JPS6146494B2 - - Google Patents

Info

Publication number
JPS6146494B2
JPS6146494B2 JP3911679A JP3911679A JPS6146494B2 JP S6146494 B2 JPS6146494 B2 JP S6146494B2 JP 3911679 A JP3911679 A JP 3911679A JP 3911679 A JP3911679 A JP 3911679A JP S6146494 B2 JPS6146494 B2 JP S6146494B2
Authority
JP
Japan
Prior art keywords
parts
flame retardant
flame
bisphenol
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3911679A
Other languages
Japanese (ja)
Other versions
JPS55131045A (en
Inventor
Kenichi Yamaji
Norio Enomoto
Kazuyoshi Ochi
Shioji Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP3911679A priority Critical patent/JPS55131045A/en
Publication of JPS55131045A publication Critical patent/JPS55131045A/en
Publication of JPS6146494B2 publication Critical patent/JPS6146494B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は難燃性の熱可塑性ポリエステル樹脂組
成物に関するものである。更に詳しくは、耐熱性
に優れ、難燃剤が高温時に成形品の表面に移行
(ブリードと称す)せず、機械的強度の高い難燃
性熱可塑性ポリエステルに関するものである。 テレフタル酸又はそのエステルと炭素数が2〜
4のグライコールから形成される熱可塑性ポリエ
ステル(以下、PEsと略す)、例えばポリエチレ
ンテレフタレート(以下、PETと略す)、ポリブ
チレンテレフタレート(以下、PBTと略す)は
一般的に、機械的性質、耐熱性、電気的特性、物
理的性質、耐薬品性、寸法安定性、並びに成形加
工性に優れるため、成形材料として、多岐に亘つ
て使用されている。これらのPEsにガラス繊維を
はじめとする強化充填剤を混合したものは機械的
強度、耐熱性が飛躍的に向上するため、機能部品
として、有効な材料として実用化されている。し
かし、PEsは着火すると火源を取り除いても消火
せず、徐々に燃焼するため特に電気、通信機分野
の用途に於いては、火災に対する安全性の観点よ
り致命的な欠陥とされ使用に適さない。従つて
PEsに難燃性を付与する目的で、例えばヘキサプ
ロモベンゼン、デカブロモビフエニルエーテル等
の有機ハロゲン化合物を添加混合したり、或いは
三酸化アンチモンの如き無機化合物の難燃助剤を
併用して達成されていた。しかしながら、これら
の有機ハロゲン化合物を配合したものは高温時に
成形品の表面にかかる有機ハロゲン化合物がブリ
ードするため外観が劣ると共に、耐熱性が悪いた
め成形加工性が劣り、かつ高温雰囲気下、成形品
が黄変着色するという欠点も有している。 本発明はかかる難燃剤のブリードを改良すると
共に、耐熱性に優れ、かつ、機械的強度の高い難
燃性PEs組成物を鋭意研究の結果、見い出したも
のである。 即ち、本発明はテレフタル酸又はそのエステル
と炭素数が2〜4のグライコールとから合成され
るPEs(A)100重量部(以下、部と略す)、ハロゲン
化ビスフエノールA或いは/及びビスフエノール
Aと、ホスゲンとから合成される末端に水酸基を
有する重合度2〜10のポリカーボネート(a)と、ハ
ロゲン化ビスフエノールA或いは/及びビスフエ
ノールAとエピクロルヒドリン或いはβ−メチル
エピクロルヒドリンとから合成される重合度5以
下のエポキシ樹脂(b)とを(b)のエポキシ基当量/(a)
の水酸基当量≧2の割合で反応してなるエポキシ
化合物(B)3〜50部、無機難燃助剤(C)0.1〜20部及
び無機充填剤(D)0〜150部よりなる難燃性樹脂組
成物を提供するものである。 難燃剤の原料成分の一つであるポリカーボネー
ト(a)は下記の構造で示される。 又、もう一方の原料成分であるエポキシ樹脂(b)
は次の構造である。 上記化合物の(a)或いは(b)は夫々単独で難燃剤と
して用いられている。しかし、例えば、(a)のみを
用いて本発明と同様の組成物を得ると、成形品の
機械的強度が低く、かつ、例えば150℃高温下に
成形品を放置すると、白色の色が茶色にまで変色
し、外観上実用的価値のないものとなる。他方、
難燃剤として(b)のみ用いて本発明と同様の組成物
を得ると、(b)がl+m≦1.5の如き融点100℃以下
となる場合は、この組成物を押出機でコンパウン
デイングする際に(b)が融け、原料がスリツプし
て、押出機へのフイードが困難となり、コンパウ
ンデイングが出来ない。更に、この場合(b)の分子
量が低いため組成物の機械的強度も非常に低いも
のとなる。又、(b)がl+m>1.5以上の分子量の
高いものとなると、融点が100℃以上となるた
め、コンパウンデイングは順調となるが、成形加
工時の熱着色を招き、高温下の成形品も熱着色を
起し、かつ、成形品の機械的強度も低いものとな
る。 本発明のポリカーボネート(a)とエポキシ樹脂(b)
を(b)のエポキシ当量/(a)の水酸基当量≧2で反応
した難燃剤を用いると、驚くべきことに上記の欠
点が改良されることが見い出された。即ち、難燃
剤の耐熱性は格段に向上し、成形加工時の熱着色
は少なく、成形品の高温下の熱着色も非常に小さ
く、機械的強度も、難燃剤を含まないものに比べ
て低下が非常に小さいものであつた。更に、本発
明の難燃剤は融点が100℃以上と高く、コンパウ
ンデイング性も優れると共に分子量が高く、かつ
PEsと相溶性が良好なため、成形品の表面にブリ
ードすることの全くないものである。 ここで本発明で用いられるポリカーボネート(a)
は通常、次のような方法で合成される。例えば、
不活性有機溶剤及びアミン類の存在下でアルカリ
水溶液に溶解したハロゲン化芳香族ジヒドロキシ
化合物をPH10〜11に調節しつつホスゲンを反応し
て得られる低重合度ハロゲン化芳香族ポリカーボ
ネートの末端クロロホーメート基をアンモニア水
およびアルカリ水溶液で加水分解することにより
得られる。 次にエポキシ樹脂(b)は通常、次のような方法で
合成される。一般的には、ハロゲン化ビスフエノ
ールA或いはこれとビスフエノールAの混合物と
エピクロルヒドリンの縮合により得られるが簡単
には、例えば、テトラプロモビスフエノールAジ
グリシジルエーテルとテトラブロモビスフエノー
ルAを触媒存在下、80〜250℃に加熱することに
よつて容易に得られる。 又、(a)と(b)の反応は通常、次のようにして行わ
れる。例えば、テトラプロモビスフエノールAジ
グリシジルエーテルとテトラブロモビスフエノー
ルAをテトラメチルアンモニウムクロライドを触
媒としてエポキシ基1当量に対して水酸基1当量
以下の割合で80〜250℃で反応せしめて(b)を得、
次いで両末端に水酸基を有する低重合度の芳香族
ポリカーボネート(a)を追加し反応せしめることに
より行われる。ここに於いて(a)と(b)との量比は(b)
のエポキシ当量/(a)の水酸基当量≧2であつて、
その比が2よりも少ないと溶融反応系の粘度が異
常に高くなり反応の続行が困難であると共に、耐
熱着色性が劣る欠点が現われる。尚、かかる比は
10を越えないのが好ましく、10を越えると(a)の反
応量が少ないため目的とする効果が発揮されず好
ましくなく、より好ましくは2〜7である。又、
異常増粘を防止する等の目的でモノフエノール
類、モノアルコール類、モノエポキシ類等の単官
能性化合物を本発明の効果を損なわない範囲で併
用して反応せしめることができる。 本発明の難燃剤、即ちエポキシ化合物(B)の量は
PEs100部当り3〜50部である。その量が3部未
満では難燃性が充分でなく、50部を越えるとPEs
の物性が著しく低下する。難燃化効果は、難燃剤
のハロゲンの絶対量で左右される。従つて、
PEs100部当りハロゲン原子として1〜30部が適
当である。 本発明で用いられるPEsは、PET及びPBTで代
表されるテレフタル酸又はそのエステルと炭素数
が2〜4のグライコールから合成されるものであ
つて、極限粘度〔η〕(フエノールと四塩化エタ
ンとの重量比6:4の混合溶媒中、30℃で測定)
が0.5〜1.5d/gのものが通常用いられる。酸
成分又はアルコール成分のそれぞれ40モル%以下
の量を例えば酸成分としてアジピン酸、セバシン
酸等の脂肪族ジカルボン酸、シクロヘキサンジカ
ルボン酸等の脂環式ジカルボン酸、イソフタル酸
等の芳香族ジカルボン酸;アルコール成分として
エチレングリコール、1,2−ブタンジオール、
1,3−ブタンジオール、1,4−ブタンジオー
ル、1,6−ヘキサンジオール等の脂肪族グリコ
ール、1,4−シクロヘキサンジメタノール等の
脂環式グリコール、4,4′−ヒドロキシエチル−
オキシフエニルプロパン等の芳香族グリコール等
が挙げられる。又、PEsはその40重量%以下の量
を例えばポリオレフイン、ポリスチレン、AS、
ABS、アクリル樹脂、酢酸ビニル樹脂、ポリア
セタール、ポリカーボネート、ポリサルホン、ポ
リフエニレンサルフアイド、各種ナイロン、ポリ
ウレタン等の熱可塑性樹脂と置換して用いること
ができる。更に、PEsとして末端に水酸基を有す
る低分子量のPEs(〔η〕:0.15〜0.5d/g)
を多官能性イソシアネートで高分子量化したポリ
エステルポリウレタンも使用することができる。 本発明での難燃助剤としては無機化合物のもの
が好ましく、例えば三酸化アンチモン、四酸化ア
ンチモン、五酸化アンチモン、ピロアンチモン酸
ソーゾ、二酸化錫、メタホウ酸バリウム、ホウ酸
亜鉛、水酸化アルミニウム、酸化ジルコニウム、
酸化モリブデン等を挙げることができる。かかる
難燃助剤の使用量はPEs100部に対して0.1〜20
部、好ましくは1〜15部であり、0.1部未満では
難燃性が劣り、20部を越えると組成物の強度が低
下する。 本発明に於ける組成物の難燃性の評価は米国の
アンダーライターズ・ラボラトリーズの規格のサ
ブジエクト94(UL94)に準じて決められる。具
体的には先づ、試片として射出成形法により長さ
5″×巾1/2″×厚さ1/16″又は1/32″のものを
作製して用いる。火源としてメタンガスを主成分
とする1000BTUのガスを使用し、内径3/8″、
長さ4″のバーナーを用いて黄色のチツプのない青
色炎の高さを3/4″に調節する。試片は長さ方向
を垂直になるように固定し、試片の下端とバーナ
ー上端との距離が3/8″となるようにセツトす
る。試片に10秒間接炎後炎を取り去り、その後の
試片の熱焼している時間(第1回目の燃焼時間)
を記録する。次いで、消火すると即座に再度、10
秒間接炎し、炎を取り去つた後の第2回目の燃焼
時間を記録する。第2回目の燃焼後、試片が赤く
残光を発している時間(残光時間)を記録する。
又、接炎時或いはその後の燃焼時間、残光時間の
間に試片の溶融した部分が下方に落下し設置した
綿を着火するか否かを観察する。 本発明での強化充填剤としては、例えばガラス
繊維、炭素繊維、炭酸カルシウム、ケイ酸カルシ
ウム、ケイ酸マグネシウム、アスベスト、硫酸カ
ルシウム、硫酸バリウム、酸化鉄、雲母、アラミ
ド繊維、ガラスビーズ、ガラスパウダー、グラフ
アイト等が挙げられる。 特にガラス繊維を用いると機械的性質、耐熱性
の大幅な向上と成形収縮率の減少といつた数々の
特徴が発揮される。ガラス繊維としては例えば、
ビニルシラン、アミノシラン、エポキシシラン系
のカツプリング剤で処理されたものが使用され、
ロービングガラス、チヨツプドストランドガラス
或いはミルドガラス等の形状で供給され得る。か
かるガラス繊維の使用量はPEs100部に対してガ
ラス繊維5〜150部、好ましくは10〜100部が望ま
しい。又、ガラス繊維の直径は0.005〜0.02mm、
その長さは0.01〜10mm、好ましくは0.05〜1mmが
望ましい。ガラス繊維の長さが余りにも短か過ぎ
ると強化効果が充分でなく、長いと成形品の表面
仕上りが悪く、成形加工性も劣ることになる。
又、ガラス繊維の量が150部を越えると組成物の
成形加工性が不良となるので好ましくない。ガラ
ス繊維のカツプリング剤は組成物の強度を左右す
る大きな因子である。かかるカツプリング剤とし
ては特にγ−アミノプロピルトリエトキシシラ
ン、N−β−(アミノエチル)−γ−アミノプロピ
ルトリメトキシシラン、γ−ウレイドプロピルト
リエトキシシラン、N−β−(アミノエチル)−γ
−アミノプロピルジメトキシメチルシラン等のア
ミノシラン系;γ−グリシドキシプロピルトリメ
トキシシラン、γ−グリシドキシプロピルトリエ
トキシシラン、β−(3,4−エポキシシクロヘ
キシル)エチルトリメトキシシラン等のエポキシ
シラン系が好ましい。 本発明の組成物は他の添加剤、例えば結晶核
剤、顔料、染料、可塑剤、離型剤、滑剤、耐熱安
定剤、酸化防止剤、紫外線吸収剤、発泡剤、カツ
プリング剤等を添加及び他の難燃剤を併用しても
さしつかえないものである。 次に本発明を更に詳細に説明するために実施例
を挙げる。尚例中、%と明示してあるのは重量%
を表わすものとする。 参考例 1 (末端に水酸基を有する低重合度ポリカーボネ
ート(a)の合成) メチレンクロライド500部、7%水酸化ナトリ
ウム水溶液340部に溶解させたテトラブロモビス
フエノールA163部とトリエチルアミン0.73部を
フラスコに仕込み、液温を20℃に保ち、PHを約11
に調節するために7%水酸化ナトリウム水溶液を
滴下しながらホスゲン25部を60分で吹き込んだ。
吹き込み終了後15分間撹拌を続ける。反応終了
後、メチレンクロライド層を中和、水洗し溶剤を
蒸発させて白色粉末状の生成物を得た。この生成
物150部をメチレンクロライド500部に溶解し、3
%水酸化ナトリウム水溶液500部と28%アンモニ
ア水30部を加え、室温にて60分撹拌した。更に撹
拌を続けながらリン酸で水層が酸性となるまで中
和し、水層を分離した後溶剤を蒸発させて白色粉
末状の低重合度ポリカーボネートを得た。このも
のは、主生成物が次の構造を有する数平均分子量
2820、重合度約4のポリカーボネートであつた。 参考例 2 (ハロゲン化エポキシ樹脂(b)の合成) テトラブロモビスフエノールAジグリシジルエ
ーテル(エポキシ当量360)720部、テトラブロモ
ビスフエノールA109部をフラスコに仕込み150℃
で加熱溶解させた後、テトラメチレンアンモニウ
ムクロライドの10%水溶液0.27部を加え徐々に昇
温して1時間後に170℃とし、更に170℃で2時間
撹拌した。反応終了後冷却固化した。生成物は主
成分が次の構造を有する融点67℃エポキシ当量
680のハロゲン化エポキシ樹脂であつた。 参考例 3 (難燃剤、即ちエポキシ化合物(B)の合成) 参考例2の反応生成物(b)に参考例1で得られた
ポリカーボネート(a)859部を加え(エポキシ当
量/水酸基当量=2/1)、テトラメチレンアン
モニウムクロライドの10%水溶液の0.17部を追加
し、225℃に昇温して3時間保持した。反応終了
後冷却固化した生成物を粉砕し黄色粒状物を得
た。このもの(イ)は融点170℃、エポキシ当量2900
であり、IRスペクトルにより主生成物が次の構
造を有することを確認した。 同様にして、表−1に示す難燃剤(ロ),(ハ),(ニ),
(ホ)を得た。
The present invention relates to flame-retardant thermoplastic polyester resin compositions. More specifically, the present invention relates to a flame-retardant thermoplastic polyester that has excellent heat resistance, does not transfer flame retardant to the surface of molded products at high temperatures (referred to as bleed), and has high mechanical strength. Terephthalic acid or its ester and carbon number is 2~
Thermoplastic polyesters (hereinafter abbreviated as PEs) formed from glycols No. 4, such as polyethylene terephthalate (hereinafter abbreviated as PET) and polybutylene terephthalate (hereinafter abbreviated as PBT), generally have good mechanical properties and heat resistance. It is widely used as a molding material because of its excellent properties such as properties, electrical properties, physical properties, chemical resistance, dimensional stability, and moldability. These PEs mixed with reinforcing fillers such as glass fiber have dramatically improved mechanical strength and heat resistance, and have been put into practical use as effective materials for functional parts. However, once PEs is ignited, it does not extinguish even if the fire source is removed and burns gradually, so it is considered a fatal defect from a fire safety perspective and is not suitable for use, especially in electrical and communications fields. do not have. Accordingly
In order to impart flame retardancy to PEs, this can be achieved by adding and mixing organic halogen compounds such as hexapromobenzene and decabromo biphenyl ether, or by using flame retardant aids such as inorganic compounds such as antimony trioxide. It had been. However, products containing these organic halogen compounds have poor appearance because the organic halogen compounds on the surface of the molded product bleed at high temperatures, and have poor moldability due to poor heat resistance. It also has the disadvantage of yellowing and discoloration. The present invention is the result of extensive research and discovery of a flame-retardant PEs composition that improves the bleeding of flame retardants, has excellent heat resistance, and has high mechanical strength. That is, the present invention uses 100 parts by weight (hereinafter referred to as parts) of PEs (A) synthesized from terephthalic acid or its ester and a glycol having 2 to 4 carbon atoms, halogenated bisphenol A or/and bisphenol A, a polycarbonate (a) with a polymerization degree of 2 to 10 having a hydroxyl group at the end synthesized from phosgene, halogenated bisphenol A or/and bisphenol A, and epichlorohydrin or β-methylepichlorohydrin. The epoxy resin (b) with a degree of 5 or less and the epoxy group equivalent of (b) / (a)
A flame retardant compound consisting of 3 to 50 parts of an epoxy compound (B), 0.1 to 20 parts of an inorganic flame retardant aid (C), and 0 to 150 parts of an inorganic filler (D), which are obtained by reacting in a proportion of hydroxyl equivalents of ≧2. A resin composition is provided. Polycarbonate (a), which is one of the raw materials for flame retardants, has the structure shown below. In addition, the other raw material component, epoxy resin (b)
has the following structure. Each of the above compounds (a) or (b) is used alone as a flame retardant. However, for example, when a composition similar to the present invention is obtained using only (a), the mechanical strength of the molded product is low, and when the molded product is left at a high temperature of, for example, 150°C, the white color turns brown. The color changes to such an extent that it becomes of no practical value in terms of appearance. On the other hand,
When a composition similar to the present invention is obtained using only (b) as a flame retardant, if (b) has a melting point of 100°C or less such as l+m≦1.5, when compounding this composition with an extruder, (b) melts and the raw material slips, making it difficult to feed the extruder, making compounding impossible. Furthermore, in this case, since the molecular weight of (b) is low, the mechanical strength of the composition is also very low. In addition, if (b) has a high molecular weight of l+m>1.5 or more, the melting point will be over 100℃, so compounding will be smooth, but it will lead to heat coloring during molding, and molded products under high temperatures will not be able to be used. Thermal coloring occurs and the mechanical strength of the molded product becomes low. Polycarbonate (a) and epoxy resin (b) of the present invention
It has surprisingly been found that the above-mentioned drawbacks can be improved by using a flame retardant prepared by reacting epoxy equivalent of (b)/hydroxyl equivalent of (a)≧2. In other words, the heat resistance of the flame retardant is significantly improved, there is little heat discoloration during molding, there is very little heat discoloration of the molded product at high temperatures, and the mechanical strength is also lower than that of products that do not contain flame retardants. was very small. Furthermore, the flame retardant of the present invention has a high melting point of 100°C or higher, has excellent compounding properties, and has a high molecular weight.
Because it has good compatibility with PEs, it does not bleed onto the surface of molded products. Polycarbonate (a) used herein in the present invention
is usually synthesized by the following method. for example,
Terminal chloroformate of low polymerization degree halogenated aromatic polycarbonate obtained by reacting a halogenated aromatic dihydroxy compound dissolved in an alkaline aqueous solution in the presence of an inert organic solvent and amines with phosgene while adjusting the pH to 10 to 11. It is obtained by hydrolyzing the group with aqueous ammonia and aqueous alkaline solution. Next, the epoxy resin (b) is usually synthesized by the following method. Generally, it is obtained by condensation of halogenated bisphenol A or a mixture of this and bisphenol A with epichlorohydrin. , easily obtained by heating to 80-250°C. Furthermore, the reaction between (a) and (b) is usually carried out as follows. For example, (b) is obtained by reacting tetrabromobisphenol A diglycidyl ether and tetrabromobisphenol A at a ratio of 1 equivalent of hydroxyl group or less to 1 equivalent of epoxy group at 80 to 250°C using tetramethylammonium chloride as a catalyst. Gain,
Next, a low degree of polymerization aromatic polycarbonate (a) having hydroxyl groups at both ends is added and reacted. Here, the quantitative ratio of (a) and (b) is (b)
Epoxy equivalent of / hydroxyl equivalent of (a) ≧2,
If the ratio is less than 2, the viscosity of the melt reaction system becomes abnormally high, making it difficult to continue the reaction, and also having the disadvantage of poor heat coloring resistance. Furthermore, this ratio is
It is preferable that the number does not exceed 10, and if it exceeds 10, the desired effect will not be exhibited because the amount of reaction (a) will be small, which is not preferable, and the number is more preferably 2 to 7. or,
For the purpose of preventing abnormal thickening, etc., monofunctional compounds such as monophenols, monoalcohols, monoepoxies, etc. may be used in combination to the extent that the effects of the present invention are not impaired. The amount of the flame retardant of the present invention, that is, the epoxy compound (B) is
It is 3 to 50 parts per 100 copies of PEs. If the amount is less than 3 parts, flame retardancy is not sufficient, and if it exceeds 50 parts, PE
The physical properties of the material deteriorate significantly. The flame retardant effect depends on the absolute amount of halogen in the flame retardant. Therefore,
A suitable amount of halogen atoms is 1 to 30 parts per 100 parts of PEs. The PEs used in the present invention are synthesized from terephthalic acid or its esters represented by PET and PBT and glycols having 2 to 4 carbon atoms, and have an intrinsic viscosity [η] (phenol and tetrachloroethane). (Measured at 30℃ in a mixed solvent with a weight ratio of 6:4)
0.5 to 1.5 d/g is usually used. An amount of 40 mol% or less of each of the acid component or alcohol component, for example, as an acid component, an aliphatic dicarboxylic acid such as adipic acid or sebacic acid, an alicyclic dicarboxylic acid such as cyclohexanedicarboxylic acid, or an aromatic dicarboxylic acid such as isophthalic acid; Alcohol components include ethylene glycol, 1,2-butanediol,
Aliphatic glycols such as 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, alicyclic glycols such as 1,4-cyclohexanedimethanol, 4,4'-hydroxyethyl-
Examples include aromatic glycols such as oxyphenylpropane. In addition, PEs can contain up to 40% by weight of polyolefins, polystyrene, AS,
It can be used in place of thermoplastic resins such as ABS, acrylic resin, vinyl acetate resin, polyacetal, polycarbonate, polysulfone, polyphenylene sulfide, various nylons, and polyurethane. Furthermore, low molecular weight PEs ([η]: 0.15-0.5d/g) with a hydroxyl group at the end are used as PEs.
It is also possible to use polyester polyurethane obtained by increasing the molecular weight with a polyfunctional isocyanate. The flame retardant aid in the present invention is preferably an inorganic compound, such as antimony trioxide, antimony tetroxide, antimony pentoxide, sozo pyroantimonate, tin dioxide, barium metaborate, zinc borate, aluminum hydroxide, zirconium oxide,
Examples include molybdenum oxide. The amount of flame retardant aid used is 0.1 to 20 per 100 parts of PEs.
parts, preferably 1 to 15 parts; if it is less than 0.1 parts, the flame retardancy will be poor, and if it exceeds 20 parts, the strength of the composition will be reduced. The evaluation of the flame retardancy of the composition in the present invention is determined according to Subdivision 94 (UL94) of the American Underwriters Laboratories standard. Specifically, first, a test piece was made into a length using an injection molding method.
A size of 5" x width 1/2" x thickness 1/16" or 1/32" is prepared and used. Use 1000 BTU of gas mainly composed of methane gas as the fire source, and use a 3/8″ inner diameter,
Adjust the height of the blue flame without yellow tips to 3/4" using a 4" long burner. Fix the specimen so that its length is vertical, and set it so that the distance between the bottom edge of the specimen and the top of the burner is 3/8". Remove the indirect flame from the specimen for 10 seconds, and then The time during which the sample is heated (first burning time)
Record. Then, as soon as the fire is extinguished, 10
Flame for seconds and record the second burn time after removing the flame. After the second combustion, record the time during which the specimen emits a red afterglow (afterglow time).
In addition, it is observed whether the molten part of the specimen falls downward and ignites the installed cotton during the time of contact with the flame or the subsequent combustion time and afterglow time. Examples of the reinforcing filler in the present invention include glass fiber, carbon fiber, calcium carbonate, calcium silicate, magnesium silicate, asbestos, calcium sulfate, barium sulfate, iron oxide, mica, aramid fiber, glass beads, glass powder, Examples include graphite. In particular, the use of glass fiber exhibits a number of features such as significantly improved mechanical properties and heat resistance, and reduced mold shrinkage. Examples of glass fibers include:
Those treated with vinyl silane, amino silane, and epoxy silane coupling agents are used.
It can be supplied in the form of roving glass, chopped strand glass or milled glass. The amount of glass fiber used is preferably 5 to 150 parts, preferably 10 to 100 parts, per 100 parts of PEs. Also, the diameter of glass fiber is 0.005~0.02mm,
Its length is preferably 0.01 to 10 mm, preferably 0.05 to 1 mm. If the length of the glass fiber is too short, the reinforcing effect will not be sufficient, and if it is too long, the surface finish of the molded product will be poor and the molding processability will be poor.
Further, if the amount of glass fiber exceeds 150 parts, the molding processability of the composition becomes poor, which is not preferable. The glass fiber coupling agent is a major factor in determining the strength of the composition. Such coupling agents include in particular γ-aminopropyltriethoxysilane, N-β-(aminoethyl)-γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, N-β-(aminoethyl)-γ
- Aminosilanes such as aminopropyldimethoxymethylsilane; Epoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, etc. is preferred. The composition of the present invention may contain other additives such as crystal nucleating agents, pigments, dyes, plasticizers, mold release agents, lubricants, heat stabilizers, antioxidants, ultraviolet absorbers, blowing agents, coupling agents, etc. It may be used in combination with other flame retardants. Next, Examples will be given to explain the present invention in more detail. In the examples, % is clearly indicated as weight %.
shall represent. Reference Example 1 (Synthesis of low polymerization degree polycarbonate (a) having a hydroxyl group at the end) 163 parts of tetrabromobisphenol A dissolved in 500 parts of methylene chloride and 340 parts of a 7% aqueous sodium hydroxide solution and 0.73 parts of triethylamine were charged into a flask. , keep the liquid temperature at 20℃, and keep the pH around 11.
To adjust the temperature, 25 parts of phosgene was blown in over 60 minutes while dropping a 7% aqueous sodium hydroxide solution.
After blowing, continue stirring for 15 minutes. After the reaction was completed, the methylene chloride layer was neutralized, washed with water, and the solvent was evaporated to obtain a white powdery product. Dissolve 150 parts of this product in 500 parts of methylene chloride and
% aqueous sodium hydroxide solution and 30 parts of 28% aqueous ammonia were added, and the mixture was stirred at room temperature for 60 minutes. Further, while stirring was continued, the aqueous layer was neutralized with phosphoric acid until it became acidic, and after separating the aqueous layer, the solvent was evaporated to obtain a white powdery low degree of polymerization polycarbonate. This product has a number average molecular weight in which the main product has the following structure:
2820, a polycarbonate with a degree of polymerization of about 4. Reference Example 2 (Synthesis of halogenated epoxy resin (b)) 720 parts of tetrabromobisphenol A diglycidyl ether (epoxy equivalent: 360) and 109 parts of tetrabromobisphenol A were placed in a flask and heated at 150°C.
After heating and dissolving the mixture, 0.27 part of a 10% aqueous solution of tetramethylene ammonium chloride was added, the temperature was gradually raised to 170°C after 1 hour, and the mixture was further stirred at 170°C for 2 hours. After the reaction was completed, it was cooled and solidified. The product is a melting point 67℃ epoxy equivalent whose main component has the following structure:
680 halogenated epoxy resin. Reference Example 3 (Synthesis of flame retardant, i.e., epoxy compound (B)) 859 parts of the polycarbonate (a) obtained in Reference Example 1 was added to the reaction product (b) of Reference Example 2 (epoxy equivalent/hydroxyl group equivalent = 2) /1), 0.17 parts of a 10% aqueous solution of tetramethylene ammonium chloride was added, and the temperature was raised to 225°C and held for 3 hours. After the reaction was completed, the solidified product was crushed to obtain yellow granules. This item (A) has a melting point of 170℃ and an epoxy equivalent of 2900
It was confirmed by IR spectrum that the main product had the following structure. Similarly, the flame retardants (b), (c), (d) shown in Table-1,
I got (e).

【表】 実施例 1 極限粘度〔η〕が0.8d/gのPBT100部、参
考例3で得られた難燃剤(イ)36部、三酸化アンチモ
ン4部、アミノシラン系カツプリング剤で処理さ
れたチヨツプドストランドタイプのガラス繊維60
部を均一に予備混合した。230〜250℃に加熱した
40mmφベント付押出機に前記予備混合物を供給
し、可塑化、混練後冷却してペレツトを得た。こ
のペレツトを3オンスの射出成形機にて試験用成
形品を作成し、機械的性質、燃焼性、熱安定性の
評価を行つた。その結果は表−2に示す。 比較例 1〜3 実施例1に於いて難燃剤(イ)の代りに表−1に示
す難燃剤(リ),(ト),(リ)を用い、その他は実施例1と
同様にして試験用成形品を得、その各評価結果を
表−2に示す。 比較例 4 実施例1に於いて難燃剤(イ)の代りにデカブロモ
ビフエニルエーテルを22部に変更し、その他は実
施例1と同様にして試験用成形品を得、その各評
価結果を表−2に示す。
[Table] Example 1 100 parts of PBT with an intrinsic viscosity [η] of 0.8 d/g, 36 parts of the flame retardant (A) obtained in Reference Example 3, 4 parts of antimony trioxide, and a carbon fiber treated with an aminosilane coupling agent. Tangled strand type glass fiber 60
parts were uniformly premixed. heated to 230-250℃
The premix was supplied to an extruder with a 40 mm diameter vent, and after being plasticized and kneaded, it was cooled to obtain pellets. Test molded products were made from the pellets using a 3-ounce injection molding machine, and mechanical properties, flammability, and thermal stability were evaluated. The results are shown in Table-2. Comparative Examples 1 to 3 Tests were conducted in the same manner as in Example 1 except that flame retardants (i), (g), and (li) shown in Table 1 were used instead of flame retardant (a) in Example 1. A molded article was obtained, and the evaluation results are shown in Table 2. Comparative Example 4 A test molded article was obtained in the same manner as in Example 1 except that 22 parts of decabromo biphenyl ether was used instead of the flame retardant (a) in Example 1, and the evaluation results were It is shown in Table-2.

【表】【table】

【表】 表−2の評価結果より明らかなように、本発明
の組成物は物性全般に優れた性能を有し、かつ高
温雰囲気での着色も少ないことが認められた。こ
れに対し比較例1のように、難燃剤(A)を用いた場
合、機械的性質が著しく低下しかつ高温雰囲気で
著しい着色を生じ実用上価値のないものであつ
た。比較例2のように難燃剤(B)を用いた場合、機
械的性質の低下、高温雰囲気で着色が認められ
た。 比較例3のように融点が100℃以下である難燃
剤(B)を用いた場合、押出機への供給が困難であ
り、かつ機械的性質の低下が著しいものであつ
た。また、比較例4のようにデカブロモビフエニ
ルエーテルを用いた場合、機械的性質の低下とと
もにブリードが激しく実用上価値のないものであ
つた。このように、本発明の組成物としてポリカ
ーボネートとハロゲン化エポキシ樹脂との反応混
合物を難燃剤として用いることにより、機械的性
質、難燃剤、熱安定性のすぐれた組成物が得られ
る。 実施例 2〜9 ポリエステルとしてPBT、PETまたはPBTと
イソシアネートの反応によつて得られたポリエス
テルウレタン、難燃助剤としてピロアンチモン酸
ソーダまたは酸化第二錫等を表−3に示す割合で
用い、実施例1と同様にしてペレツトを得、次い
で試験用成形品を作成して物性を試験した。その
結果を表−3に示す。 比較例 5 参考例3と同様にして得られた(a)/(b)のモル比
5/1の難燃剤(ニ)を用い実施例1と同様に実施
し、得られた試験用成形品の結果を表−3に示
す。
[Table] As is clear from the evaluation results in Table 2, the composition of the present invention was found to have excellent performance in all physical properties and was less likely to be colored in a high-temperature atmosphere. On the other hand, when the flame retardant (A) was used as in Comparative Example 1, the mechanical properties were significantly lowered and significant coloring occurred in a high temperature atmosphere, making it of no practical value. When flame retardant (B) was used as in Comparative Example 2, a decrease in mechanical properties and coloration were observed in a high temperature atmosphere. When a flame retardant (B) having a melting point of 100° C. or lower was used as in Comparative Example 3, it was difficult to feed the flame retardant to the extruder, and the mechanical properties were significantly deteriorated. Further, when decabromo biphenyl ether was used as in Comparative Example 4, the mechanical properties deteriorated and bleeding was severe, making it practically useless. Thus, by using the reaction mixture of polycarbonate and halogenated epoxy resin as a flame retardant in the composition of the present invention, a composition with excellent mechanical properties, flame retardant, and thermal stability can be obtained. Examples 2 to 9 PBT, PET, or a polyester urethane obtained by the reaction of PBT and isocyanate as the polyester, and sodium pyroantimonate or tin oxide as the flame retardant additive were used in the proportions shown in Table 3, Pellets were obtained in the same manner as in Example 1, and then test molded products were prepared and their physical properties were tested. The results are shown in Table-3. Comparative Example 5 Test molded product obtained by carrying out the same procedure as in Example 1 using the flame retardant (d) obtained in the same manner as in Reference Example 3 and having a molar ratio of (a)/(b) of 5/1. The results are shown in Table 3.

【表】 表3の結果から明らかなように、本発明による
実施例2〜9の成形品はいずれも優れた機械的性
質、難燃性、熱安定性を示すが、比較例5の場合
は、試験用成形品の着色が認められかつ高温雰囲
気で著しく着色した。
[Table] As is clear from the results in Table 3, the molded products of Examples 2 to 9 according to the present invention all exhibit excellent mechanical properties, flame retardance, and thermal stability, but in the case of Comparative Example 5, , Coloring of the test molded product was observed, and the coloration was significant in the high temperature atmosphere.

Claims (1)

【特許請求の範囲】[Claims] 1 テレフタル酸又はそのエステルと炭素数が2
〜4のグライコールとから合成される熱可塑性ポ
リエステル(A)100重量部、ハロゲン化ビスフエノ
ールA或いは/及びビスフエノールAとホスゲン
とから合成される末端に水酸基を有する重合度2
〜10のポリカーボネート(a)と、ハロゲン化ビスフ
エノールA或いは/及びビスフエノールAとエピ
クロルヒドリン或いはβ−メチルエピクロルヒド
リンとから合成される重合度5以下のエポキシ樹
脂(b)とを(b)のエポキシ基当量/(a)の水酸基当量≧
2の割合で反応してなるエポキシ化合物(B)3〜50
重量部、無機難燃助剤(C)0.1〜20重量部及び強化
充填剤(D)0〜150重量部よりなる難燃性樹脂組成
物。
1 Terephthalic acid or its ester and carbon number is 2
100 parts by weight of a thermoplastic polyester (A) synthesized from glycol of ~4, halogenated bisphenol A or/and a polymerization degree of 2 having a hydroxyl group at the terminal synthesized from bisphenol A and phosgene.
~10 polycarbonate (a) and an epoxy resin (b) with a degree of polymerization of 5 or less synthesized from halogenated bisphenol A or/and bisphenol A and epichlorohydrin or β-methylepichlorohydrin, with the epoxy group of (b) Equivalent/(a) hydroxyl group equivalent≧
Epoxy compound (B) formed by reacting at a ratio of 2 to 50
A flame-retardant resin composition comprising 0.1 to 20 parts by weight of an inorganic flame retardant aid (C) and 0 to 150 parts by weight of a reinforcing filler (D).
JP3911679A 1979-03-31 1979-03-31 Noncombustible resin composition Granted JPS55131045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3911679A JPS55131045A (en) 1979-03-31 1979-03-31 Noncombustible resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3911679A JPS55131045A (en) 1979-03-31 1979-03-31 Noncombustible resin composition

Publications (2)

Publication Number Publication Date
JPS55131045A JPS55131045A (en) 1980-10-11
JPS6146494B2 true JPS6146494B2 (en) 1986-10-14

Family

ID=12544103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3911679A Granted JPS55131045A (en) 1979-03-31 1979-03-31 Noncombustible resin composition

Country Status (1)

Country Link
JP (1) JPS55131045A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533679A (en) * 1982-06-28 1985-08-06 Mobay Chemical Corporation Reinforced polyester composition having an improved strength
JPS59149954A (en) * 1983-02-15 1984-08-28 Dainippon Ink & Chem Inc Flame-retardant polyester resin composition

Also Published As

Publication number Publication date
JPS55131045A (en) 1980-10-11

Similar Documents

Publication Publication Date Title
US4284550A (en) Flame retarding resin composition
US4417018A (en) Flame-retardant resin composition
KR100624629B1 (en) Flame-Retardant Aromatic Polyamide Resin Composition and Molded Object
US3876580A (en) Flame-resistant thermoplastic molding compositions and moldings made therefrom
JPS58118849A (en) Flame-retardant polyester resin composition
US3875107A (en) Flame-resistant thermoplastic molding compositions and moldings made therefrom
US5177132A (en) Flame retardant resin composition
JPS6146494B2 (en)
JPS6241257B2 (en)
JPS59149954A (en) Flame-retardant polyester resin composition
JPH0121187B2 (en)
JPS5937022B2 (en) Heat-resistant resin composition
JPH0113496B2 (en)
JPS6241967B2 (en)
JPS58101145A (en) Flame-retardant polyester resin composition
JP2675578B2 (en) Styrenic resin composition with excellent flame retardancy
JPS5930856A (en) Polyester resin composition
JPH0127104B2 (en)
JPH0657109A (en) Flame-retardant polyester resin composition
US3883474A (en) Flame resistant thermoplastic polyesters
JPS6261235B2 (en)
JPS5817150A (en) Flame-retardant polyester composition
JPS58157851A (en) Flame-retardant resin composition
JPS6343427B2 (en)
JPH02117951A (en) Polyester resin composition for forming