JPS6146249B2 - - Google Patents
Info
- Publication number
- JPS6146249B2 JPS6146249B2 JP8761476A JP8761476A JPS6146249B2 JP S6146249 B2 JPS6146249 B2 JP S6146249B2 JP 8761476 A JP8761476 A JP 8761476A JP 8761476 A JP8761476 A JP 8761476A JP S6146249 B2 JPS6146249 B2 JP S6146249B2
- Authority
- JP
- Japan
- Prior art keywords
- wire
- machining
- vibration
- workpiece
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003754 machining Methods 0.000 claims description 35
- 239000012530 fluid Substances 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 7
- 239000000110 cooling liquid Substances 0.000 claims 1
- 239000002826 coolant Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/38—Influencing metal working by using specially adapted means not directly involved in the removal of metal, e.g. ultrasonic waves, magnetic fields or laser irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H11/00—Auxiliary apparatus or details, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Description
【発明の詳細な説明】
本発明はワイヤー電極を使用した通電加工装置
の改良に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in electrical processing equipment using wire electrodes.
ワイヤーカツトは、ワイヤー電極を一方のリー
ルから他方のリールに引張りながら巻き取り、こ
の移動するワイヤーはほゞ直角に被加工体を対向
して加工間隙を形成し、この間隙に水、油等の加
工液を供給すると共に、電圧パルスを印加してパ
ルス放電を繰返すことによつて主として放電加工
作用により加工する。加工はワイヤーの間隙方向
Zに直角なX,Y方向の所要の形状加工送りをワ
イヤー電極及び被加工体の相対間に与えて加工す
る。ところでワイヤーは線径が0.05〜0.5mmφ程
度の細線を用い、これを充分な張力を与えて緊張
させた状態で加工するから被加工体を移動通過す
るとき僅かのアーク・短絡によつても溶断等によ
り切れてしまう。 In the wire cutter, a wire electrode is pulled and wound from one reel to the other, and this moving wire faces the workpiece at a nearly right angle to form a machining gap, and this gap is filled with water, oil, etc. Machining is performed mainly by electrical discharge machining by supplying machining fluid and repeating pulse discharge by applying voltage pulses. Machining is performed by applying a required shape machining feed in the X and Y directions perpendicular to the wire gap direction Z between the wire electrode and the workpiece. By the way, the wire used is a thin wire with a wire diameter of about 0.05 to 0.5 mmφ, and since it is processed under sufficient tension, even a slight arc or short circuit will cause it to melt as it moves through the workpiece. It gets cut off due to etc.
本発明は、このような問題点を解消するため
に、ワイヤー電極にガイドを振動させることによ
つて振動を付与する振動装置を設けると共に、該
振動装置を冷却する冷却装置を設けてなるもので
ある。 In order to solve these problems, the present invention includes a vibration device that applies vibration to the wire electrode by vibrating a guide, and a cooling device that cools the vibration device. be.
ワイヤーカツトに於ける加工間隙は微小なもの
であるため、加工中に短絡を起こしやすく、又間
隙から加工屑が円滑に排除されないと、この加工
屑を介して短絡を生じたりアーク等の異常放電が
発生したりすることになるが、振動装置を設けて
ガイド間のワイヤーに振動を生じさせることによ
り、加工屑の排除が円滑に行なわれるようにな
り、アークや短絡の発生が減少し、又短絡等が発
生しても、これを機械的に速やかに解消すること
ができ、安定した加工屑を継続的に行なえるよう
になる。 Since the machining gap in a wire cut is minute, short circuits are likely to occur during machining, and if machining debris is not smoothly removed from the gap, short circuits may occur through the machining debris, or abnormal electrical discharges such as arcs may occur. However, by installing a vibrating device to generate vibrations in the wire between the guides, machining debris can be removed smoothly, arcing and short circuits can be reduced, and Even if a short circuit or the like occurs, it can be quickly resolved mechanically, making it possible to continue stable machining of scraps.
また加工中連続して振動を作用することにより
振動装置自体及び振動作用部分が加熱されるが、
本発明はこれを冷却する冷却装置を設けたから過
熱することなく、過熱により振動装置の振動発生
状態が変化したり、ワイヤーガイド等の機械装置
が精度を低下させたり、ワイヤーが伸びて線径が
細くなつたり、所定の張力、振動が作用しなかつ
たり、また断線したりすることなく安定な振動に
より安定した加工を行なえるよう改良したもので
ある。 Also, by applying continuous vibration during processing, the vibration device itself and the vibration-acting parts are heated.
The present invention is equipped with a cooling device to cool this down, so it will not overheat, and overheating will not change the vibration generation state of the vibration device, reduce the accuracy of mechanical devices such as wire guides, or cause the wire to stretch and cause the wire diameter to change. This has been improved so that stable processing can be performed by stable vibration without becoming thin, not being subjected to a predetermined tension or vibration, or breaking.
以下一実施例により本発明を説明する。 The present invention will be explained below with reference to one example.
1はワイヤー電極で、ドラム2から送り出さ
れ、他のアーク3に巻き取られる。4及び5は被
加工体6と対向する加工部に於けるワイヤー電極
1の軸線方向の走行移動を案内するガイドで、こ
のガイド間をワイヤー1は図示しないブレーキ装
置、引張り駆動装置等により所定の張力をもつて
矢印のように移動し、対向して配置される被加工
体6との間に加工間隙が形成される。間隙にはノ
ズル7,8から加工液(水、油等)が供給され、
カツト及び被加工体間に通電が行なわれて加工さ
れる。9はガイド5の上下移動装置、10は超音
波等振動子で、この振動がガイド4に固着した一
体に形成される振動先端部材にホーン11等の伝
達子を介して伝達され、ガイド4が振動すること
によつてワイヤー1に振動が付与される。従つ
て、ガイド4は、ワイヤー1の走行移動を案内す
る作用と、ワイヤー1に振動を付与する作用の両
作用をなすことになる。12は振動子、ホーン等
振動装置全体及び振動を作用するガイド4部分に
亘つて冷却液流通路を形成する部材で、この中に
パイプ13より冷却液が供給流通される。 A wire electrode 1 is sent out from a drum 2 and wound around another arc 3. Reference numerals 4 and 5 denote guides that guide the axial movement of the wire electrode 1 in the processing section facing the workpiece 6, and the wire 1 is moved between these guides by a brake device, tension drive device, etc. (not shown). It moves in the direction of the arrow with tension, and a machining gap is formed between it and the workpiece 6 disposed opposite to it. Machining fluid (water, oil, etc.) is supplied to the gap from nozzles 7 and 8.
Electricity is applied between the cut and the workpiece to process it. 9 is a vertical movement device for the guide 5; 10 is an ultrasonic vibrator; this vibration is transmitted to the integrally formed vibrating tip member fixed to the guide 4 via a transmitter such as a horn 11; Vibrations impart vibrations to the wire 1. Therefore, the guide 4 has both the function of guiding the running movement of the wire 1 and the function of imparting vibration to the wire 1. Reference numeral 12 denotes a member that forms a coolant flow path over the entire vibrating device such as a vibrator and a horn, and the portion of the guide 4 that applies vibration, into which the coolant is supplied and distributed from a pipe 13.
被加工体6は図示しない加工テーブルに固定さ
れ、通常この加工テーブルの2次元、X,Y軸の
加工送りにより目的の形状加工が行なわれる。そ
してこの加工中、ワイヤー電極1にはガイド4,
5間に適当な引張り張力が働き緊張した状態で矢
印方向に移動する。ガイド4,5間を緊張移動す
るワイヤー1に対してガイド4部分で振動を与え
ると、ガイド4,5間のワイヤー1に波状振動が
作用して被加工体と対向する部分に伝播作用す
る。ワイヤー1に生じさせる振動は、両端ガイド
4,5部が節、中央部が腹となる基本振動より
も、腹が2以上形成される次数の高い倍振動を生
じさせることが望ましい。しかして、振動数Fは
次の式(1)で与えられる。 The workpiece 6 is fixed to a processing table (not shown), and is normally machined into a desired shape by machining feed in the two-dimensional X and Y axes of this processing table. During this processing, the wire electrode 1 has a guide 4,
An appropriate tensile force is applied between the parts 5 and 5, and the parts move in the direction of the arrow under tension. When the wire 1 moving under tension between the guides 4 and 5 is vibrated at the guide 4 portion, the wave-like vibration acts on the wire 1 between the guides 4 and 5 and propagates to the portion facing the workpiece. It is preferable that the vibration generated in the wire 1 is a higher-order harmonic vibration in which two or more antinodes are formed, rather than a fundamental vibration in which the guides 4 and 5 at both ends are nodes and the central part is an antinode. Therefore, the frequency F is given by the following equation (1).
n:振動次数 L:ガイド間ワイヤ長さ(cm) γ:ワイヤ電極の単位長さ重量(Kg/cm) P:張力(Kg) g:重力加速度981(cm/S2) 従つて振動次数nは次式のようになる。 n: Vibration order L: Wire length between guides (cm) γ: Wire electrode unit length weight (Kg/cm) P: Tension (Kg) g: Gravitational acceleration 981 (cm/S 2 ) Therefore, vibration order n is as follows.
(2)式より、ガイド4,5間のワイヤー1に2以上
の腹と節がある波状振動を発生させるためにはn
≧2の条件を満たせばよく、条件設定により容易
に波状振動を発生させることができ、これが作用
することにより間隙にアーク・短絡が発生しても
機械的にそれを消弧させることができ、加工屑と
か気泡の排除効果の高まり、またガイド部分の接
触摩擦抵抗も著しく軽減して円滑なワイヤーガイ
ドができ、張力も充分作用でき、又、ワイヤー1
の振動が基本振動であると加工面の形状が太鼓状
の曲線となる虞があるが、次数の高い倍振動とす
ればそのような虞はなくなり、又、パルス放電は
振動の腹の部分で発生しやすいものであるから、
次数の高い倍振動を行なわせれば放電点の分散性
が良くなるため、集中放電による断線が防止され
ると共に、印加される電圧パルスに対するパルス
放電の発生比率が増大し加工能率が向上すること
になり、これ等振動による相乗効果により細線ワ
イヤー1は断線することなく安定した加工を続け
ることができ、加工速度が向上する。又、アーク
放電を繰返すことによつて加工を行なうワイヤー
カツトに於ては、加工液の比抵抗が低いと電解加
工作用が増大し、間隙に於て良好なパルス放電が
発生しにくくなるため、従来は比抵抗の高い加工
液を使わなければならなかつたが、振動によるワ
イヤー1の加工面へのへの周期的な近接動作が放
電発生のトリガ作用をなし、パルス放電が発生し
やすくなるため、従来よりも比抵抗の低い加工液
の使用が可能となり、従来水道水をイオン交換理
した比抵抗105〜106Ωcm程度の高抵抗液を使用し
ていたのに対し、本発明によれば比抵抗103〜104
Ωcm程度の水を加工液としても安定した加工を行
なうことができ、間隙を易放電状態にして加工電
流を増大し加工速度を高められる。また加工液と
してイオン交換樹脂の処理しない水道水を直接利
用することができ、またイオン交換処理するにし
ても処理時間を少なくできる効果がある。 From equation (2), in order to generate wave-like vibration with two or more antinodes and nodes in the wire 1 between the guides 4 and 5, n
It is only necessary to satisfy the condition ≧2, and it is possible to easily generate wave-like vibration by setting the conditions, and even if an arc or short circuit occurs in the gap, it can be extinguished mechanically. The effect of removing machining waste and air bubbles is enhanced, and the contact friction resistance of the guide part is also significantly reduced, allowing for smooth wire guidance and sufficient tension.
If the vibration is the fundamental vibration, there is a risk that the shape of the machined surface will become a drum-shaped curve, but if it is a high-order harmonic vibration, this risk disappears, and the pulse discharge is at the antinode of the vibration. Because it is easy to occur,
If high-order double vibration is performed, the dispersion of the discharge points will improve, which will prevent wire breakage due to concentrated discharge, and will increase the ratio of pulsed discharge to the applied voltage pulse, improving machining efficiency. Due to the synergistic effect of these vibrations, the thin wire 1 can continue to be stably processed without breaking, and the processing speed is improved. In addition, in wire cutting, which is processed by repeated arc discharge, if the specific resistance of the machining fluid is low, the electrolytic machining effect will increase, making it difficult to generate a good pulse discharge in the gap. Conventionally, it was necessary to use a machining fluid with high specific resistance, but the periodic movement of the wire 1 approaching the machining surface due to vibration acts as a trigger for the generation of electric discharge, making it easier to generate pulsed electric discharge. It is now possible to use a machining fluid with a lower resistivity than before, and whereas conventionally a high-resistance fluid with a resistivity of about 10 5 to 10 6 Ωcm was used by ion-exchanging tap water, the present invention Specific resistance: 10 3 ~ 10 4
Stable machining can be performed even with water of about Ωcm as the machining fluid, and the machining current can be increased by making the gap easy to discharge, increasing the machining speed. In addition, tap water that is not treated with ion exchange resin can be used directly as the processing liquid, and even if ion exchange treatment is performed, the treatment time can be reduced.
ワイヤー電極1に作用させる振動振巾は通常1
〜3μ程度、場合によつては5μ程度まで利用で
き、振動周波数は100Hz以上、好ましくは10K〜
50KHzの音波を作用させる。例えば、0.2mmφの
Cu電極を用い、P=800g、L=10cm、F=
10KHzとすれば、γ=2.8×106Kg/cmであるから
(2)式より振動次数nは約12となる。 The vibration amplitude applied to the wire electrode 1 is usually 1
It can be used up to about 3μ, in some cases up to about 5μ, and the vibration frequency is 100Hz or more, preferably 10K or more.
Apply 50KHz sound waves. For example, 0.2mmφ
Using Cu electrode, P=800g, L=10cm, F=
If it is 10KHz, γ=2.8×10 6 Kg/cm.
From equation (2), the vibration order n is approximately 12.
しかしてこのような振動を継続させると振動発
生電圧及びその振動伝播作用部等が発熱し加熱さ
れるが、これらを包囲するよう部材12が設けら
れ、パイプ13から冷却水を流通して冷却してい
る。したがつてこれにより振動発生装置は過熱さ
れることがなく安定して所定の振動を発生し、振
巾、周波数等の変化ない安定振動を発生作用す
る。また振動が作用されるガイド等機械装置部分
も過熱されて伸縮し機械精度を低下することなく
安定した案内ガイドをすることができ、高精度の
安定加工を可能とする。またガイド部分の加熱に
よつてワイヤー電極が伸びたり細くなつてするこ
ともなく、所定の寸法張力をもつて加工部分を移
動させることができて、断線もなく、安定な振動
により安定した加工を継続させることができる。 However, when such vibrations are continued, the vibration generation voltage and its vibration propagation action parts generate heat and are heated, but a member 12 is provided to surround them, and cooling water is passed through a pipe 13 to cool them down. ing. Therefore, the vibration generating device is not overheated and can stably generate a predetermined vibration, and can generate stable vibrations with no change in amplitude, frequency, etc. In addition, parts of mechanical devices such as guides that are subjected to vibrations are also overheated and expand and contract, allowing stable guidance to be performed without deteriorating machine precision, making it possible to perform stable machining with high precision. In addition, the wire electrode does not stretch or become thinner due to heating of the guide part, and the machining part can be moved with a predetermined dimensional tension, and there is no wire breakage, and stable vibration allows stable machining. It can be continued.
このように本発明はワイヤーカツトの加工効果
を著しく向上させることができ、実用上極めて効
果が大きい。 As described above, the present invention can significantly improve the processing effect of wire cuts, and is extremely effective in practice.
なお振動装置はガイド5に設けても、ガイド
4,5の両方に設けてもよい。そして冷却装置は
加工部分に供給する加工液を利用してもよく、ま
た液流以外に送風、蒸発熱等を利用した冷却装置
が同様に利用できる。 Note that the vibration device may be provided on the guide 5 or on both the guides 4 and 5. The cooling device may utilize the machining fluid supplied to the machining portion, and cooling devices that utilize air blowing, heat of evaporation, etc. other than the liquid flow can also be used.
図面は本発明の一実施例装置である。
1はワイヤー電極、2,3はリール、4,5は
ガイド、6は被加工体、7,8は加工液供給ノズ
ル、10は振動子、11は振動伝達子、12は冷
却液流路形成部材、13は冷却液供給パイプであ
る。
The drawing shows an embodiment of the present invention. 1 is a wire electrode, 2 and 3 are reels, 4 and 5 are guides, 6 is a workpiece, 7 and 8 are machining fluid supply nozzles, 10 is a vibrator, 11 is a vibration transmitter, and 12 is a coolant flow path formation The member 13 is a coolant supply pipe.
Claims (1)
体間の間隙に加工液を供給すると共に電圧パルス
を印加し、前記ワイヤー電極または被加工体に加
工形状送りを与えて加工する通電ワイヤーカツト
装置に於て、被加工体と対向する加工部に於ける
ワイヤー電極の軸線方向の走行移動を案内するガ
イドと一体に振動先端部材が形成される振動装置
と、該振動装置を冷却する冷却装置とを設けたこ
とを特徴とする通電ワイヤーカツト装置。 2 特許請求の範囲第1項に記載される冷却装置
は、冷却液を流通させるようにしたものであるこ
とを特徴とする通電ワイヤーカツト装置。[Claims] 1. Supplying machining fluid to a gap between a wire electrode and a workpiece disposed opposite to each other and applying a voltage pulse to give a machining shape feed to the wire electrode or the workpiece. A vibrating device in which a vibrating tip member is formed integrally with a guide for guiding the axial movement of a wire electrode in a machining section facing a workpiece in an energized wire cutting device for machining, and the vibrating device An energizing wire cutting device characterized by being provided with a cooling device for cooling the energized wire. 2. An energized wire cutting device characterized in that the cooling device according to claim 1 is configured to allow a cooling liquid to flow through it.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8761476A JPS5312599A (en) | 1976-07-21 | 1976-07-21 | Cutting apparatus in use of electrically conductive wire |
GB19391/77A GB1548817A (en) | 1976-05-14 | 1977-05-09 | Electrical discharge maschining |
US05/796,369 US4205213A (en) | 1976-05-14 | 1977-05-12 | Method of and apparatus for electrical discharge machining with a vibrating wire electrode |
IT49396/77A IT1079657B (en) | 1976-05-14 | 1977-05-13 | METHOD AND APPARATUS FOR ELECTRIC DISCHARGE PROCESSING WITH A VIBRATING METAL WIRE ELECTRODE |
DE2721804A DE2721804C2 (en) | 1976-05-14 | 1977-05-13 | Method and device for wire EDM |
FR7714980A FR2350919A1 (en) | 1976-05-14 | 1977-05-16 | Electrodischarge machining using travelling wire electrode - where wire is oscillated at high frequency to increase rate of machining |
AU30565/77A AU513869B2 (en) | 1976-05-14 | 1977-11-11 | Electrical discharge machining with vibrating wire electrode |
US06/060,346 US4321450A (en) | 1976-05-14 | 1979-07-25 | Method of and apparatus for electrical discharge machining with a vibrating wire electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8761476A JPS5312599A (en) | 1976-07-21 | 1976-07-21 | Cutting apparatus in use of electrically conductive wire |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5312599A JPS5312599A (en) | 1978-02-04 |
JPS6146249B2 true JPS6146249B2 (en) | 1986-10-13 |
Family
ID=13919846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8761476A Granted JPS5312599A (en) | 1976-05-14 | 1976-07-21 | Cutting apparatus in use of electrically conductive wire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5312599A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB8704196D0 (en) * | 1987-02-23 | 1987-04-01 | British American Tobacco Co | Tobacco reconstitution |
GB8704197D0 (en) * | 1987-02-23 | 1987-04-01 | British American Tobacco Co | Tobacco reconstitution |
-
1976
- 1976-07-21 JP JP8761476A patent/JPS5312599A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5312599A (en) | 1978-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4321450A (en) | Method of and apparatus for electrical discharge machining with a vibrating wire electrode | |
TWI383852B (en) | Electrical discharge machining | |
US1984809A (en) | Electric arc welding apparatus | |
JP2002178177A (en) | Laser beam welding machine | |
US4559115A (en) | Method of and apparatus for machining ceramic materials | |
JPS608200B2 (en) | A device that cuts materials by spark discharge | |
JPS6146249B2 (en) | ||
JPS6227937B2 (en) | ||
US4424433A (en) | Method and apparatus for electrically machining a conductive workpiece with isotropic ultrasonic-waves radiation | |
US4383159A (en) | Method of and apparatus for electrical machining with a vibrating wire electrode | |
JPH03478A (en) | Method and device for plasma cutting | |
US4458130A (en) | Immersion-type traveling-wire electroerosion machining method | |
JPH0440126B2 (en) | ||
JPS6111733B2 (en) | ||
JPS5824216B2 (en) | Current-carrying wire cutting device | |
JP2017100264A (en) | Wire electric discharge device | |
JPS5852773B2 (en) | Arc cutting method | |
JPS5929370B2 (en) | Current-carrying wire cutting device | |
JPS59332B2 (en) | Wire-cut electrical discharge machining equipment | |
JPS6028615B2 (en) | Wire-cut electrical discharge machining method | |
JPS5851019A (en) | Wire cut electric discharge machining device | |
JPS6232052B2 (en) | ||
JP2002337026A (en) | Electric discharge machining device and method | |
JPS5949134B2 (en) | Current-carrying wire cutting device | |
FR2350919A1 (en) | Electrodischarge machining using travelling wire electrode - where wire is oscillated at high frequency to increase rate of machining |