JPS6146235B2 - - Google Patents

Info

Publication number
JPS6146235B2
JPS6146235B2 JP13114879A JP13114879A JPS6146235B2 JP S6146235 B2 JPS6146235 B2 JP S6146235B2 JP 13114879 A JP13114879 A JP 13114879A JP 13114879 A JP13114879 A JP 13114879A JP S6146235 B2 JPS6146235 B2 JP S6146235B2
Authority
JP
Japan
Prior art keywords
welding
speed
weaving
root gap
welding speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13114879A
Other languages
Japanese (ja)
Other versions
JPS5653879A (en
Inventor
Takao Mihara
Toshiaki Morichika
Masahiro Inui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP13114879A priority Critical patent/JPS5653879A/en
Publication of JPS5653879A publication Critical patent/JPS5653879A/en
Publication of JPS6146235B2 publication Critical patent/JPS6146235B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は自動裏波溶接方法に関する。[Detailed description of the invention] The present invention relates to an automatic uranami welding method.

従来、ガスシールドアーク溶接法に於ける裏波
溶接は、シールドガスにCO2+Ar,O2+CO2
Ar等の混合ガスを用い、又アーク点を先行させ
て均一な裏ビードを形成するべくデルタオツシレ
ート、栗形オツシレート等トーチに複雑な動作を
させている。
Conventionally, Uranami welding in the gas shielded arc welding method uses CO 2 + Ar, O 2 + CO 2 + in the shielding gas.
A mixed gas such as Ar is used, and a torch such as a delta oscillator or chestnut oscillator is made to perform complex operations in order to advance the arc point and form a uniform back bead.

しかし、混合ガスはガス制御が困難であり、又
トーチを複雑に制御するために装置が大型化して
高価となり、パイプライン、鉄骨工事等の現場溶
接では、この様な重い高級な装置は取扱いが不便
で敬遠される問題があつた。
However, mixed gas is difficult to control, and the complicated control of the torch makes the equipment large and expensive, making it difficult to handle such heavy and high-grade equipment for on-site welding of pipelines, steel construction, etc. There was a problem that made people avoid it because it was inconvenient.

本発明は適正な溶接条件を選ぶことにより、シ
ールドガスとしてCO2だけを使用し、トーチはウ
イービングさせるだけで狭開先の裏波溶接を可能
にし、前記問題を解決するものである。
The present invention solves the above problem by selecting appropriate welding conditions, using only CO 2 as a shielding gas, and making it possible to perform back wave welding in a narrow gap by simply weaving the torch.

以下実施例に基づき本発明を具体的に説明す
る。
The present invention will be specifically described below based on Examples.

溶接は、配管、鉄骨等の構造部材を対象とし、
その材料にこれら構造部材にとつて周知の炭素
鋼、低合金鋼である。
Welding targets structural members such as piping and steel frames.
The materials used for these structural members are carbon steel and low alloy steel.

使用する溶接装置は、溶接線に沿つて配備した
軌条を自走する台車上にソリツドワイヤーの供給
装置及びトーチを溶接線に対して直角方向にのみ
往復移動させるウイービングオツシレート機構を
具えた公知の炭酸ガスシールドアーク溶接装置で
ある。
The welding device used is a known welding device equipped with a solid wire supply device and a weaving oscillator mechanism that reciprocates the torch only in the direction perpendicular to the welding line, on a trolley that runs on rails arranged along the welding line. This is a carbon dioxide shielded arc welding device.

ソリツドワイヤーはワイヤー中にSi,Mn等の
脱酸剤を含有した直径1.2mmのものを使用する。
A solid wire with a diameter of 1.2 mm containing a deoxidizing agent such as Si or Mn is used.

溶接する2部材の突合せ接手部の形状は開先角
度30゜、ルートギヤツプ3〜4mmの狭開先であ
る。
The shape of the butt joint of the two members to be welded is a narrow groove with a bevel angle of 30° and a root gap of 3 to 4 mm.

前記溶接装置とソリツドワイヤーを使用し、溶
接電流100〜110A、溶接電圧18〜20Vの条件下
で、溶接速度とウイービング速度を変えて突合せ
接手部に溶接を行ない、裏ビードを調べた。
Using the above-mentioned welding equipment and solid wire, welding was performed on the butt joints under conditions of a welding current of 100 to 110 A and a welding voltage of 18 to 20 V, varying the welding speed and weaving speed, and the back bead was examined.

第1図はCrを1%程含む低合金鋼の裏波溶接
の実験例であつて縦軸に溶接速度、横軸にウイー
ビング速度をとつて、接手部のルートギヤツプ
が、3.0mm及び4.0mmの場合について略均一な裏ビ
ードが形成される範囲を表わすグラフである。
Figure 1 shows an experimental example of uranami welding of low-alloy steel containing about 1% Cr.The vertical axis shows the welding speed, and the horizontal axis shows the weaving speed. It is a graph showing the range in which a substantially uniform back bead is formed for each case.

このグラフから判る様にルートギヤツプが広く
なると当然にソリツドワイヤーの溶着量を多くし
なければならず、溶接速度の適正領域は低溶接速
度側に移行する。
As can be seen from this graph, as the root gap widens, the amount of solid wire deposited must naturally increase, and the appropriate welding speed range shifts to the lower welding speed side.

しかし、溶接速度が遅すぎると裏ビードが出過
ぎて、極端な場合は溶落ち現象が生ずる。溶接速
度の下限は70mm/minである。
However, if the welding speed is too slow, too much of the back bead will protrude, and in extreme cases, a burn-through phenomenon will occur. The lower limit of welding speed is 70mm/min.

又、一定溶接速度でウイービングサイクルを低
めるとソリツドワイヤーの溶接量が多くなるため
溶接速度が遅くなつたのと同じ現象が生じる。逆
にウイービングサイクルを高めると溶込みが不足
して融合不良が発生し、裏ビードが乱れる。
Furthermore, if the weaving cycle is lowered at a constant welding speed, the amount of solid wire welded increases, resulting in the same phenomenon as when the welding speed is slowed down. Conversely, if the weaving cycle is increased, penetration will be insufficient, resulting in poor fusion, and the back bead will become disordered.

溶接速度を早くしすぎても、上記同様に溶込み
が不足して、裏ビードが乱れる。
Even if the welding speed is set too high, penetration will be insufficient and the back bead will be disordered as described above.

ルートギヤツプ3mm、30゜のV開先に対して略
均一な裏ビードを形成するには 溶接速度110〜200mm/分 ウイービングサイクル36〜76サイクル/分であ
り、且つ第1図に実線L1で囲まれた領域の座標
に示されることが条件であることが判つた。
To form a substantially uniform back bead for a V-groove with a root gap of 3 mm and a 30° angle, the welding speed is 110 to 200 mm/min, the weaving cycle is 36 to 76 cycles/min, and the welding speed is 110 to 200 mm/min. It turns out that the condition is that the coordinates of the area shown in

又、同様にルートギヤツプ4mm、30゜のV開先
に対しては、 溶接速度70〜170mm/分 ウイービングサイクル22〜76サイクル/分であ
り、且つ第2図に一点鎖線L2で囲まれた座標領
域に示されることが条件である。
Similarly, for a root gap of 4 mm and a V-groove of 30°, the welding speed is 70 to 170 mm/min, the weaving cycle is 22 to 76 cycles/min, and the coordinates surrounded by the dashed line L2 in Fig. 2 are as follows. The condition is that it be shown in the area.

上記の点を総合するとルートギヤツプ3〜4
mm、30゜のV開先に対して略均一な裏ビードを形
成するには溶接速度とウイービングサイクルの関
係が第1図に斜線で示す様にルートギヤツプ3mm
に於ける適正座標領域とルートギヤツプ4mmに於
ける適正座標領域の重なり合つた座標領域にて示
されることが条件である。
Combining the above points, the root gap is 3-4.
To form a substantially uniform back bead for a 30° V-groove, the relationship between welding speed and weaving cycle is as shown by the diagonal line in Figure 1, when the root gap is 3 mm.
The condition is that the appropriate coordinate area for the root gap and the appropriate coordinate area for the root gap of 4 mm overlap each other.

本発明は上記の如く狭開先への裏波溶接である
から安価な炭酸ガスをシールドガスに使用しても
アークは安定し、又溶接装置はトーチをウイービ
ングさせる簡単なものを使用出来るから取扱いが
容易でコストの安い裏波溶接が行なえる。更にル
ートギヤツプが3〜4mmまでは略均一な裏ビード
を形成出来るから開先精度の高いものは要求され
ず、例えばガス切断加工による開先への裏波溶接
にも適用出来る等、優れた効果を有するものであ
る。
As mentioned above, the present invention involves back wave welding into a narrow gap, so even if inexpensive carbon dioxide gas is used as the shielding gas, the arc is stable, and the welding equipment can be a simple weaving torch, so it is easy to handle. Uranami welding can be performed easily and at low cost. Furthermore, since a substantially uniform back bead can be formed up to a root gap of 3 to 4 mm, high groove precision is not required. For example, it can be applied to back wave welding to a groove created by gas cutting, and has excellent effects. It is something that you have.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶接速度とウイービング速度の適正範
囲を示すグラフである。
FIG. 1 is a graph showing appropriate ranges of welding speed and weaving speed.

Claims (1)

【特許請求の範囲】[Claims] 1 パイプライン用管、鉄骨等の鉄鋼構造部材に
対するルートギヤツプ3〜4mm、開先角約30゜の
V型開先への炭酸ガスアーク溶接に於て、トーチ
のウイービングサイクルと溶接速度は、添付の図
面第1図に斜線で示す範囲内であることを特徴と
する狭開先への自動裏波溶接方法。
1. In carbon dioxide gas arc welding to a V-shaped groove with a root gap of 3 to 4 mm and a groove angle of approximately 30° on steel structural members such as pipeline pipes and steel frames, the torch weaving cycle and welding speed are as shown in the attached drawing. An automatic back wave welding method for a narrow gap, characterized in that the area is within the shaded area in FIG.
JP13114879A 1979-10-09 1979-10-09 Automatic penetration beand welding method to narrow groove Granted JPS5653879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13114879A JPS5653879A (en) 1979-10-09 1979-10-09 Automatic penetration beand welding method to narrow groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13114879A JPS5653879A (en) 1979-10-09 1979-10-09 Automatic penetration beand welding method to narrow groove

Publications (2)

Publication Number Publication Date
JPS5653879A JPS5653879A (en) 1981-05-13
JPS6146235B2 true JPS6146235B2 (en) 1986-10-13

Family

ID=15051115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13114879A Granted JPS5653879A (en) 1979-10-09 1979-10-09 Automatic penetration beand welding method to narrow groove

Country Status (1)

Country Link
JP (1) JPS5653879A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102935545A (en) * 2012-11-14 2013-02-20 哈尔滨汽轮机厂有限责任公司 Narrow-gap metal active gas (MAG) welding method for large-thickness shroud type diaphragms of turbines

Also Published As

Publication number Publication date
JPS5653879A (en) 1981-05-13

Similar Documents

Publication Publication Date Title
CN102009251B (en) Full-position welding method for pipeline by full-automatic external welding machine
Houldcroft Submerged-arc welding
US20070221643A1 (en) Gas-less process and system for girth welding in high strength applications including liquefied natural gas storage tanks
Torbati et al. Optimization procedures for GMAW of bimetal pipes
CN110788450A (en) Vertical fillet welding non-back-gouging welding method for double-sided double-robot T-shaped connector of medium plate
CN112171016A (en) Austenitic stainless steel NBG welding process
CN106903399A (en) The high strength pipe semiautomatic welding method of more than X80 grade of steels
Sidhu et al. Role of shielded metal arc welding consumables on pipe weld joint
US3139511A (en) Fusion cladding technique and product
CN104625359A (en) Welding technique for base plate of LNG low-temperature tank
Majumdar Underwater welding-present status and future scope
JPS6146235B2 (en)
Das et al. Experience with advanced welding techniques (RMD & P-GMAW) with seamless metal cored wire for Oil & Gas pipeline industries
RU2012471C1 (en) Powder wire for underwater welding
CN111673240A (en) All-position MAG (metal active gas) power-driven welding process for pipeline fixing port and application
CN1439477A (en) Flat electrodes
JPS5570479A (en) Narrow groove co2 gas shielded arc welding method
CN208575359U (en) A kind of offshore drilling platform spud leg rack welding device
US3051823A (en) Metal arc welding
US3102944A (en) Arc welding process
CN109865921A (en) Magnetic-type pipeline all-position mechanised welding welding procedure
Forsström Possibilities of advanced MAG-welding processes in shipbuilding
JPH06170534A (en) Welding method of tube by automatic welding machine
Shi et al. Study on mini-cap local dry underwater flux-cored arc welding and online control of weld penetration
Millwood et al. Construction of the X100 Operational Trial Pipeline at Spadeadam, Cumbria, UK