及び空気熱交換器14に切替
えて供給する三方弁である。前記空気熱交換器14と前
記凝縮器3との間には該熱交換器14からの冷媒ガスを
該凝縮器3側のみに流すための逆止弁15が介装されて
いる。この逆止弁15には第2の膨張弁16が並列的に
設けられている。前記空気熱源熱回収式ヒートポンプは
、冷水負荷がないと成立たない。このため、゛冷水負荷
の容量制御は前記蒸発器2の出口の冷水温度を検出して
、該温度が一定に成るように温度調節計(図示せず)を
介して前記圧縮機1がターボ圧縮様の場合、その吸込部
に設けられた容量制御機構としてのベーンモータ(図示
せず)によって圧縮111に吸込まれる冷媒ガス量を調
節することによって容量制御を行なっている。なお、前
記圧縮機1がスクリュー圧縮機である場合、前記ベーン
モータに代えてスライド弁が、同圧縮機1が往復動圧縮
機の場合、前記ベーンモータに代えてアンローダ機構が
夫々使用される。
Moreover, 13 in the figure is a three-way valve that switches and supplies the refrigerant gas from the compression ii to the evaporator 2, the condenser 3, and the air heat exchanger 14. A check valve 15 is interposed between the air heat exchanger 14 and the condenser 3 to allow the refrigerant gas from the heat exchanger 14 to flow only to the condenser 3 side. A second expansion valve 16 is provided in parallel with this check valve 15 . The air source heat recovery type heat pump cannot be used without a chilled water load. Therefore, in order to control the capacity of the chilled water load, the temperature of the chilled water at the outlet of the evaporator 2 is detected, and the compressor 1 is controlled to perform turbo compression via a temperature controller (not shown) so that the temperature remains constant. In this case, capacity control is performed by adjusting the amount of refrigerant gas sucked into the compressor 111 by a vane motor (not shown) as a capacity control mechanism provided in the suction section. When the compressor 1 is a screw compressor, a slide valve is used instead of the vane motor, and when the compressor 1 is a reciprocating compressor, an unloader mechanism is used instead of the vane motor.

次に、前述した第2図図示の従来のヒートポンプの作用
を説明する。
Next, the operation of the conventional heat pump shown in FIG. 2 will be explained.

■暖房運転: まず、三方弁13を蒸発器2と空気熱交換器14側に切
替え、温水ポンプ12を作動した状態で、圧縮機1から
高温、高圧に圧縮された冷媒ガスを凝縮器3に供給し、
冷媒ガスを凝縮、液化し、凝縮器3を循環する温水槽9
からの温水を加熱する。
■Heating operation: First, switch the three-way valve 13 to the evaporator 2 and air heat exchanger 14 side, and with the hot water pump 12 operating, refrigerant gas compressed to high temperature and high pressure is supplied from the compressor 1 to the condenser 3. supply,
A hot water tank 9 that condenses and liquefies refrigerant gas and circulates it through the condenser 3
Heat the hot water from.

液化した冷媒は第2の膨張弁16に供給されて断熱膨張
され、更に空気熱交換器14に供給されて蒸発、ガス化
され、三方弁13を通って圧縮機1に戻る。
The liquefied refrigerant is supplied to the second expansion valve 16 for adiabatic expansion, further supplied to the air heat exchanger 14 to be evaporated and gasified, and returned to the compressor 1 through the three-way valve 13.

■暖房負荷がある場合の冷房運転; まず、三方弁13を圧縮機1と空気熱交換器1圧縮機1
から高温、高圧に圧縮された冷媒ガスを三方弁13を通
して空気熱交換器14に供給し、該熱交換器14で放熱
、凝縮して液化する。液化した冷媒は逆止弁16及び凝
縮器3を通って第1の膨張弁4に供給されて断熱膨張さ
れ、更に蒸発器2に供給されて蒸発、ガス化されて該蒸
発器2を循環する冷水槽5からの冷水を冷却する。この
−後、ガス化した冷媒は圧縮l1111に戻る。
■Cooling operation when there is a heating load; First, connect the three-way valve 13 to compressor 1, air heat exchanger 1, compressor 1
The refrigerant gas compressed to high temperature and high pressure is supplied to the air heat exchanger 14 through the three-way valve 13, where it radiates heat, condenses, and liquefies it. The liquefied refrigerant is supplied to the first expansion valve 4 through the check valve 16 and the condenser 3, where it is adiabatically expanded, and further supplied to the evaporator 2, where it is evaporated, gasified, and circulated through the evaporator 2. The cold water from the cold water tank 5 is cooled. After this, the gasified refrigerant returns to compression l1111.

■冷房、暖房の同時運転; まず、三方弁13を蒸発器2と空気熱交換器14側に切
替え、温水ポンプ12及び冷水ポンプ8を作動した状態
で、圧縮機1から高温、高圧に圧縮された冷媒ガスを凝
縮器3に供給し、冷媒ガスを凝縮、液化し、凝縮器3を
循環する渇水槽9からの温水を加熱する。液化した冷媒
は、第1の膨張弁4に供給されて断熱膨張され、更に蒸
発器2に供給されて蒸発、ガス化されて該蒸発器2を循
環する冷水槽5からの冷水を冷却する。この後、ガス化
した冷媒は圧縮機1に戻る。
■ Simultaneous operation of cooling and heating; First, switch the three-way valve 13 to the evaporator 2 and air heat exchanger 14 side, and with the hot water pump 12 and cold water pump 8 operating, the compressor 1 compresses the air to high temperature and high pressure. The refrigerant gas is supplied to the condenser 3, the refrigerant gas is condensed and liquefied, and the hot water from the dry water tank 9 circulating through the condenser 3 is heated. The liquefied refrigerant is supplied to the first expansion valve 4 for adiabatic expansion, and further supplied to the evaporator 2 where it is evaporated and gasified to cool the cold water from the cold water tank 5 that circulates through the evaporator 2. After this, the gasified refrigerant returns to the compressor 1.

ところで、上述した冷房運転時において、熱回収゛″要
゛′信号が発せられ、温水ポンプ12を作動し、前記■
の暖房サイクルを実行して熱回収を行なう場合がある。
By the way, during the above-mentioned cooling operation, the heat recovery "required" signal is issued, the hot water pump 12 is operated, and the above-mentioned
In some cases, a heating cycle is executed to recover heat.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述したヒートポンプの冷膳運転中にお
いて、熱回収゛要″信号が発せられ、渇水ポンプ12を
運転した場合、温水配管10を含む温水槽9側の温水温
度が低いと、該温水が凝縮器3に流入する。この際、冷
房運転時には圧縮機1の吐出圧力は通常18atC1(
フロン22の場合)を保っていたものが、前記温度の低
い温水の流入により急激に9 at(l程度まで低下し
、これに伴って圧縮機1の吸込み圧力が低下し、保護装
置の低圧保護リレーが働き、ヒートポンプが自動的に停
止する。これを避けるためには前記運転の切替え時に人
為的にヒートポンプを停止し、温水ポンプ12を運転し
て再度ヒートポンプを運転するか、常時温水ポンプを運
転して対処するか、しなければならず効率が低く、省力
化の点からも問題がある。特に、蓄熱槽を持たず冷水・
温水が負荷と直接接続された、いわゆるクローズシステ
ムを採用したビル等については、インターバル時間が短
く運転管理は更に面倒となる。
However, when the heat recovery required signal is issued during the cooling operation of the heat pump described above and the drought pump 12 is operated, if the hot water temperature on the hot water tank 9 side including the hot water piping 10 is low, the hot water will condense. At this time, during cooling operation, the discharge pressure of the compressor 1 is normally 18 atC1 (
However, due to the inflow of the low-temperature hot water, the pressure suddenly drops to about 9 at (l), and the suction pressure of the compressor 1 decreases, causing the low-pressure protection of the protection device to drop. The relay operates and the heat pump automatically stops.To avoid this, either manually stop the heat pump when switching the operation, then operate the hot water pump 12 and then operate the heat pump again, or operate the hot water pump at all times. The efficiency is low, and there is also a problem from the point of view of labor saving.In particular, when using cold water without a heat storage tank,
For buildings that employ so-called closed systems, where hot water is directly connected to the load, the interval time is short and operation management becomes even more troublesome.

本発明は、冷房運転状態から熱回収゛要″状態への切替
え時における運転の効率化を図ることができると共に、
省力化を達成し得る空気熱源熱回収式ヒートポンプの制
御方法を提供しようとするものである。
The present invention can improve the efficiency of operation when switching from a cooling operation state to a state requiring heat recovery, and
The present invention aims to provide a control method for an air source heat recovery type heat pump that can achieve labor savings.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、空気熱源熱回収式ヒートポンプおいて、蒸発
器用冷水ポンプ及び空気熱交換器が稼働中に熱回収が必
要になった時、温水側の温度を検知し、その温度が所定
m以下の場合のみ圧縮機の容量制御機構を低容量側に制
御して凝縮器用温水ポンプを運転することを特徴とする
ものである。
The present invention is an air source heat recovery type heat pump that detects the temperature on the hot water side when heat recovery is required while the evaporator cold water pump and air heat exchanger are in operation, and detects the temperature when the temperature is below a predetermined m. The feature is that the compressor capacity control mechanism is controlled to the low capacity side only when the condenser hot water pump is operated.

〔作用〕[Effect]

上記本発明方法によれば、熱回収を必要とする時、低温
度の温水の凝縮器への流入により圧縮機の吸込み圧力が
急激に低下して、保護リレーが作動するのを解消してヒ
ートポンプを運転しながら冷房運転状態から熱回収゛要
°′状態へ円滑に切替えでき、ひいては既述の如く運転
の効率化と省力化を達成できる。
According to the above-mentioned method of the present invention, when heat recovery is required, the suction pressure of the compressor suddenly decreases due to the inflow of low-temperature hot water into the condenser, which eliminates the activation of the protection relay, thereby preventing the heat pump from operating. It is possible to smoothly switch from the cooling operation state to the heat recovery required state while operating the air conditioner, and as a result, as described above, it is possible to achieve operational efficiency and labor savings.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図を参照して詳細に説明す
る。なお、第2図図示のものと同様な部材は同符号を付
して説明を省略する。
Hereinafter, embodiments of the present invention will be described in detail with reference to FIG. Incidentally, members similar to those shown in FIG. 2 are designated by the same reference numerals and explanations thereof will be omitted.

第1図図示の本発明のヒートポンプ系統図では、温水槽
9に温度センサ17を設けている。前記温度センサ17
は、容量制御l1機構であるベーンモータ(図示せず)
とシーケンス回路を構成し、温水が所定温度(例えば2
5℃)以下になった場合、圧縮機1を低容量側に自動的
に動作させるようになっている。
In the heat pump system diagram of the present invention shown in FIG. 1, a temperature sensor 17 is provided in the hot water tank 9. The temperature sensor 17
is a vane motor (not shown) which is a capacity control l1 mechanism.
A sequence circuit is configured with the hot water at a predetermined temperature (for example, 2
5° C.) or lower, the compressor 1 is automatically operated to the lower capacity side.

次に、本発明の制御方法を第1図図示の系統図を参照し
て説明する。
Next, the control method of the present invention will be explained with reference to the system diagram shown in FIG.

ヒートポンプを運転中、凝縮熱を空気熱交換器14で全
量放熱して冷房運転している状態において、熱回収“要
″信号が発せられ、ると、温度センサ17により凝縮器
3の温水側の温度を検知し、その温度が例えば25℃以
下であれば、前記シーケンス回路のベーンモータ(図示
せず)により圧縮機1に吸込まれる冷媒ガス量を調節し
て該圧縮′l11を低容量側に自動的に動作される。そ
の結果、ヒートポンプの容量は減少し、吸込圧力は、若
干上昇、吐出圧力は若干低下する。この状態で温水ポン
プ12を運転すれば、温度の低い温水が凝縮器3に流入
して、急激な吐出圧力の低下減少が生じても、それに伴
う圧縮機1の吸込み圧力低下は少なく、低圧保護リレー
が作動するのを防止できる。熱回収要”信号から冷房運
転までのヒートポンプ内の動作はタイマー等で処理する
When the heat pump is in operation and the air-conditioning operation is performed by dissipating all of the condensed heat through the air heat exchanger 14, when a heat recovery "required" signal is issued, the temperature sensor 17 detects the temperature on the hot water side of the condenser 3. The temperature is detected, and if the temperature is, for example, 25°C or lower, the amount of refrigerant gas sucked into the compressor 1 is adjusted by the vane motor (not shown) of the sequence circuit, and the compression 'l11 is set to the low capacity side. Operated automatically. As a result, the capacity of the heat pump decreases, the suction pressure increases slightly, and the discharge pressure decreases slightly. If the hot water pump 12 is operated in this state, even if low-temperature hot water flows into the condenser 3 and a sudden drop in discharge pressure occurs, the associated drop in suction pressure of the compressor 1 will be small and low pressure protection will be achieved. This can prevent the relay from operating. The operation inside the heat pump, from the "heat recovery required" signal to cooling operation, is processed by a timer, etc.

一方、温度センサ17で検知した温水温度が所定温度(
25℃)を越えれば、ヒートポンプの容量側Mall構
であるベーンモータ(図示せず)により圧縮機1をを低
容量側に動作することなく、温水ポンプ12を運転する
On the other hand, the hot water temperature detected by the temperature sensor 17 is a predetermined temperature (
25° C.), the hot water pump 12 is operated without operating the compressor 1 to the lower capacity side by the vane motor (not shown) which is the capacity side mall structure of the heat pump.

なお、上記実施例では温度センサを温水槽に設けたが、
これに限定されず、温水配管にもうけてもよい。
In addition, although the temperature sensor was provided in the hot water tank in the above example,
It is not limited to this, and it may be installed in hot water piping.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば熱回収“要°′時に
おいて、低温度の温水の凝縮器への流入により該圧縮機
の吸込み圧力が急激に低下して、保護リレーが作動する
のを解消してヒートポンプを運転しながら冷房運転状態
から熱回収゛要゛′状態に円滑に切替えでき、ひいては
運転の効率化と省力化を達成し得る空気熱源熱回収式ヒ
ートポンプの制御方法を提供できる。
As detailed above, according to the present invention, when heat recovery is required, the suction pressure of the compressor suddenly decreases due to the flow of low-temperature hot water into the condenser, and the protection relay is activated. It is possible to provide a control method for an air-source heat recovery heat pump that can smoothly switch from a cooling operation state to a heat recovery required state while operating the heat pump by eliminating the above problems, and which can further improve operational efficiency and save labor. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いられる空気熱源熱回収式
ヒートポンプの系統図、第2図は、従来の同ヒートポン
プの系統図である。 1・・・圧縮機、2・・・蒸発器、3・・・凝縮器、4
.16・・・膨張弁、5・・・冷水槽、9・・・温水槽
、12・・・温水ポンプ、13・・・三方弁、14・・
・空気熱交換器、17・・・温度センサ。 出願人復代理人 弁理士 鈴江武彦 第1図
FIG. 1 is a system diagram of an air source heat recovery type heat pump used in an embodiment of the present invention, and FIG. 2 is a system diagram of a conventional heat pump. 1... Compressor, 2... Evaporator, 3... Condenser, 4
.. 16... Expansion valve, 5... Cold water tank, 9... Hot water tank, 12... Hot water pump, 13... Three-way valve, 14...
・Air heat exchanger, 17...Temperature sensor. Applicant Sub-Agent Patent Attorney Takehiko Suzue Figure 1

Claims (1)

【特許請求の範囲】[Claims] 空気熱源熱回収式ヒートポンプおいて、蒸発器用冷水ポ
ンプ及び空気熱交換器が稼働中に熱回収が必要になった
時、温水側の温度を検知し、その温度が所定値以下の場
合のみ圧縮機の容量制御機構を低容量側に制御して凝縮
器用温水ポンプを運転することを特徴とする空気熱源熱
回収式ヒートポンプの制御方法。
In an air source heat recovery heat pump, when heat recovery is required while the evaporator cold water pump and air heat exchanger are in operation, the temperature on the hot water side is detected, and the compressor is activated only if the temperature is below a predetermined value. A method for controlling an air-source heat recovery heat pump, comprising controlling a capacity control mechanism to a low capacity side to operate a condenser hot water pump.
JP59168816A 1984-08-14 1984-08-14 Method for controlling air heat source thermal recovery type heat pump Pending JPS6146833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59168816A JPS6146833A (en) 1984-08-14 1984-08-14 Method for controlling air heat source thermal recovery type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59168816A JPS6146833A (en) 1984-08-14 1984-08-14 Method for controlling air heat source thermal recovery type heat pump

Publications (1)

Publication Number Publication Date
JPS6146833A true JPS6146833A (en) 1986-03-07

Family

ID=15875029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59168816A Pending JPS6146833A (en) 1984-08-14 1984-08-14 Method for controlling air heat source thermal recovery type heat pump

Country Status (1)

Country Link
JP (1) JPS6146833A (en)

Similar Documents

Publication Publication Date Title
KR100757592B1 (en) air-condition heat pump
JP3237187B2 (en) Air conditioner
US6871509B2 (en) Enhanced cooling system
US5499508A (en) Air conditioner
JPH06185822A (en) Air conditioner
JP4074422B2 (en) Air conditioner and its control method
JP3356485B2 (en) Multi-room air conditioner
JPS6146833A (en) Method for controlling air heat source thermal recovery type heat pump
JP2508528Y2 (en) Air conditioner
JPS6146832A (en) Method for controlling water heat source thermal recovery type heat pump
JPH11173682A (en) Air conditioner
JPH025319Y2 (en)
KR840001269B1 (en) Apparatus for satisfying heating and cooling demands
JPS6118374Y2 (en)
JPS6199064A (en) Refrigerator or heat pump
JPS6138061Y2 (en)
JP3173234B2 (en) Cold water supply system using a direct-fired absorption refrigerator
JPH08136067A (en) Air conditioner
JP2656314B2 (en) Air conditioner
JP2511960B2 (en) Multi-room air conditioner
JP2923058B2 (en) Heat pump type air conditioner
JPS5837456A (en) Heating apparatus
JPS5858573B2 (en) Operation control method for heat recovery heat pump type refrigerator
JPH02140567A (en) Engine-driven heat pump
JPH0749899B2 (en) Air conditioner