JPS6146439B2 - - Google Patents

Info

Publication number
JPS6146439B2
JPS6146439B2 JP3146080A JP3146080A JPS6146439B2 JP S6146439 B2 JPS6146439 B2 JP S6146439B2 JP 3146080 A JP3146080 A JP 3146080A JP 3146080 A JP3146080 A JP 3146080A JP S6146439 B2 JPS6146439 B2 JP S6146439B2
Authority
JP
Japan
Prior art keywords
composition
growth
layer
layers
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3146080A
Other languages
Japanese (ja)
Other versions
JPS56129695A (en
Inventor
Hiroshi Fujasu
Osamu Ootsuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3146080A priority Critical patent/JPS56129695A/en
Publication of JPS56129695A publication Critical patent/JPS56129695A/en
Publication of JPS6146439B2 publication Critical patent/JPS6146439B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 本発明は多元半導体とくに鉛カルコゲン化合物
から成る半導体の単結晶の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a single crystal of a multi-component semiconductor, particularly a semiconductor made of a lead chalcogen compound.

鉛PbとテルルTeとの金属間化合物であるテル
ル化鉛PbTeは赤外線を発する半導体レーザ素子
製造の際のエピタキシヤル成長用基板として用い
られる。この金属間化合物は半導体としての性質
を有するが、とくにPbとTeとが完全に等原子数
でないとき、PbまたはTeのいずれが過剰である
かによつて導電型が逆転する性質を有している。
完全に等原子数組成となつたときに最もキヤリヤ
数の少ない、真性(intrinsic)半導体にほぼ等し
い性質を有するものとなり、これはエピタキシヤ
ル成長用基板として好ましいものである。
Lead telluride (PbTe), which is an intermetallic compound of lead (Pb) and tellurium (Te), is used as a substrate for epitaxial growth in the manufacture of semiconductor laser devices that emit infrared rays. This intermetallic compound has properties as a semiconductor, but its conductivity type reverses depending on whether Pb or Te is in excess, especially when Pb and Te are not completely equal in number of atoms. There is.
When it has a completely equiatomic composition, it has the lowest carrier number and has properties almost equivalent to an intrinsic semiconductor, which is preferable as a substrate for epitaxial growth.

しかし通常の結晶成長方法ではどうしても等原
子数組成を得ることが困難で、0.01%程度の組成
のずれが生じ易く、たとえばTeが0.01%程度過
剰になると結晶は強いP型を示すようになり、こ
の逆の場合にはn型になるという問題点があつ
た。
However, with normal crystal growth methods, it is difficult to obtain a uniform atomic composition, and a composition deviation of about 0.01% tends to occur. For example, if Te is in excess of about 0.01%, the crystal will exhibit a strong P type, In the reverse case, there was a problem that it would become n-type.

本発明は前述の点に鑑みなされたもので、基板
上にそれぞれ異なる組成を有する多元半導体成長
層を積層して形成し、しかる後加熱により隣接層
間に原子の移動を行わせて両者の中間の組成を有
する単結晶層を形成する新規な多元半導体結晶の
製造方法を提供せんとするものである。
The present invention was developed in view of the above-mentioned points, and consists of stacking and forming multiple semiconductor growth layers each having a different composition on a substrate, and then heating the layers to cause atoms to move between adjacent layers. It is an object of the present invention to provide a novel method for manufacturing a multicomponent semiconductor crystal that forms a single crystal layer having a certain composition.

以下図面を用いて本発明の実施例につき詳細に
説明する。第1図、第2図は本発明を適用した
PbTe単結晶の製造工程の一例を説明するための
模型的断面図である。
Embodiments of the present invention will be described in detail below with reference to the drawings. Figures 1 and 2 show cases where the present invention is applied.
FIG. 2 is a schematic cross-sectional view for explaining an example of a PbTe single crystal manufacturing process.

まず良質のPbTe単結晶基板を用意する。この
基板1はたとえば従来周知の方法により成長させ
た単結晶中比較的良好な質の部分を選んで切り出
せばよい。
First, prepare a high-quality PbTe single crystal substrate. This substrate 1 may be formed by, for example, selecting and cutting out a relatively good quality portion of a single crystal grown by a conventionally known method.

上記基板1上に第1図に示すごとくまず0.01%
程度Teの過剰なエピタキシヤル成長層2を、形
成する。この成長は液相エピタキシヤル成長法に
よつて行い、所望組成のエピタキシヤル成長層
(以下単に成長層と言う)を得るには、液相の組
成と温度との制御によるが、この点については後
に相平衡の問題と関連してさらに詳細に説明す
る。
First, place 0.01% on the substrate 1 above as shown in Figure 1.
An epitaxially grown layer 2 with an excess of about Te is formed. This growth is performed by a liquid phase epitaxial growth method, and obtaining an epitaxially grown layer (hereinafter simply referred to as a grown layer) with a desired composition depends on controlling the composition and temperature of the liquid phase. This will be explained in more detail later in connection with the problem of phase equilibrium.

ついで上記成長層2上に、第2図に示すごとく
0.002%程度Pbの過剰な成長層3を形成する。本
実施例では両成長層2および3(以下それぞれ第
1,第2成長層という)は互いに厚さが等しいも
のとする。この2層の成長層形成ずみの基板を、
一定温度たとえば550℃に0.5時間保つ。こうすれ
ばTe過剰の第1成長層2からは第2成長層3の
方へTeが拡散により移動し、またTe不足の第2
成長層からはPbが拡散により第1成長層2の方
へ移動して両成長層の組成差は縮少される。両成
長層の組成が完全に等しくなつたとき、その組成
は、Teの原子比で表すと約50.007%となり、当
初の第1成長層の組成(Teの原子比として
50.015%)に比しかなり化学量論的組成に近づ
く。
Then, on the growth layer 2, as shown in FIG.
An excessively grown layer 3 containing about 0.002% Pb is formed. In this embodiment, both grown layers 2 and 3 (hereinafter referred to as first and second grown layers, respectively) have the same thickness. The substrate on which these two growth layers have been formed is
Keep at a constant temperature, for example 550℃, for 0.5 hours. In this way, Te will move from the first growth layer 2 with an excess of Te toward the second growth layer 3 by diffusion, and the second growth layer with an excess of Te will also move from the first growth layer 2 with an excess of Te toward the second growth layer 3.
Pb moves from the grown layer toward the first grown layer 2 by diffusion, and the difference in composition between the two grown layers is reduced. When the compositions of both grown layers become completely equal, the composition will be approximately 50.007% expressed as an atomic ratio of Te, and the composition of the first growth layer (expressed as an atomic ratio of Te) will be approximately 50.007%.
(50.015%), the composition is much closer to stoichiometric composition.

さらに化学量論的組成に近づけるためには、ず
れの度合いの大きい第1成長層を第2成長層より
も薄くすればよい。第1成長層の厚さを第2成長
層の厚さの1/3としたとき、理論上Teの原子比が
約50.002%となり、ほとんど化学量論的組成の結
晶が得られる。但し各成長層の厚さを厚くすると
組成の均一化に長時間を要するので、2層だけで
は化学量論的組成に近い組成の単結晶を分厚く形
成することは困難である。そこでこの困難を打破
するためには、比較的薄い成長層を多数積層して
形成し、この積層された成長層を加熱して各層の
厚さ方向に相互拡散を行わせるようにすればよ
い。すなわちある組成の成長層をA,これと異な
る組成の成長層をBとして表すと、基板面上に
ABABAB……という工合に交互に多数の成長層
を積し重ねて行く。こうして形成された成長層を
加熱すれば組成が均一になるまでの時間は2層の
みの場合とほぼ同一になり、不当に長時間を要せ
ずに済む。第3図は基板1上に6層の成長層を形
成した状態を示したもので、21a,21b,2
1cは組成Aに、22a,22b,22cは組成
Bにそれぞれ相当する組成を有する成長層であ
る。なお基板1には前図と同符号を付した。各層
の厚さと積層数とはキヤリヤ(電子および正孔)
の拡散距離、各層の組成、均一化の所要時間、積
層の手数等を勘案して適宜決定する。
In order to further approximate the stoichiometric composition, the first grown layer, which has a large degree of deviation, may be made thinner than the second grown layer. When the thickness of the first grown layer is set to 1/3 of the thickness of the second grown layer, the theoretical atomic ratio of Te is approximately 50.002%, and a crystal with an almost stoichiometric composition can be obtained. However, increasing the thickness of each growth layer requires a long time to make the composition uniform, so it is difficult to form a thick single crystal with a composition close to the stoichiometric composition using only two layers. In order to overcome this difficulty, a large number of relatively thin growth layers may be laminated, and the laminated growth layers may be heated to cause mutual diffusion in the thickness direction of each layer. In other words, if we represent a grown layer with a certain composition as A and a grown layer with a different composition as B, then
A large number of growth layers are stacked alternately in the process of ABABAB... If the growth layer thus formed is heated, the time required for the composition to become uniform will be approximately the same as in the case of only two layers, and it will not take an unreasonably long time. FIG. 3 shows the state in which six growth layers are formed on the substrate 1, 21a, 21b, 2
1c is a growth layer having a composition corresponding to composition A, and 22a, 22b, and 22c have a composition corresponding to composition B, respectively. Note that the same reference numerals as in the previous figure are attached to the substrate 1. The thickness of each layer and the number of layers are carriers (electrons and holes).
It is determined as appropriate by taking into account the diffusion distance of , the composition of each layer, the time required for uniformization, the number of steps required for lamination, etc.

次に所要組成の成長層の形成方法について説明
する。
Next, a method for forming a grown layer having a desired composition will be explained.

第4図はPbTeの状態図であつて、曲線イ、
ロ、ハによつて区分された領域中は液相領域、
は固相領域、およびは液相−固相の共存領
域である。また垂直方向の点線ニは化学量論的組
成を表す線、水平方向の点線ホは550℃の等温線
でる。液相エピタキシヤル成長用の炉と温度を
550℃一定に保ち、領域中で点線ホと曲線ハと
の交点Pにほぼ近い組成を有する液相に、この組
成に近い組成を有するPbTe単結晶基板を接触さ
せれば平衡状態において点Pに相当する組成の成
長層が形成される。つぎにこの基板を液相から引
き上げて、等温線ホと曲線ロとの交点Qに近い組
成を有する液相に接触させれば点Qに相当する組
成の成長層が形成される。なお点Pの組成は原子
比でTe約50.01%、点Qの組成は同じくTe約
49.98%にそれぞれ該当する。このような成長温
度と組成とは便宜上一例を挙げたにすぎず、第3
図の曲線ロは800℃以下では垂直に近いのに対
し、曲線ハは600゜近辺から斜めになつているた
め500℃に近い温度で成長を行えば領域からは
さらにTe含有量の少ない成長層が得られるの
で、加熱により組成の均一化を行なつたとき一そ
う化学量論的組成に近い結晶が得られる。
Figure 4 is a phase diagram of PbTe, showing curves A,
The region divided by b and c is a liquid phase region,
is a solid phase region, and is a liquid phase-solid phase coexistence region. Also, the vertical dotted line D represents the stoichiometric composition, and the horizontal dotted line E represents the isotherm at 550°C. Furnace and temperature for liquid phase epitaxial growth
If a PbTe single crystal substrate with a composition close to this composition is brought into contact with a liquid phase whose composition is approximately close to the intersection point P of the dotted line E and the curve C in the region while keeping the temperature constant at 550℃, the point P will be reached in an equilibrium state. A grown layer of corresponding composition is formed. Next, this substrate is lifted from the liquid phase and brought into contact with a liquid phase having a composition close to the intersection point Q between the isothermal line E and the curve B, so that a growth layer having a composition corresponding to the point Q is formed. The composition of point P is approximately 50.01% Te in atomic ratio, and the composition of point Q is also approximately Te.
This corresponds to 49.98% respectively. These growth temperatures and compositions are merely examples for convenience;
Curve B in the figure is nearly vertical below 800°C, while curve C becomes oblique from around 600°, so if growth is performed at a temperature close to 500°C, a grown layer with even lower Te content will emerge from the region. Therefore, when the composition is made uniform by heating, a crystal with a composition closer to the stoichiometric composition can be obtained.

第5図は上述のエピタキシヤル成長装置の一例
構造を示したもので、該成長装置は炉芯管23内
に設置されている。Hはヒーターである。装置自
体の構造は従来周知の半導体レーザ素子製造用の
エピタキシヤル成長装置ととくに変わりがなく、
液相を収容するポート24と、基板1を保持する
スライダー25とから成つている。ポート24に
は2箇所の液溜めがあり、それぞれに所定組成の
PbTe融液26A,26Bが収容されている。こ
の各液溜め内の液相に基板1を接触させることに
よつて以前に第2図に示したような2層の成長層
を成長させる。この後に行う組成均一化のための
熱処理は同一の炉内で行なつてもよく、別個の組
成均一化専用の炉内で行なつてむろん差支えな
い。多層の成長層を形成するには上述の操作を所
要回数繰返せばよい。もちろん同一組成の融液を
収容する液溜めを複数箇所ずつ、異なる組成の内
容が互いに隣り合うように配設して、基板を順次
移動させるようにしてもよい。
FIG. 5 shows an example structure of the above-mentioned epitaxial growth apparatus, which is installed in the furnace core tube 23. As shown in FIG. H is a heater. The structure of the device itself is not particularly different from conventional epitaxial growth devices for manufacturing semiconductor laser devices.
It consists of a port 24 that accommodates the liquid phase and a slider 25 that holds the substrate 1. There are two liquid reservoirs in port 24, each containing a predetermined composition.
PbTe melts 26A and 26B are accommodated therein. By bringing the substrate 1 into contact with the liquid phase in each reservoir, two growth layers as previously shown in FIG. 2 are grown. The subsequent heat treatment for compositional uniformity may be performed in the same furnace, or may of course be performed in a separate furnace dedicated for compositional uniformity. To form multiple growth layers, the above-described operation may be repeated as many times as required. Of course, a plurality of reservoirs containing melts of the same composition may be arranged so that the contents of different compositions are adjacent to each other, and the substrates may be sequentially moved.

本発明において所定組成の成長層を形成する方
法は液相エピタキシヤル成長法には限定されず、
気相からのエピタキシヤル成長法によつてもよ
い。とくに本発明の製造方法にはホツトウオー
ル・エピタキシヤル成長法と呼ばれる。真空内で
の気相成長法が適する。この方法は排気した筒状
の容器の底に成長させるべき材料を入れ、該容器
の上方に基板を設置して、加熱により上記材料を
昇華させて基板の下面に単結晶として固化させる
方法である。複数の成長層を形成するには筒状容
器を複数本同一の排気容器内に設置してそれぞれ
に異なつた組成の材料を入れ、基板を各容器上に
順次移動させてゆけばよい。なおこのような成長
法は雑誌ジヤーナル、オブ、アプライド、フイジ
ツクス(Journal of Applied Physics)の第50巻
第9号第5815頁から始まる論文に記載されて周知
である。本発明者らはこの成長法によりキヤリア
濃度1015個/c.c.のPbTe単結晶を製作することが
できた。この値は従来の方法によつた場合よりも
約一桁低い。なお基板はPbTeに限らず、同様の
結晶構造を有する他のイオン結晶を用いてもよ
い。
In the present invention, the method for forming a growth layer with a predetermined composition is not limited to the liquid phase epitaxial growth method,
An epitaxial growth method from a gas phase may also be used. In particular, the manufacturing method of the present invention is called a hot wall epitaxial growth method. A vapor phase growth method in a vacuum is suitable. In this method, the material to be grown is placed in the bottom of an evacuated cylindrical container, a substrate is placed above the container, and the material is sublimated by heating and solidified as a single crystal on the bottom surface of the substrate. . To form a plurality of growth layers, a plurality of cylindrical containers may be placed in the same exhaust container, materials of different compositions may be placed in each container, and the substrates may be sequentially moved onto each container. Incidentally, such a growth method is well known and is described in an article starting from page 5815 of Volume 50, No. 9, of the Journal of Applied Physics. The present inventors were able to produce a PbTe single crystal with a carrier concentration of 1015 pieces/cc using this growth method. This value is about an order of magnitude lower than with conventional methods. Note that the substrate is not limited to PbTe, and other ionic crystals having a similar crystal structure may be used.

以上説明した本発明の方法によれば、簡易な工
程によつて充分化学量論的組成に近い、したがつ
てキヤリア濃度の充分低い多元半導体結晶を製作
することができるというすぐれた利点がある。ゆ
えに化学量論的組成の結晶を得ることの困難な2
元半導体の低キヤリア濃度の結晶を製作する場合
に適用してきわめて有利である。
The method of the present invention described above has the excellent advantage that a multicomponent semiconductor crystal having a sufficiently close to stoichiometric composition and therefore a sufficiently low carrier concentration can be manufactured through simple steps. Therefore, it is difficult to obtain crystals with stoichiometric composition.
It is extremely advantageous to apply this method to the production of low carrier concentration crystals of original semiconductors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明を適用したPbTe
単結晶の製造工程の一例を説明するための模型的
断面図、第3図は同じく別の製造工程における成
長工程終了後の基板の模型的断面図、第4図は
PbTeの状態図、第5図は本発明の方法を実施す
るための装置の一例構造を示す断面図でである。 1:基板、2:第1成長層、3:第2成長層、
21a,21b,21c:A組成の成長層、21
a,22b,22c:B組成の成長層、23:炉
芯管、24:ポート、25:スライダー、26A
および26B:互いに組成の異なるPbTe融液。
Figures 1 and 2 show PbTe to which the present invention is applied.
A schematic cross-sectional view for explaining an example of a single crystal manufacturing process, FIG. 3 is a schematic cross-sectional view of a substrate after the growth process in another manufacturing process, and FIG.
The phase diagram of PbTe, FIG. 5, is a sectional view showing an example structure of an apparatus for carrying out the method of the present invention. 1: substrate, 2: first growth layer, 3: second growth layer,
21a, 21b, 21c: Growth layer of A composition, 21
a, 22b, 22c: growth layer with B composition, 23: furnace core tube, 24: port, 25: slider, 26A
and 26B: PbTe melts with mutually different compositions.

Claims (1)

【特許請求の範囲】[Claims] 1 多元半導体結晶の製造方法において、所定温
度で液相−固相共存状態と固相状を組成比に対応
して示す多元半導体結晶を、液相−固相共存領域
と固相領域の第一の境界近傍の第一の組成で結晶
成長層を形成させ、次いで液相−固相共存領域と
固相領域の第二の境界近傍の第二の組成で結晶成
長層を形成させる工程を少なくとも一回以上有
し、それぞれの成長層を高温に保つことにより第
一、第二の結晶層間に原子の移動を行わせてそれ
ぞれの結晶層の中間の組成を有する多元半導体結
晶を得ることを特徴とする多元半導体結晶の製造
方法。
1 In a method for manufacturing a multi-component semiconductor crystal, a multi-component semiconductor crystal exhibiting a liquid phase-solid phase coexistence state and a solid phase state at a predetermined temperature in accordance with the composition ratio is manufactured by manufacturing a multi-component semiconductor crystal that exhibits a liquid phase-solid phase coexistence state and a solid phase state in accordance with the composition ratio. Forming a crystal growth layer with a first composition near the boundary of or more times, and by keeping each growth layer at a high temperature, atoms move between the first and second crystal layers to obtain a multicomponent semiconductor crystal having a composition intermediate between the respective crystal layers. A method for manufacturing multi-component semiconductor crystals.
JP3146080A 1980-03-11 1980-03-11 Manufacture of multicomponent semiconductor crystal Granted JPS56129695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3146080A JPS56129695A (en) 1980-03-11 1980-03-11 Manufacture of multicomponent semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3146080A JPS56129695A (en) 1980-03-11 1980-03-11 Manufacture of multicomponent semiconductor crystal

Publications (2)

Publication Number Publication Date
JPS56129695A JPS56129695A (en) 1981-10-09
JPS6146439B2 true JPS6146439B2 (en) 1986-10-14

Family

ID=12331865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3146080A Granted JPS56129695A (en) 1980-03-11 1980-03-11 Manufacture of multicomponent semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS56129695A (en)

Also Published As

Publication number Publication date
JPS56129695A (en) 1981-10-09

Similar Documents

Publication Publication Date Title
US3206322A (en) Vacuum deposition means and methods for manufacture of electronic components
US4187126A (en) Growth-orientation of crystals by raster scanning electron beam
JPS59156996A (en) Method and device for manufacturing crystalline film of compound
JP2000119096A (en) Method for forming silicide of alkaline earth metal on silicon
JP2000294553A (en) Semiconductor structure equipped with crystalline alkaline earth metallic oxide interface having silicon
US4853078A (en) Process for growing a multi-component crystal
US3484302A (en) Method of growing semiconductor crystals
JP2754765B2 (en) Method for manufacturing compound semiconductor crystal
GB2056496A (en) Forming surface layers of hg/cd/te alloy on cd/te substrate
JPS6146439B2 (en)
JPS5938190B2 (en) Method for manufacturing Hg↓1-↓xCd↓xTe crystal
JP6042077B2 (en) Method for producing compound semiconductor thin film
US4287848A (en) Apparatus for the manufacture of epitaxial Ga1-x Alx As:Si film
US4906325A (en) Method of making single-crystal mercury cadmium telluride layers
US3823043A (en) Method of manufacturing semiconductor body
JPH03776B2 (en)
JP2700123B2 (en) Liquid phase epitaxy growth method and apparatus for HgCdTe
JPH02191321A (en) Method of forming crystal
JPS5849700A (en) Crystal growth
JPS6347940A (en) Vapor phase epitaxial growth method
JPH0271533A (en) Crystal growth method
JPH0352241A (en) Liquid-phase epitaxy
JPS5976433A (en) Liquid phase epitaxial growth apparatus
SU418921A1 (en)
JP2559757B2 (en) Hybrid board