JPS6146711B2 - - Google Patents

Info

Publication number
JPS6146711B2
JPS6146711B2 JP53136683A JP13668378A JPS6146711B2 JP S6146711 B2 JPS6146711 B2 JP S6146711B2 JP 53136683 A JP53136683 A JP 53136683A JP 13668378 A JP13668378 A JP 13668378A JP S6146711 B2 JPS6146711 B2 JP S6146711B2
Authority
JP
Japan
Prior art keywords
orifice
path
flow rate
passage
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53136683A
Other languages
Japanese (ja)
Other versions
JPS5565778A (en
Inventor
Ryukichi Araki
Mitsui Midorikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchida Oil Hydraulics Mfg Co Ltd
Original Assignee
Uchida Oil Hydraulics Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchida Oil Hydraulics Mfg Co Ltd filed Critical Uchida Oil Hydraulics Mfg Co Ltd
Priority to JP13668378A priority Critical patent/JPS5565778A/en
Publication of JPS5565778A publication Critical patent/JPS5565778A/en
Publication of JPS6146711B2 publication Critical patent/JPS6146711B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Safety Valves (AREA)

Description

【発明の詳細な説明】 本発明は操舵機その他の作動制御に適した分流
弁に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow dividing valve suitable for controlling the operation of a steering gear and other devices.

従来、船舶推進用エンジンにより駆動された油
圧ポンプからの流体で作動される操舵機の制御系
には、第1図示のような分流弁即ち弁筐内に制御
流体が流入する流体流入路aと、これにオリフイ
スbを介して接続された流出路cを設けるととも
に該オリフイスbの上流側の流入路aを排出路d
に分岐接続する分岐路eを設け、該分岐路eに、
前記オリフイスbの前後の差圧による力で開き側
とばねfによる力で閉じ側に作動され該流入路a
に流入する制御流体の1部を排出路へと排出する
分流制御スプールgを設けた分流弁を使用するを
一般とし、これによればエンジン回転数の上昇に
伴ない油圧ポンプから流入路aに流入する流量が
増大してオリフイスbの前後の差圧がばねfの弾
発力よりも大きくなると、スプールgが分岐路e
を開いて過剰流量を排出路dからタンクへと排出
し、流出路cの制御流量を第2図示のように略一
定に制御する。
Conventionally, the control system of a steering gear operated with fluid from a hydraulic pump driven by a marine propulsion engine includes a fluid inflow path a through which control fluid flows into a diverter valve, that is, a valve housing, as shown in Figure 1. , an outflow path c connected to this through an orifice b is provided, and an inflow path a on the upstream side of the orifice b is connected to a discharge path d.
A branch road e is provided to branch and connect to the branch road e, and the branch road e is
The inlet passage a is actuated to the opening side by the force due to the pressure difference before and after the orifice b, and to the closing side by the force by the spring f.
It is common practice to use a flow divider valve equipped with a flow control spool g that discharges a part of the control fluid flowing into the flow path to the discharge path.According to this, as the engine speed increases, the flow from the hydraulic pump to the flow path a When the inflowing flow rate increases and the differential pressure across the orifice b becomes greater than the elastic force of the spring f, the spool g moves to the branch path e.
is opened to discharge the excess flow rate from the discharge path d to the tank, and the controlled flow rate of the outflow path c is controlled to be substantially constant as shown in the second diagram.

而して操舵機は、船速が速く舵の利きが良いと
きは比較的ゆつくり作動し、船速が遅く舵の利き
が悪いときは早く作動した方が操船し易く安全で
あり、従つて操舵機の制御系に使用される分流弁
は、エンジン回転数が大きく油圧ポンプからの流
量が一定値よりも増大するにつれ操舵機への流量
を漸減するように作動するものであることが好ま
しい。こうした流量を漸減させる弁は、例えば特
開昭53−18823号公報、特公昭40−28992号公報や
特開昭52−70429号公報にも開示されているが、
負荷圧力の変動の影響を受けずに制御流量を広い
範囲で漸減させることは出来ない。
Therefore, when the ship's speed is high and the rudder is well controlled, the steering gear operates relatively slowly, and when the ship's speed is slow and the rudder is poorly controlled, it is easier and safer to operate the steering gear if it operates quickly. Preferably, the flow dividing valve used in the control system of the steering gear operates to gradually reduce the flow rate to the steering gear as the engine speed increases and the flow rate from the hydraulic pump increases beyond a certain value. Such valves that gradually reduce the flow rate are also disclosed in, for example, Japanese Patent Application Laid-open No. 18823-1982, Japanese Patent Publication No. 28992-1972, and Japanese Patent Application Laid-open No. 70429-1982.
It is not possible to gradually reduce the control flow rate over a wide range without being affected by changes in load pressure.

本発明は流量を負荷圧力の変動に影響されずに
広い範囲で漸減制御するに適した分流弁を提供す
ることを目的としたもので、弁筐内に、制御流体
が流入する流体流入路と、該流体流入路にオリフ
イスを介して接続された流出路を設けるとともに
該オリフイスの上流側の該流入路を排出路に分岐
接続する分岐路を設け、該分岐路に前記オリフイ
スの前後の差圧による力で開き側とばねによる力
で閉じ側に作動され該流入路に流入する制御流体
の排出路への排出を制御する分流制御スプールを
設けたものに於て、該分流制御スプールの前方の
分岐路に第2オリフイスを設けるとともに該第2
オリフイスの後方で該制御スプールの前方の分岐
路と流出路とを第3オリフイスを介して接続し、
該第3オリフイスの面積を他のオリフイスよりも
小面積に形成して成る。
An object of the present invention is to provide a flow dividing valve suitable for controlling the flow rate to gradually decrease over a wide range without being affected by fluctuations in load pressure. , an outflow path connected to the fluid inflow path via an orifice is provided, and a branch path is provided that connects the inflow path upstream of the orifice to a discharge path, and the branch path has a differential pressure before and after the orifice. In a device equipped with a diversion control spool that is actuated to the opening side by the force of the spring and to the closing side by the force of the spring to control the discharge of the control fluid flowing into the inflow passage into the discharge passage, the front part of the diversion control spool is A second orifice is provided in the branch path, and the second
Connecting a branch path in front of the control spool and an outflow path behind the orifice via a third orifice;
The third orifice is formed to have a smaller area than the other orifices.

本発明の実施例を図面第3図について説明する
と、1は分流弁の弁筐、2は該弁筐1に形成した
制御流体が流入する流体流入路、3は該流入路2
とオリフイス4を介して接続され、操舵機等のア
クチユエータへと流体を送り出す流出路、5は該
オリフイス4の上流側から流入路2を排出路6に
分岐接続すべく形成した分岐路、7は分岐路5と
排出路6との間を開閉する分流制御スプールを示
し、該スプール7の両端を同面積に形成しこれを
室8,9に臨ませるようにした。そして一方の室
8にパイロツト回路10を介して前記オリフイス
4の前方の圧力を導入するとともに他方の室9に
バイロツト回路11を介して該オリフイス4の後
方の圧力を導入し、さらに該室9に該スプール7
を弾発するばね12を収容し、かくて該スプール
7は該オリフイス4の前後の差圧による力で該分
岐路5を排出路6に連通する開き側への作動と、
該ばね12による力で該連通を断つ閉じ側へと作
動とを行なえるようにし、流入路2から流入する
制御流体の排出路6からの排出を制御して流出路
3に残余の流量を流す。以上の構成は従来のもの
とほぼ同様であるが本発明のものでは該分流制御
スプール7の前方の分岐路5に第2オリフイス1
3を設けて流入路2から該分岐路5及び該制御ス
プール7を介して排出路6に流れる流体に圧力降
下を生じさせるようにすると共に該第2オリフイ
ス13の後方で該制御スプール7の前方の分岐路
5と流出路3とを前記オリフイス4の面積や第2
オリフイス13の面積よりも小さい面積の第3オ
リフイス15を介して接続し、該流出路3の圧力
が高まると該第3オリフイス15を介して該流出
路3の流体の1部が排出路6へと排出されて該流
出路3の流量を減少させ得るようにした。16は
安全弁である。
An embodiment of the present invention will be described with reference to FIG. 3. Reference numeral 1 denotes a valve housing of a diverting valve, 2 a fluid inflow path formed in the valve housing 1 into which the control fluid flows, and 3 a fluid inflow path 2.
An outflow path is connected to the orifice 4 through an orifice 4 and sends fluid to an actuator such as a steering gear, 5 is a branch path formed to branch and connect the inflow path 2 to the discharge path 6 from the upstream side of the orifice 4, and 7 is a branch path. A diversion control spool is shown that opens and closes between the branch passage 5 and the discharge passage 6, and both ends of the spool 7 are formed to have the same area so as to face the chambers 8 and 9. Then, the pressure in front of the orifice 4 is introduced into one chamber 8 via the pilot circuit 10, and the pressure behind the orifice 4 is introduced into the other chamber 9 via the pilot circuit 11. The spool 7
The spool 7 is actuated to the opening side to communicate the branch passage 5 with the discharge passage 6 by the force of the differential pressure before and after the orifice 4;
The force of the spring 12 can be used to close the communication, thereby controlling the discharge of the control fluid flowing in from the inflow path 2 from the discharge path 6, and allowing the remaining flow rate to flow into the outflow path 3. . The above configuration is almost the same as the conventional one, but in the one of the present invention, there is a second orifice 1 in the branch passage 5 in front of the branch flow control spool 7.
3 to create a pressure drop in the fluid flowing from the inlet passage 2 through the branch passage 5 and the control spool 7 to the discharge passage 6, and behind the second orifice 13 and in front of the control spool 7. The branch path 5 and the outflow path 3 are determined by the area of the orifice 4 and the second
It is connected through a third orifice 15 having an area smaller than that of the orifice 13, and when the pressure in the outlet passage 3 increases, a part of the fluid in the outlet passage 3 flows through the third orifice 15 to the discharge passage 6. This allows the flow rate of the outflow path 3 to be reduced. 16 is a safety valve.

この第3図示の実施例のものの作動を説明する
と、エンジン回転数に比例した流量が流入路2か
ら流入し、その流量が設定流量即ち分流制御作動
を開始する流量に達しないときはこれに介在させ
たオリフイス4により生ずる圧力降下も小さく、
分流制御スプール7の両端に作用する該オリフイ
ス4の前方の圧力と後方の圧力との差が小さいの
で該分流スプール7はばね12に抗して分岐路5
を排出路6に連通する程度に移動せず、従つて流
入路2に流入する全流量は流出路3から操舵機等
を作動すべく流出する。エンジンの回転数が上昇
してその流量が前記設定流量を越えるに至ると該
分流スプール7はばね12の弾力と釣合うまで図
面左方に移動して分岐路5を排出路6に連通し、
該オリフイス4を通る流量を一定に制御するが流
入路2に流入する流量のうちの一部は次のように
して該排出路6から排出される。即ち流入路2に
流入する流量が前記設定流量よりも少し多い場合
には多少の流量が分岐路5に分流されるが、この
場合分岐路5の第2オリフイス13により生ずる
圧力降下はオリフイス4の圧力降下よりも小さい
ので該第2オリフイス13の後方の分岐路5の圧
力の方がオリフイス4の後方の圧力よりも高く、
従つて分岐路5の分流量の一部は第3オリフイス
15を介して流出路3へと流れ、該流出路3の流
量はオリフイス4を通る流量とオリフイス15を
通る流量の合計になると共に該分岐路5の分流量
の残部は排出路6から排出される。流入路2の流
量が前記の場合よりもさらに増大するとオリフイ
ス4を通る流量は一定であるので第2オリフイス
13を介して流れる分岐路5の流量が前記の場合
よりも増大するが、これによれば第2オリフイス
13による圧力降下が大きくなつてその後方の分
岐路5圧力とオリフイス4の後方の圧力とが余り
差がなくなり、その結果第3オリフイス15を介
して流出路3へ流れる流量が零となり、分岐路5
の流量は全て排出路6から排出され、第4図の特
性曲線のA部分に示すように流出路3から流出す
る制御流量が漸減する。そしてなおも流入路2か
らの流量が増大すると該第2オリフイス13の圧
力降下がオリフイス4の圧力降下よりも大きくな
り、分岐路5の第2オリフイス13の後方の圧力
が流出路3の圧力よりも低くなるため第3オリフ
イス15には流出路3から分岐路5への逆流を生
ずるにいたり、流出路3からの制御流量の一部が
排出路6に排出され、第4図の曲線部分Bで示す
ように流出路3からの制御流量がより一層減少す
る。第4図の曲線Eはオリフイス4を通り流入路
2から流出路3へと流れる流量、また曲線Fは第
3オリフイス15を通り分岐路5から流出路3へ
流れる流量で、この流量はDの区間で流れの方向
が逆転して流出路3から分岐路5への流れとな
る。
To explain the operation of the embodiment shown in the third diagram, a flow rate proportional to the engine speed flows in from the inlet passage 2, and when the flow rate does not reach the set flow rate, that is, the flow rate at which the diversion control operation is started, there is no intervention. The pressure drop caused by the orifice 4 is also small,
Since the difference between the pressure in front of the orifice 4 and the pressure behind the orifice 4 acting on both ends of the diversion control spool 7 is small, the diversion spool 7 resists the spring 12 and
does not move to the extent that it communicates with the discharge passage 6, and therefore the entire flow flowing into the inlet passage 2 flows out from the outlet passage 3 to operate the steering gear or the like. When the rotational speed of the engine increases and the flow rate exceeds the set flow rate, the diverter spool 7 moves to the left in the drawing until it balances the elasticity of the spring 12 and connects the branch path 5 to the discharge path 6.
Although the flow rate passing through the orifice 4 is controlled to be constant, a portion of the flow rate flowing into the inlet passage 2 is discharged from the discharge passage 6 in the following manner. That is, when the flow rate flowing into the inflow path 2 is slightly higher than the set flow rate, some flow rate is diverted to the branch path 5, but in this case, the pressure drop caused by the second orifice 13 of the branch path 5 is reduced by Since the pressure drop is smaller than the pressure drop, the pressure in the branch passage 5 behind the second orifice 13 is higher than the pressure behind the orifice 4;
Therefore, a part of the branched flow rate of the branch passage 5 flows through the third orifice 15 to the outflow passage 3, and the flow rate of the outflow passage 3 becomes the sum of the flow rate passing through the orifice 4 and the flow rate passing through the orifice 15. The remainder of the branched flow rate of the branch path 5 is discharged from the discharge path 6. When the flow rate in the inflow passage 2 increases further than in the above case, the flow rate through the orifice 4 is constant, so the flow rate in the branch passage 5 flowing through the second orifice 13 increases more than in the above case. In this case, the pressure drop through the second orifice 13 becomes large, and the pressure in the branch passage 5 behind it and the pressure behind the orifice 4 become less different, and as a result, the flow rate flowing into the outlet passage 3 via the third orifice 15 becomes zero. So, branch road 5
All of the flow rate is discharged from the discharge path 6, and the controlled flow rate flowing out from the outflow path 3 gradually decreases as shown in part A of the characteristic curve in FIG. Then, when the flow rate from the inflow passage 2 increases, the pressure drop in the second orifice 13 becomes larger than the pressure drop in the orifice 4, and the pressure behind the second orifice 13 in the branch passage 5 becomes lower than the pressure in the outflow passage 3. As the flow rate becomes lower, a backflow occurs in the third orifice 15 from the outflow path 3 to the branch path 5, and a part of the controlled flow rate from the outflow path 3 is discharged to the discharge path 6, resulting in the curve part B in FIG. As shown, the controlled flow rate from the outflow path 3 is further reduced. Curve E in FIG. 4 is the flow rate flowing from the inflow path 2 to the outflow path 3 through the orifice 4, and curve F is the flow rate flowing from the branch path 5 to the outflow path 3 through the third orifice 15. The direction of the flow is reversed in the section and flows from the outflow path 3 to the branch path 5.

流入流量が極端に増大すると、流入路2からの
流量はその殆んどが排出路6に排出されるように
なるが、制御流量がなくなるとその制御系が不作
動になるのでエンジン最大回転数の最大流量時に
制御流量が得られるように適当な使用範囲cが定
められる。
When the inflow flow rate increases extremely, most of the flow rate from the inflow path 2 will be discharged to the exhaust path 6, but if the control flow rate disappears, the control system will become inactive, so the maximum engine rotation speed will decrease. An appropriate usage range c is determined so that a controlled flow rate can be obtained at the maximum flow rate.

流出路3からの流量はこれに連らなる操舵装置
等により負荷圧が変動した場合であつてもオリフ
イス4の差圧を一定化すべく制御スプール7が作
動して圧力補償作動を行ない、負荷圧の変動が原
因で該流出路3の流量が変化されることはない。
第5図示の実施例のものは、スプール7に分岐路
5と排出路6との開閉を制御するランド部17の
他に流出路3への流体の流入を阻止する1対のラ
ンド部18a,18bを形成してその一方のラン
ド部18aにオリフイス4を設け、スプール7に
軸方向の透孔19及び該透孔19をランド部1
7,18b間に連通させる半径方向の開孔20を
形成して分岐路5を構成させ、流入路2と透孔1
9、該透孔19を流出路3を連通する小孔を形成
して夫々第2オリフイス13と第3オリフイス1
5としたもので、これの全体構成もシンボルで表
示すれば第6図示のようになり、第3図示の実施
例のものと略同様の作用を営む。尚第2オリフイ
ス13に代え流量増大に伴ない圧力降下を増大さ
せるもの例えばオーバライドを有するリリーフ
弁、チエツク弁を設けてもよい。
The flow rate from the outflow path 3 is controlled by the control spool 7, which operates to compensate for the pressure difference in the orifice 4 even if the load pressure fluctuates due to the steering device connected to it. The flow rate of the outflow path 3 is not changed due to fluctuations in the flow rate.
In the embodiment shown in FIG. 5, in addition to a land portion 17 that controls the opening and closing of the branching path 5 and the discharge path 6, a pair of land portions 18a that prevent fluid from flowing into the outflow path 3 are provided on the spool 7. 18b and an orifice 4 is provided in one of the land portions 18a, and an axial through hole 19 is formed in the spool 7 and the through hole 19 is formed in the land portion 1.
A radial opening 20 is formed to communicate between the inflow passage 2 and the through hole 1 to constitute the branch passage 5.
9. A small hole is formed through the through hole 19 to communicate with the outflow path 3, and the second orifice 13 and the third orifice 1 are connected to each other.
5, and if its overall configuration is represented by symbols, it will be as shown in Fig. 6, and it will have substantially the same effect as the embodiment shown in Fig. 3. In place of the second orifice 13, a device that increases the pressure drop as the flow rate increases, such as a relief valve or check valve with an override, may be provided.

このように本発明によるときは、流入路と流出
路間に設けたオリフイスの他に、流入路と分岐路
間の第2オリフイス及び分岐路と流出路間の第3
オリフイスを設け、且つ該第3オリフイスを他の
オリフイスよりも小さく形成することにより分流
開始後広い範囲で制御流量を漸減させ得、流入流
量の増大で急激に制御流量が零になり例えば操舵
不能となる危険を防止出来、その制御流量は負荷
圧の変動により影響を受けることがなく正確に操
舵機その他の機器の減速制御することが出来て便
利であり、その構成も比較的簡単で安価に製作出
来る等の効果を有する。
In this way, according to the present invention, in addition to the orifice provided between the inflow path and the outflow path, a second orifice between the inflow path and the branch path and a third orifice between the branch path and the outflow path are provided.
By providing an orifice and making the third orifice smaller than the other orifices, it is possible to gradually reduce the control flow rate over a wide range after the start of diversion, and when the inflow flow rate increases, the control flow rate suddenly drops to zero, resulting in, for example, unsteering. It is convenient because the controlled flow rate is not affected by fluctuations in load pressure and can accurately control the deceleration of the steering gear and other equipment, and its configuration is relatively simple and inexpensive to manufacture. It has the effect of being able to do something.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の分流弁の截断側面図、第2図は
従来の分流弁の制御特性曲線図、第3図は本発明
の第1実施例の截断側面図、第4図は本発明の分
流弁の制御特性曲線図、第5図は本発明の第2実
施例の截断側面図、第6図は本発明分流弁のシン
ボル化した線図である。 2…流入路、3…流出路、4…オリフイス、5
…分岐路、6…排出路、7…分流制御スプール、
12…ばね、13…第2オリフイス、15…第3
オリフイス。
FIG. 1 is a cut-away side view of a conventional diverting valve, FIG. 2 is a control characteristic curve diagram of the conventional diverting valve, FIG. 3 is a cut-away side view of the first embodiment of the present invention, and FIG. 4 is a cut-away side view of the conventional diverting valve. FIG. 5 is a cutaway side view of a second embodiment of the present invention, and FIG. 6 is a diagram showing a symbol of the diverter valve of the present invention. 2...Inflow path, 3...Outflow path, 4...Orifice, 5
...Diversion path, 6...Discharge path, 7...Diversion control spool,
12...Spring, 13...Second orifice, 15...Third
Orifice.

Claims (1)

【特許請求の範囲】[Claims] 1 弁筐内に制御流体が流入する流体流入路と、
該流体流入路にオリフイスを介して接続された流
出路を設けるとともに該オリフイスの上流側の該
流入路を排出路に分岐接続する分岐路を設け、該
分岐路に前記オリフイスの前後の差圧による力で
開き側とばねにより力で閉じ側に作動され該流入
路に流入する制御流体の排出路への排出を制御す
る分流制御スプールを設けたものに於いて、該分
流制御スプールの前方の分岐路に第2オリフイス
を設けるとともに、該第2オリフイスの後方で該
制御スプールの前方の分岐路と流出路とを第3オ
リフイスを介して接続し、該第3オリフイスの面
積を他のオリフイスよりも小面積に形成したこと
を特徴とする流量漸減形分流弁。
1 a fluid inflow path through which control fluid flows into the valve housing;
An outflow path connected to the fluid inflow path via an orifice is provided, and a branch path is provided that connects the inflow path upstream of the orifice to a discharge path, and the branch path is provided with an outflow path connected to the fluid inflow path via an orifice. A branch at the front of the shunt control spool in a device equipped with a shunt control spool that is actuated to open by force and to close by force by a spring to control the discharge of the control fluid flowing into the inflow passage into the discharge passage. A second orifice is provided in the passage, and behind the second orifice, the branch passage in front of the control spool and the outflow passage are connected via a third orifice, and the area of the third orifice is made larger than that of the other orifices. A flow rate gradually decreasing type diverter valve characterized by being formed in a small area.
JP13668378A 1978-11-08 1978-11-08 Flow quantity gradual reducing type branched flow valve Granted JPS5565778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13668378A JPS5565778A (en) 1978-11-08 1978-11-08 Flow quantity gradual reducing type branched flow valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13668378A JPS5565778A (en) 1978-11-08 1978-11-08 Flow quantity gradual reducing type branched flow valve

Publications (2)

Publication Number Publication Date
JPS5565778A JPS5565778A (en) 1980-05-17
JPS6146711B2 true JPS6146711B2 (en) 1986-10-15

Family

ID=15181026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13668378A Granted JPS5565778A (en) 1978-11-08 1978-11-08 Flow quantity gradual reducing type branched flow valve

Country Status (1)

Country Link
JP (1) JPS5565778A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2184547B1 (en) * 2000-01-27 2004-08-16 Universitat Politecnica De Catalunya DOUBLE AND REVERSIBLE FLOW REGULATORY VALVE.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318823A (en) * 1976-08-06 1978-02-21 Jidosha Kiki Co Flow control valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318823A (en) * 1976-08-06 1978-02-21 Jidosha Kiki Co Flow control valve

Also Published As

Publication number Publication date
JPS5565778A (en) 1980-05-17

Similar Documents

Publication Publication Date Title
US4006663A (en) Hydraulic control means, especially a steering means
US4075842A (en) Load responsive fluid control system
US5471838A (en) Power steering apparatus for a vehicle
JP3822156B2 (en) Oil quantity control device for heavy construction equipment
EP1008754B1 (en) Positive displacement pump systems
US4570667A (en) Demand responsive flow regulator valve
US4028889A (en) Load responsive fluid control system
US4065922A (en) Load lifting and lowering control system
JPS6114332B2 (en)
US3367354A (en) Valve
JPS636474Y2 (en)
US4570662A (en) Demand responsive flow control valve
US10953914B2 (en) Hydraulic steering unit
JPS6146711B2 (en)
EP0642970A1 (en) Hydraulic power steering apparatus
US4520841A (en) Four-way valve
EP0043947A1 (en) Power steering pump
US3920034A (en) Proportional bypass valve having variable area orifice control means
US4293000A (en) Load responsive fluid control valve
JP3237457B2 (en) Flow control device in power steering device
JPH0549829B2 (en)
JPH0124664B2 (en)
US4249569A (en) Load responsive fluid control valve
JPS588965Y2 (en) Fluid motor control circuit with means for limiting overspeed
JP2649817B2 (en) Flow control valve