JPS6146622B2 - - Google Patents

Info

Publication number
JPS6146622B2
JPS6146622B2 JP13228679A JP13228679A JPS6146622B2 JP S6146622 B2 JPS6146622 B2 JP S6146622B2 JP 13228679 A JP13228679 A JP 13228679A JP 13228679 A JP13228679 A JP 13228679A JP S6146622 B2 JPS6146622 B2 JP S6146622B2
Authority
JP
Japan
Prior art keywords
water
temperature
heating
sensor
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13228679A
Other languages
Japanese (ja)
Other versions
JPS5657420A (en
Inventor
Shizuka Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP13228679A priority Critical patent/JPS5657420A/en
Publication of JPS5657420A publication Critical patent/JPS5657420A/en
Publication of JPS6146622B2 publication Critical patent/JPS6146622B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は局部洗浄装置に関し、その目的とする
ところは、洗浄水の温度を制御するコントローラ
ーが故障した場合でも安全性が完全に保障される
のは勿論、入水温度の変化に対する吐水温度の変
化の補正、止水時の温度の安定維持が確実に出来
る簡単な構成でコストが安い局部洗浄装置の提供
にある。 以下、図示実施例に基いて本発明を詳細に説明
する。 図中Aは枠体で、従来よりある便座の形状に形
成された座部1とこの座部1の後方に設けられた
機能収容カバー2とよりなり、上記座部1は洗浄
ノズルaを備えたカバー2に擺動自在に取りつけ
られている。 洗浄ノズルaは駒片3に穿たれており、その先
端開口が座部1の中央部、望ましくは使用者が座
部1に腰掛或いは跨がつた場合において使用者の
肛門部或いは陰部に向き、後端開口が後方斜め上
方に向くように機能部収容カバー2に取りつけら
れる。 機能部収容カバー2内には給水ラインb及びコ
ントローラーcが設けられており、上記給水ライ
ンbの一端はカバー2後部に突出して水道管等の
給水源への接続部を構成し、他端はカバー2前面
に突出して噴射ノズル4を構成する。また給水ラ
インb途中には上流側より順次電磁弁dを一体的
に備えた減圧弁e、加熱缶f、溜水缶g及び逆流
防止弁を兼ねる真空破壊弁hが介在装備されてい
る。 上記電磁弁dは枠体Aの機能部収容カバー2の
適所、例えば側面部に突出せしめて設けた操作つ
まみ6により通電が開始又は停止され、通電され
ると給水ラインbを水が減圧弁eを経て加熱缶f
に向かつて流動するようになつている。また機能
部収容カバー2には減圧弁eの設定圧力調整用つ
まみ7も突設されている。 加熱缶fは一方を開口した銅製の円筒体の上記
開口を中央部に管棒状のセラミツクヒーター8を
貫通状に取りつけた蓋9で塞いで構成し、セラミ
ツクヒーター8を軸方向に貫通する孔10を介し
て給水ラインbの上流側に連絡すると共に上記孔
10の出口、即ち加熱缶fへの入水口11より出
来るだけ離れた位置に突出状に設けられた銅管よ
りなる管路12を介して溜水室gに連絡する。 そして、この加熱缶f内には上記入水口11の
近くに後述する補正センサー13が配備される。
溜水缶gは洗浄ノズルaから約10秒間噴出せしめ
るに足る程度の洗浄水を貯溜し得る容積を有する
銅製の閉鎖された円筒体により構成され、加熱缶
fに沿わしめてこれにロウ付けされている。 この溜水缶gを加熱缶fに連絡せしめる前記管
路12は溜水缶gの一方の側壁を貫通して他方の
側壁の近くまで達するように溜水缶g内に延びて
おり、その管路12の外部にある部分の外面に安
全用バイメタルスイツチ14が装着されている。 また溜水缶gには管路12の出口15から最も
離れた位置において周面に出水孔16が開設され
ており、該出水孔16を介して給水ラインの下流
側即ち真空破壊弁h、噴射ノズル4に連絡してい
る。セラミツクヒーター8は軸方向に孔10を開
穿した棒管状の基体8′をアルミナにて形成する
と共に、その表面部に発熱体17とセンサー18
をプリント印刷して隣り合わせに配備し、更にそ
の上に極めて薄肉にアルミナ層を被覆して形成
し、加熱缶fの蓋9中央部にこれを貫通して取り
つけられる。 そして、このセラミツクヒーター8は蓋9を加
熱缶fの開口に螺着することにより、加熱缶f内
周面と適当な間隙を有するように加熱缶f内に挿
入される。 上記発熱体17とセンサー18は蓋9を加熱缶
fに螺着したとき、加熱缶f内に位置するように
設けられており、蓋9の外方に突出しているヒー
ター8の基部表面に端子19を有している。 斯るヒーター8の発熱体17及びセンサー18
はコントローラーcに電気的に接続し、該コント
ローラーcを介して先の電源に電気的に連絡して
おり、発熱体17には常時通電されている。コン
トローラーcはサイリスタが用いられ、センサー
18からの信号により、ヒーター8の発熱体17
に流れる電流の実効値を増減せしめて発熱体17
の出力を制御する。 上記安全用バイメタル14はこのコントローラ
ーcの故障により洗浄水が過熱状態になるのを防
止するためのものであり、設定温度を50℃に設定
され、管路12の表面の温度が50℃に達する電磁
弁dへの通電を停止せしめ給水を遮断するように
構成されている。尚、バイメタルスイツチ14は
加熱缶fの表面に装着することも可能である。 即ち、コントローラーcが故障した場合、加熱
缶fの吐水温度、換言すれば第3図において位置
○ロの部分の温度は下記グラフ1のの曲線のよう
になる。 加熱缶fの表面温度又は位置○ロの部分の管路1
2の表面温度はグラフ1のの曲線のようにな
る。また溜水缶gからの吐水温度、換言すれば洗
浄ノズルaより噴出する洗浄水の温度はグラフ1
のの曲線のようになる。従つてグラフ1から明
らかなように、位置○ロの部分の管路12表面に付
けたバイメタルスイツチ14の設定温度を50℃に
した場合4秒以内でバイメタルスイツチ14表面
の温度が50℃になり、バイメタルスイツチ14の
作動遅れ、電磁弁dの作動時間の遅れを加えても
7秒以内で吐水が遮断できる。 そのとき加熱缶fよりの吐水温度は70℃近くに
達しているが、溜水缶gからの吐水温度は42℃以
下であり、コントローラーcが故障した場合、の
安全性を確実に保障することが出来る。 補正センサー13は入水温度に対して吐水温度
が下記グラフ3のように変化する問題を解決する
ため及び長時間使用しなかつた後使用した場合に
おいても洗浄水を安定した温度で吐出せしめるた
めに設けるもので、補正センサー13は下記グラ
フ2に示すような特性を有し、加熱缶f内部の入
水口11に近い位置に、センサー18と直列に設
け、吐水温度38℃になるように回路のブリツジ抵
抗を調節する。 上記入水温度に対して吐水温度が変化する問題
の原因はセンサー18が発熱体17と隣合わせに
アルミナー層中に埋設されているため、吐水温度
のみを感知するのではなく、発熱体17から直接
受ける熱もあり、そのため入水温度が低く高ワツ
トが必要なときには発熱体17より受ける熱量が
増加することになるためである。 即ち、低ワツトのときより吐水温度が低くても
センサー18自身の温度はより高くなり、一方セ
ンサー18自身の作動温度はコントローラーcの
回路構成より決まるものであるから、吐水温度が
低くてもセンサー18自身の作動温度に達すれ
ば、そこで温度上昇はおさえられ吐水温度が低下
することになり、その数値がグラフ3のように入
水温度の差30℃に対して吐水温度の差9℃程度と
なつて現わる。 センサー18の特性はグラフ4に示す通りであ
り、入水温度に対するセンサー18自身の温度、
入力電力、吐水温度の関係は下記表1のようにな
る。 これは、センサー温度が46℃即ち56Ωの時に
on−offするように回路構成しているからであ
り、46℃よりも少しでも高くなるとヒーターが
off、46℃より少しでも低くなるとonに敏感にな
るためである。そこで補正センサーを入れること
により、センサー抵抗+補正センサー抵抗=合成
抵抗が80Ωの時にon、offするように回路構成を
変更する。そうすると、入水温度30℃で吐水温度
38℃とした時には(表1、表2参照)、センサー
温度は46℃(センサー抵抗は56Ω)となり補正セ
ンサーを入れない時と同じである。 ところが入水温度が5℃となつた場合、補正セ
ンサー部分の温度は多少温度上昇して12℃となつ
ているが、その時23Ωとなつて1Ω抵抗が減少し
ている。 ところが合成抵抗が80Ωで回路構成しているた
め、センサー抵抗が57Ωにならないとon−offし
ないため、センサー温度50.5℃となり、ヒータよ
りの熱がセンサーに多く伝つて来ても少し高い温
度50.5℃の時にしかon−offしなくなつている。 つまり、補正センサーをつけない時、吐水温度
30.5℃であつたものが38℃となる。このようにし
て、吐水温度は入水温度が変化しても一定にな
る。
The present invention relates to a private parts cleaning device, and its purpose is not only to completely guarantee safety even if the controller that controls the temperature of the cleaning water breaks down, but also to ensure that the temperature of the discharged water does not change due to the change in the temperature of the water entering the water. To provide a private part washing device which is simple in structure and inexpensive and can surely maintain temperature stably during correction and water stoppage. Hereinafter, the present invention will be explained in detail based on illustrated embodiments. A in the figure is a frame body, which consists of a seat 1 formed in the shape of a conventional toilet seat and a function accommodation cover 2 provided at the rear of the seat 1, and the seat 1 is equipped with a cleaning nozzle a. The cover 2 is slidably attached to the cover 2. The cleaning nozzle a is bored in the piece 3, and its tip opening faces the center of the seat 1, preferably toward the user's anus or genitals when the user is sitting or straddling the seat 1. It is attached to the functional unit housing cover 2 so that the rear end opening faces obliquely upward to the rear. A water supply line b and a controller c are provided inside the functional unit housing cover 2. One end of the water supply line b protrudes to the rear of the cover 2 and forms a connection to a water supply source such as a water pipe, and the other end is connected to a water supply source such as a water pipe. An injection nozzle 4 is formed by protruding from the front surface of the cover 2. Further, in the middle of the water supply line b, a pressure reducing valve e integrally equipped with a solenoid valve d, a heating can f, a water storage can g, and a vacuum breaker h which also serves as a backflow prevention valve are interposed in order from the upstream side. The electromagnetic valve d is energized or stopped by an operation knob 6 protruding from a suitable position, for example, a side surface of the functional part housing cover 2 of the frame A, and when energized, water flows through the water supply line b to the pressure reducing valve e. heated can f
It is becoming more and more fluid. Further, a knob 7 for adjusting the set pressure of the pressure reducing valve e is also protruded from the functional part housing cover 2. The heating can f is constructed by closing the above-mentioned opening of a copper cylindrical body with an open end with a lid 9 in which a tube-rod-shaped ceramic heater 8 is attached in a penetrating manner in the center, and a hole 10 that passes through the ceramic heater 8 in the axial direction. The water is connected to the upstream side of the water supply line b via a conduit 12 made of a copper pipe and provided in a protruding manner at a position as far as possible from the outlet of the hole 10, that is, the water inlet 11 to the heating can f. and contact the water storage room g. A correction sensor 13, which will be described later, is provided in the heating can f near the water inlet 11.
The water tank g is composed of a closed cylindrical body made of copper and has a volume capable of storing enough cleaning water to be jetted from the cleaning nozzle a for about 10 seconds, and is brazed to the heating can f. There is. The pipe line 12 that connects the water storage can g to the heating can f extends into the water storage can g so as to penetrate through one side wall of the water storage can g and reach near the other side wall. A safety bimetal switch 14 is mounted on the outer surface of the portion outside the passageway 12. In addition, a water outlet hole 16 is provided on the circumferential surface of the water tank g at a position farthest from the outlet 15 of the pipe line 12. It is in contact with nozzle 4. The ceramic heater 8 has a rod-tube-shaped base 8' with holes 10 drilled in the axial direction, which is made of alumina, and has a heating element 17 and a sensor 18 on its surface.
are printed and placed next to each other, and furthermore, an extremely thin alumina layer is coated thereon, and the lid 9 of the heating can f is attached to the center of the lid 9 through this. The ceramic heater 8 is inserted into the heating can f by screwing the lid 9 onto the opening of the heating can f so as to have an appropriate gap with the inner peripheral surface of the heating can f. The heating element 17 and the sensor 18 are provided so as to be located inside the heating can f when the lid 9 is screwed onto the heating can f. It has 19. The heating element 17 and sensor 18 of such heater 8
is electrically connected to the controller c and electrically connected to the previous power source via the controller c, and the heating element 17 is always energized. A thyristor is used as the controller c, and the heating element 17 of the heater 8 is controlled by a signal from the sensor 18.
By increasing or decreasing the effective value of the current flowing through the heating element 17
control the output of The safety bimetal 14 is to prevent the wash water from becoming overheated due to a failure of this controller c, and the set temperature is set to 50°C, and the temperature on the surface of the pipe line 12 reaches 50°C. It is configured to stop energizing the solenoid valve d and cut off the water supply. Incidentally, the bimetal switch 14 can also be attached to the surface of the heating can f. That is, if the controller c fails, the temperature of the water discharged from the heating can f, in other words, the temperature at position ○ and b in FIG. 3 will be as shown in the curve of graph 1 below. Surface temperature of heating can f or pipe line 1 at position ○B
The surface temperature of No. 2 is as shown in the curve of Graph 1. In addition, the temperature of the water discharged from the water tank g, in other words, the temperature of the cleaning water spouted from the cleaning nozzle a is shown in graph 1.
It will look like a curve. Therefore, as is clear from graph 1, if the set temperature of the bimetal switch 14 attached to the surface of the conduit 12 at position ○ and B is set to 50°C, the temperature on the surface of the bimetal switch 14 will reach 50°C within 4 seconds. Even if we include the delay in the operation of the bimetal switch 14 and the delay in the operation time of the solenoid valve d, the water discharge can be shut off within 7 seconds. At that time, the temperature of the water discharged from the heating can f has reached nearly 70°C, but the temperature of the water discharged from the water storage can g is below 42°C, ensuring safety in the event that controller c fails. I can do it. The correction sensor 13 is provided in order to solve the problem that the discharge water temperature changes with respect to the inlet water temperature as shown in graph 3 below, and to ensure that the cleaning water is discharged at a stable temperature even when it is used after not being used for a long time. The correction sensor 13 has the characteristics shown in graph 2 below, and is installed in series with the sensor 18 at a position close to the water inlet 11 inside the heating can f, and connected to the bridge of the circuit so that the water discharge temperature is 38°C. Adjust resistance. The reason for the problem that the discharge water temperature changes with respect to the incoming water temperature is that the sensor 18 is buried in the alumina layer next to the heating element 17, so it does not only sense the discharge water temperature, but directly from the heating element 17. This is because the amount of heat received from the heating element 17 increases when the inlet water temperature is low and high wattage is required. In other words, the temperature of the sensor 18 itself will be higher even if the temperature of the discharged water is lower than when the wattage is low.On the other hand, the operating temperature of the sensor 18 itself is determined by the circuit configuration of the controller c, so even if the temperature of the discharged water is low, the temperature of the sensor 18 itself will be higher. Once the operating temperature of 18 is reached, the temperature rise is suppressed and the discharge water temperature decreases, and as shown in graph 3, the difference in the discharge water temperature is about 9 °C compared to the 30 °C difference in the inlet water temperature. It appears. The characteristics of the sensor 18 are as shown in graph 4, and the temperature of the sensor 18 itself with respect to the incoming water temperature,
The relationship between input power and discharge water temperature is shown in Table 1 below. This is when the sensor temperature is 46℃ or 56Ω.
This is because the circuit is configured to turn on and off, and if the temperature rises even slightly above 46℃, the heater will turn off.
This is because if the temperature drops even slightly below OFF and 46°C, it becomes sensitive to ON. Therefore, by inserting a correction sensor, the circuit configuration is changed so that it turns on and off when the combined resistance of sensor resistance + correction sensor resistance = 80Ω. Then, when the inlet water temperature is 30℃, the outlet water temperature is
When the temperature is set to 38℃ (see Tables 1 and 2), the sensor temperature becomes 46℃ (sensor resistance is 56Ω), which is the same as when no correction sensor is installed. However, when the inlet water temperature becomes 5℃, the temperature of the correction sensor increases somewhat to 12℃, but at that time it becomes 23Ω, which is a 1Ω resistance decrease. However, since the circuit is configured with a combined resistance of 80Ω, it will not turn on or off unless the sensor resistance becomes 57Ω, resulting in a sensor temperature of 50.5℃, which is a little high even though a lot of heat from the heater is transferred to the sensor. It's starting to only turn on and off at times. In other words, when the correction sensor is not attached, the discharge water temperature
What used to be 30.5℃ becomes 38℃. In this way, the discharge water temperature remains constant even if the inlet water temperature changes.

【表】【table】

【表】 尚、この補正センサー13は第5図に示すよう
に素補正センサー13′に並列に調整抵抗20を
入れることにより下記表3に示すように計算より
求めると明らかなように、またグラフ5から直線
性も明らかなように必要温度勾配は任意にとれ、
また絶対値も直列調整抵抗21を入れることで必
要特性を任意にとることが出来る。
[Table] This correction sensor 13 can be calculated as shown in Table 3 below by inserting an adjustment resistor 20 in parallel to the elementary correction sensor 13' as shown in FIG. As the linearity is also clear from 5, the required temperature gradient can be set arbitrarily,
Also, the absolute value can be set to any required characteristic by inserting a series adjustment resistor 21.

【表】 以上の結果より連続吐水における入水温の変化
に対する吐水温度の安定性が確保できることが理
解できる。 次に長時間(例えば30分、或いは20時間)使用
しなかつた後、洗浄水を吐出せしめる場合、洗浄
水温度は熱すぎ(40℃以上)ても冷たすぎ(36℃
以下)てもいけない。 そこで、加熱缶fと溜水缶gとを熱伝導率の高
い金属で形成し接続することで保温してやろうと
するものである。 ところが、発熱体17には常時通電されている
ため、止水状態では加熱缶fの温度はセンサー温
度46℃(表1参照)に落書き、実験結果では加熱
缶f内部と溜水缶g内部の温度差は、それぞれの
缶体を熱伝導率の高い金属で形成しているけれど
も温度勾配が生じ、4℃であり、溜水缶g内部の
温度は42℃となる、従つて、吐水温度は42℃程度
となり熱すぎることになる。一方不使用時に発熱
体17へ導電を切つておくと、次の使用のときに
は最初冷たい水(冬期であれば0℃近くの水)が
出てくることになり、実用上使用不能である 補正センサー13はこの問題をも解決するもの
である。 即ち上記表2より分かるようにセンサー抵抗+
補正センサー抵抗=80Ωで回路が働くようになつ
ている。 止水すると第3図における位置○ロの部分は加熱
缶fの他の部分と温度が均一化するので、センサ
ー18も補正センサー13もほぼ同じ温度に落着
く。一方グラフ6のセンサーと補正センサーの温
度が同じ場合の合成抵抗特性より明らかなように
合成抵抗が80Ωになるとき温度は42.5℃である。
実験上加熱缶f内部と溜水缶g内部の温度差は4
℃であるので溜水缶g内部の温度は約38℃に落着
くことになる。 以上のように補正センサー13を設けることに
より止水時の洗浄水温度の安定維持が可能とな
る。以上の補正センサーによる入水温度に変化に
対する吐水温度の安定対策、長時間止水時の吐水
温度の安定対策に対する数値についてはセンサー
とヒーターとの相関関係に差があり変つてくるの
であるが、前述のグラフ5について説明したよう
に補正センサーの抵抗の温度に対する勾配は任意
にとれるため実用上使用可能の範囲に調整でき
る。又溜水缶gの温度を一定とするため補正セン
サーを使用する方法以外に溜水缶しgの温度を別
のセンサーで感知し、別の制御回路を構成し前述
の制御回路では止水した場合に温度が上昇する傾
向があるため、その上限のみを押えてやる回路上
ではいわゆるAnd回路といわれる方式も考えられ
る。 本発明は以上のように構成したので、万一コン
トローラーが故障した場合でも設定温度以上に加
熱した洗浄水が洗浄ノズルより噴射されるような
虞れは全つたくなく、その安全性を完全に保障す
ることが出来る。 また、入水温度の変化に伴なつて吐水温度が変
化することもなく、入水温度の変化に係わらず、
常に安定した吐水温度を確保することが出来ると
共に長時間使用しなかつた後でも即座に適温の洗
浄水を吐出せしめることが出来る。 更に、断水時溜水が過熱され、その後断水が解
消された時点で使用者がスイツチを入れると過熱
された熱い湯が出てくるような虞れもないし、断
続的に使用する場合ヒーターの熱イナーシヤによ
り過熱された湯が出ることもないので危険なく、
安心して使用し得る。 依つて所期の目的を達成し得る。
[Table] From the above results, it can be understood that the stability of the water discharge temperature against changes in the incoming water temperature during continuous water discharge can be ensured. Next, when flushing water is discharged after a long period of non-use (e.g. 30 minutes or 20 hours), the temperature of the flushing water should be either too hot (over 40°C) or too cold (36°C).
below). Therefore, the heating can f and the water storage can g are made of a metal with high thermal conductivity and are connected to each other in order to keep the heat insulated. However, since the heating element 17 is always energized, when the water is stopped, the temperature of the heating can f is written on the sensor temperature of 46°C (see Table 1), and the experimental results show that the temperature inside the heating can f and inside the water storage can g is Although each can body is made of a metal with high thermal conductivity, the temperature difference is 4°C due to the temperature gradient, and the temperature inside the water tank g is 42°C. Therefore, the temperature of the discharged water is The temperature would be around 42 degrees Celsius, which would be too hot. On the other hand, if the electrical conductivity to the heating element 17 is cut off when the sensor is not in use, cold water will initially come out the next time it is used (water near 0°C in winter), making it practically unusable. 13 also solves this problem. That is, as can be seen from Table 2 above, the sensor resistance +
The circuit is designed to work with the corrected sensor resistance = 80Ω. When the water is stopped, the temperature of the portion marked with position ○ and b in FIG. 3 becomes equal to that of the other portions of the heating can f, so that both the sensor 18 and the correction sensor 13 settle to approximately the same temperature. On the other hand, as is clear from the composite resistance characteristic in graph 6 when the sensor and correction sensor have the same temperature, when the composite resistance becomes 80Ω, the temperature is 42.5°C.
Experimentally, the temperature difference between the inside of the heating can f and the inside of the water storage can g is 4.
℃, so the temperature inside the water tank g will settle down to about 38℃. By providing the correction sensor 13 as described above, it becomes possible to stably maintain the temperature of the cleaning water when the water is stopped. The values for stabilizing the discharge water temperature in response to changes in the incoming water temperature using the correction sensor described above, and for stabilizing the discharge water temperature when the water is stopped for a long time, will vary due to the difference in the correlation between the sensor and the heater, but as mentioned above. As explained with respect to graph 5, since the slope of the resistance of the correction sensor with respect to temperature can be arbitrarily set, it can be adjusted within a practically usable range. In addition, in order to keep the temperature of the water tank g constant, in addition to using a correction sensor, the temperature of the water tank g can be sensed by another sensor, and a separate control circuit can be configured. Since there is a tendency for the temperature to rise in some cases, a so-called And circuit may be considered as a circuit that suppresses only the upper limit of the temperature. Since the present invention is configured as described above, even if the controller malfunctions, there is no risk that cleaning water heated above the set temperature will be sprayed from the cleaning nozzle, and its safety can be completely ensured. It can be guaranteed. In addition, the discharge water temperature does not change with changes in the inlet water temperature, and regardless of changes in the inlet water temperature,
A stable water discharge temperature can always be ensured, and even after a long period of non-use, cleaning water at an appropriate temperature can be immediately discharged. Furthermore, there is no risk that the stored water will overheat during a water outage, and then when the user turns on the switch when the water outage is resolved, overheated hot water will come out, and if used intermittently, the heater's heat will There is no risk of overheated water coming out due to inertia.
It can be used with confidence. Thus, the intended purpose can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明局部洗浄装置の実施態様を示し、
第1図は本発明装置を装備した便座の一部切欠平
面図、第2図は同一部切欠側面図、第3図は本発
明装置の要部の拡大縦断正面図、第4図は第3図
のX−X線に沿える縦断面図、第5図は本発明装
置の主要な構成要素である補正センサーの回路構
成図である。 図中、a……洗浄ノズル、b……給水ライン、
f……加熱缶、g……溜水缶、h……真空破壊
弁、8……セラミツクヒーター、11……入水
口、12……管路、13……補正センサー、14
……バイメタルスイツチ、17……発熱体、18
……センサー。
The drawings show an embodiment of the local cleaning device of the present invention,
Fig. 1 is a partially cutaway plan view of a toilet seat equipped with the device of the present invention, Fig. 2 is a partially cutaway side view of the same, Fig. 3 is an enlarged longitudinal sectional front view of the main parts of the device of the present invention, and Fig. 4 is a partially cutaway plan view of the toilet seat equipped with the device of the present invention. FIG. 5 is a longitudinal sectional view taken along the line X--X in the figure, and is a circuit configuration diagram of a correction sensor which is a main component of the device of the present invention. In the figure, a...Cleaning nozzle, b...Water supply line,
f... Heating can, g... Water storage can, h... Vacuum break valve, 8... Ceramic heater, 11... Water inlet, 12... Piping, 13... Correction sensor, 14
... Bimetal switch, 17 ... Heating element, 18
……sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 給水源と洗浄ノズルとを連絡する給水ライン
の途中に熱伝導率の高い金属で形成した加熱缶
と、これと同様に熱伝導率の高い金属で形成さ
れ、洗浄ノズルから吐水する洗浄水の10秒分程度
を溜水出来る容積を有する溜水缶とを、前者を上
流側にして相互に隣接して設け、この両者を熱伝
導率の高い金属製の管よりなる管路で連絡して該
管路又は加熱缶表面にバイメタルスイツチを装着
し、上記加熱缶内にはアルミナよりなる基体の外
表面部近くに発熱体とセンサーとを隣合わせに埋
込配設したセラミツクヒーターを配備するか又は
シーズヒーター及びシーズヒーターの表面温度と
加熱缶よりの吐水温度とを同時に感応するように
配設したセンサーを配備すると共に入水口近くに
補正センサーを設けたことを特徴とする局部洗浄
装置。
1. A heating can made of a metal with high thermal conductivity is placed in the middle of the water supply line that connects the water supply source and the cleaning nozzle, and a heating can made of a metal with high thermal conductivity is installed in the middle of the water supply line that connects the water supply source and the cleaning nozzle. A water storage can with a capacity that can store water for about 10 seconds is installed adjacent to each other with the former on the upstream side, and the two are connected by a conduit made of a metal pipe with high thermal conductivity. A bimetal switch is installed on the surface of the conduit or the heating can, and a ceramic heater in which a heating element and a sensor are embedded adjacent to each other near the outer surface of a base made of alumina is provided in the heating can. A private parts cleaning device comprising a sheathed heater and a sensor arranged to simultaneously sense the surface temperature of the sheathed heater and the temperature of water discharged from a heating can, and a correction sensor near a water inlet.
JP13228679A 1979-10-13 1979-10-13 Locally washing apparatus Granted JPS5657420A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13228679A JPS5657420A (en) 1979-10-13 1979-10-13 Locally washing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13228679A JPS5657420A (en) 1979-10-13 1979-10-13 Locally washing apparatus

Publications (2)

Publication Number Publication Date
JPS5657420A JPS5657420A (en) 1981-05-19
JPS6146622B2 true JPS6146622B2 (en) 1986-10-15

Family

ID=15077725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13228679A Granted JPS5657420A (en) 1979-10-13 1979-10-13 Locally washing apparatus

Country Status (1)

Country Link
JP (1) JPS5657420A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179640U (en) * 1986-05-01 1987-11-14
JPS6414626A (en) * 1987-07-08 1989-01-18 Nec Corp Keyboard system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113233B2 (en) * 1986-10-21 1995-12-06 松下電器産業株式会社 Sanitary washing equipment
CN104236065B (en) * 2013-06-20 2017-12-01 松下家电研究开发(杭州)有限公司 Heater and the equipment with the heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179640U (en) * 1986-05-01 1987-11-14
JPS6414626A (en) * 1987-07-08 1989-01-18 Nec Corp Keyboard system

Also Published As

Publication number Publication date
JPS5657420A (en) 1981-05-19

Similar Documents

Publication Publication Date Title
US8867906B2 (en) Dry fire protection system
US4370764A (en) Topical washing device
US4818845A (en) Storage type electric water heater having a closed circulation loop provided with a bubble pump
JPS6146622B2 (en)
JP2000213038A (en) Bidet
JP4546585B2 (en) Control device for toilet seat
US6694093B2 (en) Antifreeze system for instant water heaters
JP2000337708A (en) Electric water heater
JPS6325140B2 (en)
JP3593803B2 (en) Hot water cleaning equipment
JP5885059B2 (en) Electric water heater
JPH0643632Y2 (en) Electric instant water heater
JP3829996B2 (en) Hot water control mechanism of warm water washing toilet seat device
JP2002322713A (en) Sanitary washing device
JPS6231815Y2 (en)
JP2001263813A (en) Heat exchanger and hot water supply device using it
JP2001123509A (en) Human body bidet
FI83158B (en) Electric sauna stove
JPH0426544Y2 (en)
JPS58113446A (en) Sanitary washing apparatus
JP2016144553A (en) Toilet seat device
JPH023860B2 (en)
JP3531287B2 (en) Electric instantaneous water heater
JPS58160449A (en) Warm water tank apparatus of sanitary washing apparatus
JPS6329028Y2 (en)