JPS6146695B2 - - Google Patents

Info

Publication number
JPS6146695B2
JPS6146695B2 JP1621578A JP1621578A JPS6146695B2 JP S6146695 B2 JPS6146695 B2 JP S6146695B2 JP 1621578 A JP1621578 A JP 1621578A JP 1621578 A JP1621578 A JP 1621578A JP S6146695 B2 JPS6146695 B2 JP S6146695B2
Authority
JP
Japan
Prior art keywords
spokes
outer ring
flywheel
energy storage
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1621578A
Other languages
Japanese (ja)
Other versions
JPS54109584A (en
Inventor
Sukenari Noguchi
Koken Tsutsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1621578A priority Critical patent/JPS54109584A/en
Publication of JPS54109584A publication Critical patent/JPS54109584A/en
Publication of JPS6146695B2 publication Critical patent/JPS6146695B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/30Flywheels
    • F16F15/305Flywheels made of plastics, e.g. fibre-reinforced plastics [FRP], i.e. characterised by their special construction from such materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明はエネルギーを回転エネルギーの形で
貯蔵する場合に使用するフライホイールに関する
ものである。 従来から、夜間の余剰電力を貯蔵し、或いは大
気中に放出されていた排気エネルギー等を貯蔵し
ておき、必要時に取り出して利用することが考え
られている。このためのエネルギー貯蔵の一形式
として、近来エネルギーをフライホイールの回転
エネルギーの形で貯蔵する方法が開発されつつあ
り、その効率及び貯蔵エネルギー密度が高いこと
等の該利点を備えているために、きわめて有望視
されている。しかしながら、ここで使用されるフ
ライホイールには開発されるべき点が残されてい
る。すなわち、フライホイールは円板状に形成さ
れ、回転エネルギー(E)は、 E=πh/4r(r2 4−r1 4)σθ r1:回転体の内径 r2:回転体の外径 h:回転体の幅、 σθ:回転体の円周方向の強さ であらわされ、フライホイールの重量当りのエ
ネルギー密度(e)は e=E/W=(r −r )/4r (r
−r )・σθ/ρ=(r +r )/4r
・σθ/ρ W:回転体の重量(W=ρπh(r2 2−r1 2)) ρ:回転体の密度 であらわされる。しがつてエネルギー密度eは
比強度(σθ/ρ)に比例し、比強度(σθ/
ρ)の大きい材料ほどフライホイールに適してい
るといえる。 このような要求に合う材料としは、繊維強化プ
ラスチツクス(F.R.P)、マルエージング鋼等が
あり、これらの材料の破壊強さσB、密度ρ及び
比強度σB/ρは次の通りである。
This invention relates to flywheels for use in storing energy in the form of rotational energy. BACKGROUND ART Conventionally, it has been considered to store surplus power at night, or store exhaust energy that would have been released into the atmosphere, and take it out and use it when necessary. As a form of energy storage for this purpose, a method of storing energy in the form of flywheel rotational energy has recently been developed, and because of its advantages such as high efficiency and high storage energy density, It is viewed as extremely promising. However, there are still points to be developed in the flywheel used here. That is, the flywheel is formed into a disk shape, and the rotational energy (E) is: E=πh/4r 2 (r 2 4r 1 4 )σθ r 1 : Inner diameter of the rotating body r 2 : Outer diameter of the rotating body h: Width of the rotating body, σθ: Strength of the rotating body in the circumferential direction.The energy density (e) per weight of the flywheel is e=E/W=(r 2 4 − r 1 4 )/ 4r 2 2 (r 2 2
−r 1 2 )・σθ/ρ=(r 2 2 +r 1 2 )/4r 2 2
・σθ/ρ W: Weight of the rotating body (W=ρπh(r 2 2 − r 1 2 )) ρ: Density of the rotating body. Therefore, the energy density e is proportional to the specific intensity (σθ/ρ), and the specific intensity (σθ/ρ) is proportional to the specific intensity (σθ/ρ).
It can be said that a material with a larger value of ρ) is more suitable for a flywheel. Materials that meet these requirements include fiber reinforced plastics (FRP), maraging steel, etc., and the fracture strength σB, density ρ, and specific strength σB/ρ of these materials are as follows.

【表】 グ鋼
このようにケブラー49の比強度が最も高く、
Eガラスでもマルエージング鋼の2.4倍であり、
したがつて繊維強化プラスチツク(FRP)はフ
ライホイール用として優れた材料であることが明
らかである。一方、このように優れたFRPを用
いてフライホイールを成形する場合の成形方法と
しては、強化繊維の強度をそのまま利用するもの
としてフイラメントワインデイング法がある。こ
の方法は強化繊維を順次巻き重ねて円板状に形成
し、かつ繊維間を樹脂によつて結合しているの
で、円周方向(繊維方向)の強さはきわめて大き
い。しかしながら、フライホイールにはその回転
中に半径rの位置に、半径方向応力 σr(フライホイールが等方性材料で構成され
ている場合で近似すると) σr=ρr ω/g3+μ/8{1+(r/r
−(r/r− (r/r)} ω:角速度 μ:ポアソン比 が作用し、これを樹脂の結合強度に負担させるこ
とになるので、円周方向(繊維方向)の強さに較
べ半径方向(繊維と直角の方向)の強さはきわめ
て小さい。例えば、Eガラスを用いた回転板の場
合は、円周方向破断強さσ〓B=120Kg/mm2である
のに対して、半径方向破断強さσrBは約σrB=2.0
Kg/mm2である。このため、円周方向強さが充分で
あるにもかかわらず、半径方向からフライホイー
ルが破損する恐れがあり、F.R.P.の利点を充分
に生すことができない。 したがつて円周方向破断強さをもつてフライホ
イールの破壊強さとするような最適設計が望まれ
る。この発明は以上の如き事情に鑑みて、そのよ
うな最適設計を可能にする構造のフライホイール
を提供することを目的とするものである。 この目的に対応して、この発明のスポーク付き
蓄エネルギー用フライホイールは、回転エネルギ
ー貯蔵部の少なくとも一部分を構成する円環状若
しくは円筒状の外輪と、外輪を回転若しくはボス
部に結合するスポークを備え、遠心力の作用を受
けた場合に、スポークは伸長して外輪の半径方向
変形に追随するか、あるいは外輪を押圧するよう
に構成されていることを特徴としている。 以下この発明の詳細を一実施例を示す図面につ
いて説明する。 図において1はフライホイールである。フライ
ホイール1は中心部の内輪2と、内輪2の外側に
同心状に外輪3とを備え、かつ内輪2と外輪3と
は円周方向を等分割して位置する複数のスポーク
4によつて結合されている。内輪2はボス部をも
構成するものであり、その構成材料は特に制限は
ないが、F.R.P.の如き比強度σθ/ρの大きい
材料を用いる方が回転エネルギーの貯蔵に有利な
ことは前述の通りである。外輪3は内輪2の外側
に間隔を隔てて位置しており、これはフライホイ
ールにおける回転エネルギーの主たる貯蔵部を形
成するものであつて、特にF.R.P.の如き比強度
σθ/ρの大きい材料をもつて構成することが望
ましい。スポーク4は円周を等分割するように6
個あつて、それぞれ回転中心5に直角な平面に含
まれる横断面が六角形環状をなし、その一辺6は
外輪3の内側に接着剤等によつて固着し、その対
向辺7は内輪2に接着剤等により固着し、これに
よつて外輪3を内輪2に対して支持している。両
辺6及び7の間の2辺8,9、及び10,11は
屈曲部12,12′を通じて連続しており、これ
に遠心力が作用した場合には辺8(辺10も同
様)は図中仮想線8′で示す如くパンタグラフ状
に変形し、材料の伸びと協働してスポーク4の半
径方向長さを増加させる。スポーク4を構成する
材料としては外輪3の構成材料よりも比弾性率
Et/ρ(Et:縦弾性率、ρ…密度)の小さい材
料を選択し、これによつて遠心力が作用した場合
の半径方向伸びが外輪3の半径方向伸びと等しく
なるか、あるいは外輪3の半径方向伸びよりも若
干大きくなるようにする。隣り合うスポーク間で
は辺9及び11で接触しているが、両者間は必ず
しも固着させる必要はない。 このように構成したフライホイールにおいて
は、回転エネルギーの主たる貯蔵部が外輪3とし
て環状に形成されているので、同じ回転数で回転
させた場合でも、フライホイールが円板状に形成
された場合に較べて、外輪3に作用する最大半径
方向応力は小さく、したがつて、これだけ半径方
向応力によつてフライホイールが破壊される可能
性は低下する。それのみならず、フライホイール
が回転してこれに遠心力が作用した場合に、スポ
ーク4が材料の伸びと辺8,10の機械的変形に
起因して伸長し、この伸長量が外輪3の半径方向
伸び量に等しいか若しくはこれよりも若干大き
く、したがつて外輪3はスポーク4から押圧力を
受けることになり、外輪3内に発生する半径方向
応力を低下させることも可能である。さらに、ス
ポーク4の伸長量が外輪3に対して不足している
場合には、スポーク4の辺6の内面に錘り13を
接着してスポーク4の伸長量を調整することもで
きる。また従来、切り欠き等を設けて行なつてい
た回転体全体のバランス調整は、スポーク4の内
面に調整錘り14を必要に応じて取り付けること
によつて容易に行うことができる。また、フライ
ホイールの製作に当つては、外輪3、スポーク4
及び内輪2をそれぞれ別工程で製造し、後に組立
てることができるから、それぞれの成形設備の規
模は小さくてすみ、かつ量産に適し、特に大形フ
ライホイールを目指す場合には有利である。 以上の説明から明らかな通り、この発明によれ
ば、主たる回転エネルギーの貯蔵部を環状の外輪
をもつて構成し、かつスポークの形状と材料によ
つて起因するスポークの変形を外輪の伸びに追随
させることによつて、外輪を構成する強化繊維の
破断強さをもつてフライホイールの破壊強さとす
る最適設計が可能なスポーク付き蓄エネルギー用
フライホイールを得ることができる。
[Table] Steel As shown above, Kevlar 49 has the highest specific strength,
Even with E-glass, it is 2.4 times that of maraging steel.
Therefore, it is clear that fiber reinforced plastic (FRP) is an excellent material for flywheels. On the other hand, when molding a flywheel using such excellent FRP, there is a filament winding method that utilizes the strength of reinforcing fibers as is. In this method, reinforcing fibers are sequentially wound to form a disk shape, and the fibers are bonded by resin, so the strength in the circumferential direction (fiber direction) is extremely high. However, during its rotation, the flywheel has a radial stress σr at a position of radius r (approximately when the flywheel is made of isotropic material) σr=ρr 2 2 ω 2 /g3+μ/8{ 1+(r 1 /r
2 ) 2 - (r/r 2 ) 2 - (r 1 /r) 2 } ω: angular velocity μ: Poisson's ratio acts, and this affects the bonding strength of the resin, so The strength in the radial direction (direction perpendicular to the fibers) is extremely small compared to the strength in the radial direction (direction perpendicular to the fibers). For example, in the case of a rotating plate using E glass, the breaking strength in the circumferential direction σ〓 B = 120Kg/mm 2 , while the breaking strength in the radial direction σ rB is approximately σ rB = 2.0
Kg/ mm2 . Therefore, even though the strength in the circumferential direction is sufficient, the flywheel may be damaged in the radial direction, and the advantages of FRP cannot be fully utilized. Therefore, an optimal design is desired in which the breaking strength of the flywheel is determined by the breaking strength in the circumferential direction. In view of the above circumstances, it is an object of the present invention to provide a flywheel having a structure that enables such optimal design. Corresponding to this purpose, the spoked energy storage flywheel of the present invention includes an annular or cylindrical outer ring that constitutes at least a portion of a rotational energy storage section, and spokes that connect the outer ring to a rotating or boss section. The spokes are characterized in that, when subjected to centrifugal force, the spokes are configured to expand and follow the radial deformation of the outer ring, or to press against the outer ring. The details of this invention will be explained below with reference to the drawings showing one embodiment. In the figure, 1 is a flywheel. The flywheel 1 includes an inner ring 2 at the center and an outer ring 3 concentrically outside the inner ring 2, and the inner ring 2 and the outer ring 3 are arranged by a plurality of spokes 4 equally divided in the circumferential direction. combined. The inner ring 2 also constitutes a boss part, and there are no particular restrictions on its constituent material, but as mentioned above, it is advantageous to use a material with a large specific strength σθ/ρ, such as FRP, for storing rotational energy. It is. The outer ring 3 is located outside the inner ring 2 at a distance and forms the main storage area for rotational energy in the flywheel, and is made of a material with a high specific strength σθ/ρ, such as FRP. It is desirable to configure the Spoke 4 divides the circumference equally into 6
The cross section included in the plane perpendicular to the center of rotation 5 has a hexagonal ring shape, one side 6 of which is fixed to the inside of the outer ring 3 with adhesive or the like, and the opposite side 7 to the inner ring 2. The outer ring 3 is fixed to the inner ring 2 by adhesive or the like, thereby supporting the outer ring 3 with respect to the inner ring 2. The two sides 8, 9 and 10, 11 between both sides 6 and 7 are continuous through the bent portions 12, 12', and when a centrifugal force acts on them, side 8 (same as side 10) As shown by the medium phantom line 8', the spoke 4 is deformed into a pantograph shape, and the radial length of the spoke 4 increases in cooperation with the elongation of the material. The material constituting the spokes 4 has a higher specific elastic modulus than the material constituting the outer ring 3.
Select a material with a small Et/ρ (Et: longitudinal elastic modulus, ρ...density), so that the radial elongation when centrifugal force is applied is equal to the radial elongation of the outer ring 3, or the outer ring 3 The radial elongation should be slightly larger than the radial elongation. Adjacent spokes are in contact at sides 9 and 11, but they do not necessarily need to be fixed together. In the flywheel configured in this way, the main storage part of the rotational energy is formed in the annular shape as the outer ring 3, so even if the flywheel is rotated at the same number of rotations, it will not change when the flywheel is formed into a disk shape. In comparison, the maximum radial stress acting on the outer ring 3 is small, and therefore the possibility that the flywheel will be destroyed by the radial stress is reduced. Not only that, when the flywheel rotates and centrifugal force acts on it, the spokes 4 elongate due to elongation of the material and mechanical deformation of the sides 8 and 10, and the amount of elongation is the amount of elongation of the outer ring 3. The outer ring 3 is equal to or slightly larger than the radial elongation amount, so the outer ring 3 receives a pressing force from the spokes 4, and it is also possible to reduce the radial stress generated within the outer ring 3. Furthermore, if the amount of extension of the spokes 4 is insufficient relative to the outer ring 3, the amount of extension of the spokes 4 can be adjusted by bonding weights 13 to the inner surface of the side 6 of the spokes 4. Moreover, the balance adjustment of the entire rotating body, which was conventionally performed by providing a notch or the like, can be easily performed by attaching adjustment weights 14 to the inner surface of the spokes 4 as necessary. In addition, when manufacturing the flywheel, outer ring 3, spokes 4
Since the inner ring 2 and the inner ring 2 can be manufactured in separate processes and assembled later, the scale of each molding equipment can be small, and it is suitable for mass production, which is particularly advantageous when aiming for a large flywheel. As is clear from the above description, according to the present invention, the main rotational energy storage section is configured with an annular outer ring, and the deformation of the spokes caused by the shape and material of the spokes follows the elongation of the outer ring. By doing so, it is possible to obtain an energy storage flywheel with spokes that can be optimally designed to have the breaking strength of the flywheel equal to the breaking strength of the reinforcing fibers constituting the outer ring.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの発明の一実施例に係るスポーク付き蓄
エネルギー用フライホイールを示す横断面部分図
である。 1…フライホイール、2…内輪、3…外輪、4
…スポーク、12,12′…屈曲部、13…錘
り、14…調整錘り。
The figure is a partial cross-sectional view showing a spoked energy storage flywheel according to an embodiment of the present invention. 1...Flywheel, 2...Inner ring, 3...Outer ring, 4
... Spoke, 12, 12'... Bent part, 13... Weight, 14... Adjustment weight.

Claims (1)

【特許請求の範囲】 1 回転エネルギー貯蔵部の主要部を構成する円
環状若しくは円筒状の外輪と、前記外輪を回転軸
若しくはボス部に結合するスポークを備え、前記
スポークを前記外輪より比弾性率(弾性率/密度
大の小さい材料で構成し、遠心力の作用を受けた
場合に、前記スポークは伸長して外輪の半径方向
変形に追随するか、あるいは外輪を押圧するよう
に構成されていることを特徴とするスポーク付き
蓄エネルギー用フライホイール。 2 前記スポークは六角形環状横断面形状をな
し、一辺が前記外輪の内側に固着し、対向辺が前
記ボス部若しくは前記回転軸に固着していること
を特徴とする特許請求の範囲第1項記載のスポー
ク付き蓄エネルギー用フライホイール。 3 前記スポークは外輪部近傍に屈曲部を設け、
これによつて半径方向の変形に対して自由度を増
していることを特徴とする特許請求の範囲第1項
または第2項記載のスポーク付き蓄エネルギー用
フライホイール。 4 前記フライホイールは、遠心力の作用を受け
て前記スポークの伸長を助長するための錘りを備
えていることを特徴とする特許請求の範囲第1
項、第2項、または第3項記載のスポーク付き蓄
エネルギー用フライホイール。
[Scope of Claims] 1. An annular or cylindrical outer ring constituting the main part of the rotational energy storage unit, and spokes that connect the outer ring to a rotating shaft or a boss, the spokes having a specific elastic modulus higher than that of the outer ring. (The spokes are made of a material with a small elastic modulus/density, and are configured so that when subjected to centrifugal force, the spokes either expand and follow the radial deformation of the outer ring, or press the outer ring. An energy storage flywheel with spokes, characterized in that: 2. The spokes have a hexagonal annular cross-sectional shape, one side is fixed to the inner side of the outer ring, and the opposite side is fixed to the boss portion or the rotating shaft. A spoked energy storage flywheel according to claim 1, characterized in that the spokes are provided with bent portions near the outer ring portion,
The energy storage flywheel with spokes according to claim 1 or 2, characterized in that the degree of freedom against deformation in the radial direction is thereby increased. 4. Claim 1, wherein the flywheel is provided with a weight for promoting the elongation of the spokes under the action of centrifugal force.
The spoked energy storage flywheel according to item 1, 2, or 3.
JP1621578A 1978-02-15 1978-02-15 Energy accumulating fly-wheel with spoke Granted JPS54109584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1621578A JPS54109584A (en) 1978-02-15 1978-02-15 Energy accumulating fly-wheel with spoke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1621578A JPS54109584A (en) 1978-02-15 1978-02-15 Energy accumulating fly-wheel with spoke

Publications (2)

Publication Number Publication Date
JPS54109584A JPS54109584A (en) 1979-08-28
JPS6146695B2 true JPS6146695B2 (en) 1986-10-15

Family

ID=11910294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1621578A Granted JPS54109584A (en) 1978-02-15 1978-02-15 Energy accumulating fly-wheel with spoke

Country Status (1)

Country Link
JP (1) JPS54109584A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5665682A (en) * 1979-10-31 1981-06-03 Nippon Tv Housoumou Kk Biological treatment apparatus of nitrogen containing organic waste water
DE3041044C2 (en) * 1980-10-31 1984-11-29 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5000 Köln Flywheel with a rotating ring made of fibers soaked in synthetic resin
JPS61108263U (en) * 1984-12-18 1986-07-09
US5124605A (en) * 1991-01-11 1992-06-23 American Flywheel Systems, Inc. Flywheel-based energy storage methods and apparatus
US5268608A (en) * 1991-01-11 1993-12-07 American Flywheel Systems, Inc. Flywheel-based energy storage and apparatus
US5778736A (en) * 1996-06-12 1998-07-14 Dow-United Technologies Composite Products, Inc. Spiral woven composite flywheel rim
US5784926A (en) * 1996-08-27 1998-07-28 Dow-United Technologies Composite Products, Inc. Integral composite flywheel rim and hub
DE112020001446T5 (en) * 2019-03-25 2021-12-02 Aisin Takaoka Co., Ltd. FLEXIBLE FLYWHEEL
JP7101711B2 (en) * 2020-02-19 2022-07-15 アイシン高丘株式会社 Flexible flywheel

Also Published As

Publication number Publication date
JPS54109584A (en) 1979-08-28

Similar Documents

Publication Publication Date Title
US4821599A (en) Energy storage flywheel
US5566588A (en) Flywheel rotor with conical hub and methods of manufacture therefor
US4036080A (en) Multi-rim flywheel
EP0065621B1 (en) Fiber composite flywheel rim
US3964341A (en) Multi-ring filament rotor
US4123949A (en) Inertial energy storage device
US5816114A (en) High speed flywheel
EP2232098B1 (en) A flywheel
US4080845A (en) Shaped disc flywheel
US3737694A (en) Fanned circular filament rotor
EP0080860A1 (en) Flywheel
EP0081968A1 (en) Energy storage flywheels
US4458400A (en) Composite material flywheel hub
JPS6146695B2 (en)
US4020714A (en) Filament connected rim rotor
JP2002511560A (en) Flywheel with self-expanding hub
EP0026570B1 (en) Centre assemblies for flywheels, and flywheels incorporating such assemblies
JPS61140637A (en) Energy storage wheel
US4187738A (en) Rim for rotary inertial energy storage device and method
JPH0655456B2 (en) Fiber-reinforced resin matrix composite material structure and manufacturing method thereof
JPS6245412B2 (en)
US3982447A (en) Convoluted rotor structures
JP6824995B2 (en) Cylindrical rotating body
JPS5833408B2 (en) Kosoku Kaitentai
CA1270665A (en) Composite ultracentrifuge rotor