JPS6146781B2 - - Google Patents

Info

Publication number
JPS6146781B2
JPS6146781B2 JP55025899A JP2589980A JPS6146781B2 JP S6146781 B2 JPS6146781 B2 JP S6146781B2 JP 55025899 A JP55025899 A JP 55025899A JP 2589980 A JP2589980 A JP 2589980A JP S6146781 B2 JPS6146781 B2 JP S6146781B2
Authority
JP
Japan
Prior art keywords
sample
electropherogram
dividing point
leading
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55025899A
Other languages
Japanese (ja)
Other versions
JPS56122944A (en
Inventor
Takao Yagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2589980A priority Critical patent/JPS56122944A/en
Publication of JPS56122944A publication Critical patent/JPS56122944A/en
Publication of JPS6146781B2 publication Critical patent/JPS6146781B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/4473Arrangements for investigating the separated zones, e.g. localising zones by electric means

Description

【発明の詳細な説明】 この発明は、電気泳動分析装置、特に細管式等
速電気泳動分析装置における分析データ解析方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an analytical data analysis method for an electrophoretic analyzer, particularly a capillary isotachophoretic analyzer.

細管式等速電気泳動分析法は周知のごとく、細
管(キヤピラリチユーブ)の端に試料のどの成分
イオンよりも易動度の大きいイオン(リーデイン
グイオン)を含む電解液(リーデイング液)と、
試料のどの成分イオンよりも易動度の小さいイオ
ン(ターミナルイオン)を含む電解液(ターミナ
ル液)とで境界面をつくり、この境界面にたとえ
ば易動度の異なる成分を含む混合試料を導入し、
泳動を開始すると、各試料成分のイオンは易動度
の大きさの順に配列するように分離が進行し、完
全に分離した状態では,分離されたイオンは単一
成分イオンのみを含んだゾーンとなり、互いに明
確な境界面を保持しながら各ゾーン(バンド)
は、イオン量で決まる一定の巾をもつて等速度で
移動するようになる。この場合、各ゾーンにはそ
れぞれ違つた電位勾配が形成されているのでこの
電位勾配を検出して各ゾーンの境界面を知り、分
離された単一成分イオン量を知り、よつて定性、
定量分析が可能となる。
As is well known, in the capillary isotachophoresis analysis method, an electrolytic solution (leading solution) containing ions (leading ions) with higher mobility than any component ions in the sample is placed at the end of a capillary tube.
An interface is created with an electrolytic solution (terminal solution) containing ions (terminal ions) with lower mobility than any of the component ions in the sample, and a mixed sample containing components with different mobilities is introduced into this interface. ,
When electrophoresis begins, the ions of each sample component are separated in the order of their mobility, and when they are completely separated, the separated ions become a zone containing only a single component ion. , each zone (band) while maintaining a clear boundary surface from each other
will move at a constant speed with a constant width determined by the amount of ions. In this case, different potential gradients are formed in each zone, so by detecting these potential gradients, we can know the boundary surfaces of each zone, and know the amount of single component ions separated.
Quantitative analysis becomes possible.

このように電位勾配値から定性、定量を行なう
には物質の電位勾配値が明確な階段信号で示され
るエレクトロフエログラムを必要とした。しかし
ながら試料によつては分子量分布などを有して明
確な階段信号を与えない場合が存在し、データの
解析に時間を要することが多く、ために有用な分
析手法でありながらこの分析装置の普及しない原
因がそこに存在していた。
In this way, qualitative and quantitative determination based on potential gradient values required an electropherogram in which the potential gradient value of a substance was shown as a clear step signal. However, depending on the sample, there are cases where it does not give a clear step signal due to molecular weight distribution, etc., and it often takes time to analyze the data. There was a reason why it didn't.

この発明は、上記にかんがみなされたもので、
各試料成分の分離界面にともなう検出信号を等間
隔で分割(分画)するとともにこの各分割(分
画)点ごとにその直前の分割(分画)点からの経
過時間を求め各分割点に対する時間関係を表示す
ることにより各試料成分の定性、定量分析を行な
うようにした電気泳動分析データ解析方法であ
り、以下図によつて説明してゆく。
This invention is considered in view of the above,
The detection signal accompanying the separation interface of each sample component is divided (fractionated) at equal intervals, and the elapsed time from the previous division (fractionation) point is calculated for each division (fractionation) point. This is an electrophoretic analysis data analysis method that performs qualitative and quantitative analysis of each sample component by displaying time relationships, and will be explained below with reference to figures.

第1図は細管式等速電気泳動分析装置の基本原
理を示すもので、図において1はターミナル液電
極槽、2はリーデイング液電極槽でそれぞれの槽
中のターミナル液3リーデイング液4には電源5
に接続された電極6,7が挿入されている。
Figure 1 shows the basic principle of a capillary type isotachophoresis analyzer. In the figure, 1 is a terminal liquid electrode tank, 2 is a leading liquid electrode tank, and terminal liquid 3 and leading liquid 4 in each tank are powered by a power supply. 5
Electrodes 6 and 7 connected to are inserted.

8は両電極槽間に設けられている細管式泳動管
(キヤピラリチユーブ)で9の試料導入部からリ
ーデイング液、ターミナル液の境界面に導入され
た試料を泳動させるものである。
Reference numeral 8 denotes a capillary electrophoresis tube provided between the two electrode tanks, through which the sample introduced from the sample introduction section 9 to the interface between the leading liquid and the terminal liquid migrates.

この泳動されて各ゾーンに分離された試料成分
は検出器10でその分離境界面が検出され、この
分離境界面にともなう検出信号は演算部11で演
算されて例えばエレクトロフエログラムとして表
示される。なお12は恒温槽である。
The sample components electrophoresed and separated into each zone are detected at their separation boundaries by a detector 10, and the detection signals associated with these separation boundaries are calculated by a calculation section 11 and displayed as, for example, an electropherogram. Note that 12 is a constant temperature bath.

第2図は上記のエレクトロフエログラムの一例
で縦軸に電位勾配値、横軸に距離(時間)をとつ
たものである。
FIG. 2 is an example of the electropherogram described above, in which the vertical axis represents the potential gradient value and the horizontal axis represents distance (time).

この図においてPSiは試料の電位勾配値、PL
はリーデイングイオンの電位勾配値、PTはター
ミナルイオンの電位勾配値であり、一般に下式に
定義される定性指標PU値(ポテンシヤルユニツ
ト値)の比較により同定される。
In this figure, P Si is the potential gradient value of the sample, P L
is the potential gradient value of the leading ion, P T is the potential gradient value of the terminal ion, and is generally identified by comparing the qualitative index PU value (potential unit value) defined by the following formula.

PU値=PSi−P/P−P また定量は各ゾーンの長さが導入されたイオン
量に比例するのでl1,l2……等の比較により行な
われる。
PU value = P Si - P L / P T - P L Since the length of each zone is proportional to the amount of ions introduced, quantification is performed by comparing l 1 , l 2 . . . .

しかしながら、第2図に示したごときエレクト
ロフエログラムのように各階段信号が明確であれ
ば上記のような手法により定性、定量が可能であ
るが、試料によつては分子量分布などを有して明
確な階段信号を与えない物質が存在しており、こ
のような物質は電気泳動分析の対象になり得なか
つた。この発明はこのような物質の分析手法に関
するもので、以下図面について説明してゆく。
However, if each step signal is clear as in the electropherogram shown in Figure 2, qualitative and quantitative measurements can be performed using the above method, but some samples may have a molecular weight distribution, etc. There are substances that do not give a clear staircase signal, and such substances could not be subjected to electrophoretic analysis. This invention relates to a method for analyzing such substances, and will be explained below with reference to the drawings.

第3図は上記で説明した階段状信号が明確でな
いエレクトロフエログラムの一例である。
FIG. 3 is an example of an electropherogram in which the step-like signal described above is not clear.

この発明においてはリーデイングイオンとター
ミナルイオンの電位勾配値の差(PT−PL)を等
間隔に分割するとともに各分割点(Vo-1,Vo
o+1……)ごとにその分割点の直前の分割点
(Vo-2,Vo-1,Vo……)からの経過時間(距
離)を各々求め(To-1−To-2,To−To-1,To
+1−To……)ついで第4図のごとく等間隔の各
分割点(V1,V2……Vo-1,Vo,Vo+1……)上
に上記に求めた各点の経過時間(距離)をプロツ
トしてグラフを作成すると例えばこの図のように
エレクトロフエログラム(第3図)で示されなか
つた特徴が明確に示されるのである。
In this invention, the difference in potential gradient value between the leading ion and the terminal ion (P T -P L ) is divided into equal intervals, and each division point (V o-1 , V o ,
For each dividing point (V o+1 ...), calculate the elapsed time (distance) from the dividing point immediately before that dividing point (V o-2 , Vo -1 , Vo ...) (T o-1 - T o-2 , T o −T o-1 , T o
+1 -T o ...) Next, as shown in Figure 4, each point obtained above is placed on each equally spaced dividing point (V 1 , V 2 ...V o-1 , V o , V o+1 ...) If a graph is created by plotting the elapsed time (distance) of , for example, features not shown in the electropherogram (FIG. 3) can be clearly shown, as shown in this figure.

つぎに第5図は置換度1.2のカルボキシメチル
セルロース(CMC)のエレクトロフエログラム
でありこの実施例から本発明の有効性を説明して
ゆく。このカルボキシメチルセルロース
(CMC)の電気泳動分析条件は次のとおりであ
る。
Next, FIG. 5 is an electropherogram of carboxymethylcellulose (CMC) with a degree of substitution of 1.2, and the effectiveness of the present invention will be explained using this example. The electrophoretic analysis conditions for this carboxymethyl cellulose (CMC) are as follows.

・リーデイング液;0.01モル/リツトル(ビス
チジン1塩酸+ビスチジン)+0.01%トリ
トン×−100 ・ターミナル液;0.01モル/リツトルモアフオ
リノエタンスルホン酸+トリスハイドロキ
シメチルアミノメタン、PH7.0 ・泳動細管;20cm×0.5mmφ ・泳動電流;50μA ・チヤートスピード;40mm/min ・試料の処理;0.01モル/リツトル塩酸+2ア
ミノ・2メチル−1.3プロパンジオールで
10mgの試料(CMC)を溶解して1mlと
し,そのうちの2μを泳動試料として使
用 以上の条件下で得られたエレクトロフエログラ
ムのリーデイングイオンの電位勾配値(PL)と
ターミナルイオンの電位勾配値(PT)間を図の
ように20等分し、上記第3,4図に説明した手法
を用いて各分割点ごとの距離(時間)をプロツト
してグラフを作成したのが第6図である。
・Leading liquid; 0.01 mol/liter (bistidine 1 hydrochloride + bistidine) + 0.01% Triton x -100 ・Terminal liquid; 0.01 mol/liter fluorinoethanesulfonic acid + trishydroxymethylaminomethane, PH7.0 ・Electrophoresis tube ;20cm×0.5mmφ ・Migration current: 50μA ・Chart speed: 40mm/min ・Sample treatment: 0.01 mol/liter hydrochloric acid + 2 amino 2 methyl-1.3 propanediol
Dissolve 10 mg of sample (CMC) to make 1 ml, and use 2μ of it as the electrophoresis sample. Potential gradient value of leading ion (P L ) and terminal ion potential gradient value of electropherogram obtained under the above conditions. ( P It is.

なお、第6図にはカルボキシメチルセルロース
(CMC)の置換度1.2のもの以外に置換度(DS)
0.4,0.7,0.9のものも示した。
In addition, Figure 6 shows the substitution degree (DS) of carboxymethyl cellulose (CMC) other than the substitution degree of 1.2.
The values of 0.4, 0.7, and 0.9 are also shown.

この第6図から明らかなように置換度(DS)
1.2のCMCも含めて、分割点6〜9にかけて特長
的なピークが出現し、置換度(DS)0.4のCMCに
ついては分割点13近辺にもピークが出現している
ことが判明し、置換度の相違によつてピークの出
現度合に大きな差があることが判明した。
As is clear from this Figure 6, the degree of substitution (DS)
Including the CMC of 1.2, characteristic peaks appeared around the division points 6 to 9, and for the CMC with a degree of substitution (DS) of 0.4, a peak also appeared near the division point 13, indicating that the degree of substitution It was found that there was a large difference in the degree of peak appearance depending on the difference in .

この実施例から明らかなようにエレクトロフエ
ログラム上では従来解析困難であつた物質であつ
ても本発明の解析手法によつて、その物質の特長
が認識できるようになるのである。
As is clear from this example, even if it is a substance that has conventionally been difficult to analyze on an electropherogram, the characteristics of the substance can be recognized by the analysis method of the present invention.

なお、以上の説明では理解しやすいようにエレ
クトロフエログラムを利用しての解析法について
説明したが、これに限らず記憶部を有する演算装
置(計算機)を利用することにより簡単にこの発
明を達成することが可能である。
In the above explanation, an analysis method using an electropherogram was explained for ease of understanding, but this invention is not limited to this, and the present invention can be easily achieved by using an arithmetic device (computer) having a storage section. It is possible to do so.

すなわち検出器からのエレクトロフエログラム
用の分離界面にともなう検出信号を全て記憶して
おき、ついでこの記憶内容を読み出し、必要な指
命のもとに演算させることにより容易に第6図の
ごときグラフをデイスプレイ上に表示することが
できるのである。
That is, by storing all the detection signals associated with the separation interface for the electropherogram from the detector, then reading out the stored contents and performing calculations under the necessary instructions, a graph like the one shown in Figure 6 can be easily obtained. can be displayed on the display.

また、上記の実施例においてはリーデイングイ
オンの電位勾配値とターミナルイオンの電位勾配
値との差を等間隔で分割するとしたが、このよう
に両イオンの電位勾配値の差を全て分割すること
なく一部の区域のみを分割することにより、その
区域のみを選択的に取り出し、上記と同じような
手法でその区域の特長を見つけ出すようにするこ
とも可能である。
Furthermore, in the above example, the difference between the potential gradient value of the leading ion and the terminal ion is divided into equal intervals, but in this way, the difference between the potential gradient values of both ions is not divided entirely. By dividing only a part of the area, it is also possible to selectively extract only that area and find out the features of that area using a method similar to the above.

さらに上記実施例においては分離界面の検出方
式として電位勾配検出法で説明したがこれ以外の
検出方式、例えばジユール熱の発生を利用する熱
電対検出方式等も利用できることは明らかであ
る。
Further, in the above embodiments, the potential gradient detection method has been described as a method for detecting the separation interface, but it is obvious that other detection methods, such as a thermocouple detection method that utilizes the generation of Joule heat, can also be used.

以上明らかなごとくこの発明を利用することに
よつて、従来等速電気泳動の分析の対象にならな
かつたような分子量分布などを有する試料物質の
分析ができるようになり、この分析手法の応用が
ますます広がることとなるのである。
As is clear from the above, by utilizing this invention, it is now possible to analyze sample substances that have molecular weight distributions that were not subject to conventional isotachophoresis analysis, and the application of this analysis method has become possible. It will continue to spread.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、細管式等速電気泳動分析装置の基本
原理を説明する図、第2図はエレクトロフエログ
ラムの一例を示す図、第3図は階段状信号が明確
でないエレクトロフエログラムの一例を示す図、
第4図は第3図と合わせてこの発明の手法を説明
する図、第5図はカルボキシメチルセルロース
(CMC)のエレクトロフエログラムで第6図は、
この図にこの発明手法を実施した場合に得られた
図である。 1:ターミナル液電極槽、2:リーデイング液
電極槽、3:ターミナル液、4:リーデイング
液、5:電源、6,7:電極、8:キヤピラリー
チユーブ、9:試料導入部、10:検出器、1
1:演算部。
Figure 1 is a diagram explaining the basic principle of a capillary isotachophoresis analyzer, Figure 2 is an example of an electropherogram, and Figure 3 is an example of an electropherogram with unclear step-like signals. The figure shown,
Figure 4 is a diagram explaining the method of this invention together with Figure 3, Figure 5 is an electropherogram of carboxymethyl cellulose (CMC), and Figure 6 is
This figure is a diagram obtained when the method of this invention is applied to this figure. 1: Terminal liquid electrode tank, 2: Leading liquid electrode tank, 3: Terminal liquid, 4: Leading liquid, 5: Power supply, 6, 7: Electrode, 8: Capillary reach tube, 9: Sample introduction part, 10: Detector ,1
1: Arithmetic unit.

Claims (1)

【特許請求の範囲】[Claims] 1 リーデイング液とターミナル液との境界面に
導入した試料を泳動させ各試料成分をその易動度
の相違により分離するとともに、この各試料成分
の分離界面を検出し表示するものにおいて、各試
料成分の分離界面にともなう検出信号を等間隔で
分割するとともにこの各分割点ごとにその直前の
分割点からの経過時間を求め、各分割点に対する
時間関係を表示することにより各試料成分の定
性、定量分析を行なうようにしたことを特徴とす
る電気泳動分析データ解析方法。
1. A system in which a sample introduced at the interface between a leading liquid and a terminal liquid is electrophoresed, each sample component is separated based on the difference in their mobility, and the separation interface of each sample component is detected and displayed. The detection signal accompanying the separation interface is divided at equal intervals, and the elapsed time from the previous dividing point is determined for each dividing point. By displaying the time relationship with each dividing point, it is possible to qualitatively and quantitatively analyze each sample component. 1. An electrophoretic analysis data analysis method characterized in that the analysis is performed.
JP2589980A 1980-02-29 1980-02-29 Analyzing method for analytical data of electrophoresis Granted JPS56122944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2589980A JPS56122944A (en) 1980-02-29 1980-02-29 Analyzing method for analytical data of electrophoresis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2589980A JPS56122944A (en) 1980-02-29 1980-02-29 Analyzing method for analytical data of electrophoresis

Publications (2)

Publication Number Publication Date
JPS56122944A JPS56122944A (en) 1981-09-26
JPS6146781B2 true JPS6146781B2 (en) 1986-10-16

Family

ID=12178630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2589980A Granted JPS56122944A (en) 1980-02-29 1980-02-29 Analyzing method for analytical data of electrophoresis

Country Status (1)

Country Link
JP (1) JPS56122944A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548284U (en) * 1991-12-02 1993-06-25 富士通株式会社 Power connection structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005024411A2 (en) * 2003-09-05 2005-03-17 Caliper Life Sciences, Inc. Analyte injection system
CN100562745C (en) * 2003-12-23 2009-11-25 卡钳生命科学股份有限公司 Analyte injection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548284U (en) * 1991-12-02 1993-06-25 富士通株式会社 Power connection structure

Also Published As

Publication number Publication date
JPS56122944A (en) 1981-09-26

Similar Documents

Publication Publication Date Title
US5009760A (en) System for measuring electrokinetic properties and for characterizing electrokinetic separations by monitoring current in electrophoresis
Olefirowicz et al. Dopamine concentration in the cytoplasmic compartment of single neurons determined by capillary electrophoresis
Huang et al. Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis
Paulus et al. Analysis of oligonucleotides by capillary gel electrophoresis
JPH05196604A (en) Identification of sample component utilizing capillary tube electrophoresis
Curry Jr et al. Electrochemical detection for capillary electrophoresis
Huang et al. Quantitation of Li+ in serum by capillary zone electrophoresis with an on-column conductivity detector
Kaniansky et al. Contactless conductivity detection in capillary zone electrophoresis
Křivánková et al. Analysis of ethyl glucuronide in human serum by capillary electrophoresis with sample self-stacking and indirect detection
JPH0599898A (en) Data analytic method, electrophoretic analytic method, electrophoretic mechanism and conforming method of dna fragment
Rousseau et al. Gel electrophoretic mobility of single‐stranded DNA: The two reptation field‐dependent factors
US5286356A (en) Method for sample analysis using capillary electrophoresis
Shi et al. A simple and fast method to determine and quantify urinary creatinine
JP2000515640A (en) Mobility-based and thereby standardized capillary electrophoresis
US5310462A (en) Quantitation of samples utilizing capillary electrophoresis
HOLLANDER et al. An evaluation of the role of prealbumin in the binding of thyroxine
JPS6146781B2 (en)
Lee et al. Micellar electrokinetic capillary chromatographic separation and laser-induced fluorescence detection of 2'-deoxynucleoside 5'-monophosphates of normal and modified bases
Vespalec et al. Identification of peaks in capillary zone electrophoresis based on actual mobilities
US5342492A (en) System for electrokinetic separation and detection where detection is performed at other than separation electric field
Ishio et al. Optimum conditions for effective use of the terminating ion in transient isotachophoresis for capillary zone electrophoretic determination of nitrite and nitrate in seawater, with artificial seawater as background electrolyte
Huang et al. Capillary gel electrophoresis of single-stranded DNA fragments with UV detection
Harms et al. Comparison between capillary electrophoresis and ion-chromatography for analysis of inorganic anions
Larsson et al. Serum calcium ion activity. Some aspects on methodological differences and intraindividual variation
Jenkins Clinical applications of capillary electrophoresis: Status at the new millennium