JPS6146421B2 - - Google Patents

Info

Publication number
JPS6146421B2
JPS6146421B2 JP55019975A JP1997580A JPS6146421B2 JP S6146421 B2 JPS6146421 B2 JP S6146421B2 JP 55019975 A JP55019975 A JP 55019975A JP 1997580 A JP1997580 A JP 1997580A JP S6146421 B2 JPS6146421 B2 JP S6146421B2
Authority
JP
Japan
Prior art keywords
powder
glass
low melting
melting point
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55019975A
Other languages
Japanese (ja)
Other versions
JPS56116648A (en
Inventor
Takehiro Shibuya
Kazuo Hatano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP1997580A priority Critical patent/JPS56116648A/en
Publication of JPS56116648A publication Critical patent/JPS56116648A/en
Publication of JPS6146421B2 publication Critical patent/JPS6146421B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、P−N接合をもつシリコン素子にア
ルミニウムの蒸着膜を介してモリブデン又はタン
グステンに接続される半導体装置の被覆用組成物
に関するものである。 従来、この種の被覆用組成物としてはZnO−
B2O3−SiO2系ガラスが用いられていたが、この
系のガラスは被覆する際の封着温度が約700℃で
ある。しかし、シリコンとアルミニウムの共晶点
が577℃であるために、被覆封着時にアルミニウ
ムがシリコン素子中に拡散し、半導体装置の特性
不良を起こすことがあつた。 そこで、577℃以下の温度で被覆封着できる被
覆用組成物が要望されていた。シリコン、モリブ
デン、タングステンの熱膨張係数から考えて、被
覆用組成物の熱膨張係数は40〜50×10-7/℃であ
る必要がある。しかし、一般にガラスの場合、封
着温度を下げようとすると、熱膨張係数が大きく
なるので、被覆用組成物として要求される熱膨張
係数を得ることは難しい。そこでPbOを多量に含
む低融点ガラスに、チタン酸鉛βユークリプタイ
トなどの熱膨張係数の小さい結晶を混合した被覆
用組成物が検討されてきたが、電気特性のよい半
導体装置を得ることができなかつた。これはチタ
ン酸鉛はキユーリー点490℃の強誘電体であり、
βユークリプタイトは半導体の電気特性を劣化さ
せるリチウムを多量に含んでいるためと推定され
る。 本発明の半導体被覆用組成物は、上記の欠点を
改良したものであり、577℃以下の温度で被覆封
着でき、熱膨張係数は40〜50×10-7/℃で、電気
特性がよいばかりでなく、耐熱衝撃性にも優れて
いる。 本発明の被覆用組成物は、屈伏点が500℃以下
で、重量%でPbO70〜75%、B2O39〜15%、
SiO212〜20%、Al2O30〜4%からなる非結晶性
のPbO−B2O3系低融点ガラス粉末を50〜80%
と、ウイレマイト(2ZnO・SiO2)粉末10〜40%
と、ジルコン(ZrO2・SiO2)粉末、石英ガラス粉
末、コーデイライト(2MgO・2Al2O3・5SiO2)粉
末の1種又は2種以上を1〜30%混合して得られ
る。 本発明のウイレマイト(2ZnO・SiO2)粉末は、
低融点ガラスと反応しない、いわゆる不活性な成
分であり、ガラス中に溶けこまず、封着後におい
ても非晶質の状態にあるガラス中にその粒状の形
態をとどめて混在している。 本発明の被覆用組成物を上記の混合比に限定し
たのは次の理由による。低融点ガラスが50%以下
の場合は流動性が悪くなり過ぎて良好な被覆が得
難くなり、80%以上になると熱膨張係数が大きく
なり過ぎて、被覆封着した後にクラツクが発生し
易くなる。ウイレマイトが10%以下になると、電
気特性が悪くなり、40%以上になると流動性が悪
くなり過ぎ好ましくない。ジルコン、石英ガラ
ス、コーデイライトは耐熱衝撃性を向上させる
が、1%未満の時はあまり効果がなく、30%以上
になると流動性が悪くなり好ましくない。 さらに低融点ガラス粉末を上記の割合に限定し
たのは次の理由による。PbOが70%以下になると
屈伏点が500℃以下にならず、75%以上になると
熱膨張係数が高くなりすぎる。B2O3が9%以下
になると均一なガラスが得られ難く、15%以上に
なるとガラスが分相し易くなる。SiO2が12%以
下になるとガラスを被覆した半導体装置の逆洩れ
電流が増え、逆耐圧の波形も不安定になり、20%
以上になるとガラスの流動性が著しく悪化する。
Al2O3が4%以上になると半導体装置の逆洩れ電
流が増え、逆耐圧の波形も不安定になる。 以下、実施例により本発明を説明する。 実施例に用いた低融点ガラスを第1表に示す。
The present invention relates to a coating composition for a semiconductor device in which a silicon element having a P-N junction is connected to molybdenum or tungsten via an aluminum vapor deposition film. Conventionally, this type of coating composition has been ZnO-
B 2 O 3 -SiO 2 glass has been used, but this type of glass has a sealing temperature of approximately 700° C. during coating. However, since the eutectic point of silicon and aluminum is 577° C., aluminum diffuses into the silicon element during coating and sealing, sometimes resulting in poor characteristics of the semiconductor device. Therefore, there has been a need for a coating composition that can be coated and sealed at a temperature of 577°C or lower. Considering the thermal expansion coefficients of silicon, molybdenum, and tungsten, the coating composition must have a thermal expansion coefficient of 40 to 50×10 −7 /°C. However, in the case of glass, in general, if an attempt is made to lower the sealing temperature, the coefficient of thermal expansion increases, so it is difficult to obtain the coefficient of thermal expansion required for a coating composition. Therefore, a coating composition in which a low melting point glass containing a large amount of PbO is mixed with a crystal with a small thermal expansion coefficient such as lead titanate β-eucryptite has been considered, but it has not been possible to obtain a semiconductor device with good electrical properties. I couldn't do it. This is because lead titanate is a ferroelectric material with a Curie point of 490°C.
This is presumed to be because β-eucryptite contains a large amount of lithium, which deteriorates the electrical properties of semiconductors. The semiconductor coating composition of the present invention has improved the above-mentioned drawbacks, can be coated and sealed at a temperature of 577°C or lower, has a thermal expansion coefficient of 40 to 50 × 10 -7 /°C, and has good electrical properties. It also has excellent thermal shock resistance. The coating composition of the present invention has a yield point of 500°C or less, and contains PbO 70 to 75%, B 2 O 3 9 to 15% by weight,
50-80% amorphous PbO-B 2 O 3 low melting point glass powder consisting of 12-20% SiO 2 and 0-4% Al 2 O 3
and willemite (2ZnO・SiO 2 ) powder 10-40%
It is obtained by mixing 1 to 30% of one or more of zircon (ZrO 2 .SiO 2 ) powder, quartz glass powder, and cordierite (2MgO 2Al 2 O 3 .5SiO 2 ) powder. The willemite (2ZnO・SiO 2 ) powder of the present invention is
It is a so-called inert component that does not react with low melting point glass, does not dissolve into the glass, and remains mixed in its granular form in the amorphous glass even after sealing. The reason why the coating composition of the present invention is limited to the above mixing ratio is as follows. If the low melting point glass is less than 50%, the fluidity will be too poor and it will be difficult to obtain a good coating, and if it is more than 80%, the coefficient of thermal expansion will be too large and cracks will easily occur after the coating is sealed. . If the willemite content is less than 10%, the electrical properties will be poor, and if it is more than 40%, the fluidity will be too poor, which is not preferable. Zircon, quartz glass, and cordierite improve thermal shock resistance, but if the content is less than 1%, it is not very effective, and if it is more than 30%, the fluidity deteriorates, which is not preferable. Furthermore, the reason why the low melting point glass powder was limited to the above ratio is as follows. If PbO is less than 70%, the yield point will not be lower than 500°C, and if it is more than 75%, the coefficient of thermal expansion will be too high. When B 2 O 3 is less than 9%, it is difficult to obtain a uniform glass, and when it is more than 15%, the glass tends to undergo phase separation. When SiO 2 falls below 12%, the reverse leakage current of glass-coated semiconductor devices increases, and the reverse breakdown voltage waveform becomes unstable, resulting in a drop of 20%.
If the temperature exceeds that level, the fluidity of the glass will deteriorate significantly.
When Al 2 O 3 exceeds 4%, the reverse leakage current of the semiconductor device increases and the waveform of the reverse breakdown voltage becomes unstable. The present invention will be explained below with reference to Examples. Table 1 shows the low melting point glasses used in the examples.

【表】 第2表は本発明の低融点半導体被覆用組成物の
実施例を示すものである。
[Table] Table 2 shows examples of the low melting point semiconductor coating composition of the present invention.

【表】 実施例に用いた低融点ガラスは、光明丹、硼
酸、精製シリカ粉に、酸化アルミニウムを第1表
に示す組成になるように調合し、白金るつぼに入
れて約1100℃で60分間溶融した後、板状に形成
し、アルミナボールミルで粉砕し、350メツシユ
のステンレス篩を通過する粒度とした。 ウイレマイト、ジルコン、石英ガラス、コーデ
イライトは250メツシユのステンレス篩を通過す
る粒度にした。 上記のようにして準備した低融点ガラス粉末、
ウイレマイト粉末、ジルコン粉末、石英ガラス粉
末、コーデイライト粉末を第2表に示す割合に混
合し、これに脱イオン水を加えてスラリー状にし
た。 第2表の組成物で被覆した耐圧設計1000Vの半
導体装置の電気的特性を測定したところ、逆もれ
電流は1μA以下で、逆耐圧の波形も極めて良好
であつた。また0℃〜300℃の熱衝撃試験にも何
ら異常を認めなかつた。
[Table] The low melting point glass used in the examples was prepared by mixing Komyotan, boric acid, purified silica powder, and aluminum oxide to the composition shown in Table 1, and placing the mixture in a platinum crucible at approximately 1100°C for 60 minutes. After melting, it was formed into a plate shape and ground in an alumina ball mill to a particle size that would pass through a 350 mesh stainless steel sieve. Willemite, zircon, quartz glass, and cordierite were made to a particle size that would pass through a 250 mesh stainless steel sieve. Low melting point glass powder prepared as above,
Willemite powder, zircon powder, quartz glass powder, and cordierite powder were mixed in the proportions shown in Table 2, and deionized water was added to form a slurry. When the electrical characteristics of a semiconductor device coated with the composition shown in Table 2 and having a breakdown voltage design of 1000V were measured, the reverse leakage current was 1 μA or less, and the waveform of the reverse breakdown voltage was also very good. Further, no abnormality was observed in the thermal shock test at 0°C to 300°C.

Claims (1)

【特許請求の範囲】 1 屈伏点が500℃以下で、重量%でPbO70〜75
%、B2O39〜15%、SiO212〜20%、Al2O30〜4%
からなる非結晶性のPbO−B2O3系低融点ガラス
粉末と、ウイレマイト粉末とジルコン粉末、石英
ガラス粉末、コーデイライト粉末の1種又は2種
以上とを混合してなり、その混合割合が重量比
で、 【表】 コーデイライト粉末 〓
の範囲にある低融点半導体被覆用組成物。
[Claims] 1. The yield point is 500°C or less, and PbO70 to 75 in weight%
%, B2O3 9-15 % , SiO2 12-20%, Al2O3 0-4 %
Amorphous PbO-B 2 O 3 -based low melting point glass powder consisting of the following is mixed with one or more of willemite powder, zircon powder, quartz glass powder, and cordierite powder, and the mixing ratio is In terms of weight ratio, [Table] Cordierite powder 〓
A low melting point semiconductor coating composition within the range of .
JP1997580A 1980-02-20 1980-02-20 Semiconductor covering compound Granted JPS56116648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1997580A JPS56116648A (en) 1980-02-20 1980-02-20 Semiconductor covering compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1997580A JPS56116648A (en) 1980-02-20 1980-02-20 Semiconductor covering compound

Publications (2)

Publication Number Publication Date
JPS56116648A JPS56116648A (en) 1981-09-12
JPS6146421B2 true JPS6146421B2 (en) 1986-10-14

Family

ID=12014184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1997580A Granted JPS56116648A (en) 1980-02-20 1980-02-20 Semiconductor covering compound

Country Status (1)

Country Link
JP (1) JPS56116648A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229145A (en) * 1985-07-30 1987-02-07 Nippon Electric Glass Co Ltd Glass for coating semiconductor
CN103046113B (en) * 2011-10-11 2015-04-15 中国科学院新疆理化技术研究所 Compound lead borate and nonlinear optical crystal of lead borate, preparation method thereof and purpose thereof

Also Published As

Publication number Publication date
JPS56116648A (en) 1981-09-12

Similar Documents

Publication Publication Date Title
US4743302A (en) Low melting glass composition
US3650778A (en) Low-expansion, low-melting zinc phosphovanadate glass compositions
US4542105A (en) Glass composition for covering semiconductor element
US4310357A (en) Low temperature sealing glass
KR900000624B1 (en) Sealing glass composition with lead calcium titanic acid tefiller
JPS638059B2 (en)
JPH0127982B2 (en)
JPH0222023B2 (en)
JPS6146421B2 (en)
WO2020071094A1 (en) Semiconductor element coating glass and semiconductor coating material using same
EP0258408A1 (en) A LOW MELTING GLASS COMPOSITION CONTAINING PbO AND V 2?O 5?.
JPS6146420B2 (en)
JPH0372023B2 (en)
JP3125971B2 (en) Low temperature sealing composition
JP3417066B2 (en) Sealing material
JP3157695B2 (en) Low temperature sealing composition
JPS6238301B2 (en)
JP2957087B2 (en) Low temperature sealing composition
JPS58190836A (en) Manufacture of glass composition for covering semiconductor
JPS6011467B2 (en) Glass-coated semiconductor device and its manufacturing method
JPS6150890B2 (en)
JPH11106235A (en) Composition for sealing
JPS6046053B2 (en) Low melting point sealing composition
TW202411171A (en) Glass for semiconductor element covering, material for semiconductor element covering, and sintered body for semiconductor element covering
JPH0476337B2 (en)