JPS6146216A - Porous ceramic structure - Google Patents

Porous ceramic structure

Info

Publication number
JPS6146216A
JPS6146216A JP59168673A JP16867384A JPS6146216A JP S6146216 A JPS6146216 A JP S6146216A JP 59168673 A JP59168673 A JP 59168673A JP 16867384 A JP16867384 A JP 16867384A JP S6146216 A JPS6146216 A JP S6146216A
Authority
JP
Japan
Prior art keywords
mesh
group
partition wall
inlet
porous ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59168673A
Other languages
Japanese (ja)
Inventor
Yukihisa Takeuchi
幸久 竹内
Hitoshi Yoshida
均 吉田
Yasunao Miura
康直 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP59168673A priority Critical patent/JPS6146216A/en
Publication of JPS6146216A publication Critical patent/JPS6146216A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled structure capable of collecting efficiently and uniformly fine particles over the full length of the structure by providing a group of inlet holes and a group of outlet holes in the axial direction on both sides of a partition wall, and furnishing a reticular body having a mesh coarser than that of the partition wall in the inlet hole. CONSTITUTION:A filter medium 41 consists of porous ceramic such as cordierite is provided with a group of inlet holes 22 perforated in the axial direction and a group of outlet holes 23 adjacent to said inlet holes 22 across a partition wall 24 having uniform thickness and consisting of a three-dimentional reticular body of about 1,600-2,500 mesh/in<2>, and both inlet holes 22 and outlet holes 23 have an opening or a seal respectively at the front and the rear end. A reticular body 22b having a mesh coarser than that of said partition wall 24 is provided in said inlet hole 22. Said reticular body is appropriately constituted of a three-dimensional reticular structure of 25-144 mesh/in<2> or a pelletized granular body of alumina, etc. having about 2mm. size.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多孔質セラミック構造体に関するもので、主
として内燃amの排気ガス中に浮遊する微粒子を捕集す
る為に使用する多孔質セラミック構造体に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a porous ceramic structure, which is mainly used for collecting fine particles suspended in the exhaust gas of internal combustion engines. It's about the body.

(従来の技術) 一般に、ディーゼルエンジンから排出される微粒子を捕
集する場合、三次元綱目状の骨格構造をもつセラミック
フオームや、ハニカム構造をもった多孔質セラミックス
等が適していることが知られている。特に、セラミック
構造体の両端面より、jIt通しない穴を互い(干渉し
ないように多数設けたハニカム構造のセラミックフオー
ムは、通気抵抗が小さく、−粒子の捕集効率が高い多孔
質セラミックmT1体のひとつである。
(Prior art) Generally, when collecting particulates emitted from diesel engines, it is known that ceramic foam with a three-dimensional mesh-like skeleton structure, porous ceramic with a honeycomb structure, etc. are suitable. ing. In particular, the honeycomb-structured ceramic foam, which has a large number of holes that do not pass through each other (so that they do not interfere with each other) from both end faces of the ceramic structure, has low ventilation resistance and - It is one.

とζろで、一般に、内燃機関用微粒子捕集装置は第6図
のように4RIRされている。Tなわち本第6図の如く
、微粒芋捕集@ff1AはディーゼルB1rA1の排゛
気集合管2′に接続され、該排゛気集合管2に連通ずる
排気ガス流入口3a及び同流出口3bを持った金屑容器
3を具備し、その内部に微粒子捕集用のフィルタ部材4
とこのフィルタ部材4の排気ガス入口側端面に結合した
電気ヒータ5とを有する。電気ヒータ5はフィルタ部材
4によって捕集された微粒子を燃焼させてフィルタ部材
4を再生するもので、バッテリ゛6によ・る通電はf、
II fi1回路7により制御される。制御は、−フィ
ルタ部材4の圧力損失、燃料消費m、走行距離などを測
定する各種センサからの入力信号により行なわれる。
In general, a particulate collection device for an internal combustion engine is 4RIR as shown in FIG. In other words, as shown in Fig. 6, the fine potato collection @ff1A is connected to the exhaust gas collecting pipe 2' of the diesel B1rA1, and the exhaust gas inlet 3a and outlet thereof communicate with the exhaust gas collecting pipe 2. 3b, and a filter member 4 for collecting particulates is installed inside the container 3.
and an electric heater 5 coupled to an end surface of the filter member 4 on the exhaust gas inlet side. The electric heater 5 burns the particulates collected by the filter member 4 to regenerate the filter member 4, and is energized by the battery 6 at f,
II fi1 circuit 7 controls. Control is performed by input signals from various sensors that measure the pressure loss of the filter member 4, fuel consumption m, travel distance, etc.

m関1からの排気ガスは流入口3aから捕集袋[Aの一
容−1−3内に流入し、フィルタ部材4を通過して流−
1口3bから流出する。排気ガスがフィルタ部材4を通
過する際、同排気ガス中のカーボン微粒子はフィルタ部
材4によって捕集され除去される。
The exhaust gas from the m-section 1 flows into the collection bag [A part-1-3] from the inlet 3a, passes through the filter member 4, and then flows into the collection bag [A-1-3].
It flows out from the first port 3b. When the exhaust gas passes through the filter member 4, carbon particulates in the exhaust gas are collected and removed by the filter member 4.

フィルタ部材4としては例えば第7図に示すような構成
となっている。すなわち、三次元網目状骨格をもつ多孔
質セラミックス11よりなる多数の隔壁12によって隔
離された多数の中空孔13を有し、外形構造として筒状
のハニカム構造となっている。
The filter member 4 has a structure as shown in FIG. 7, for example. That is, it has a large number of hollow holes 13 separated by a large number of partition walls 12 made of porous ceramics 11 having a three-dimensional network skeleton, and has a cylindrical honeycomb structure as an external structure.

フィルタ部材4は、第7図の矢印の如くに入口側通路か
ら流入する排気ガス中のカーボン微粒子を、隔壁12を
構成するセラミック骨格に衝突させ、この衝突によりセ
ラミック骨格表面にカーボン微粒子を付着、II積させ
るといった、基本的には衝突捕集のメカニズムにより捕
#4機能を果している。ここにおいて、フィルタ部材4
内のすべての隔l!12において均一にカーボン微粒子
が付1m堆積することは、ある一定容積で効率良く捕集
し、圧力損失の上昇を最小限に留める上で重要である。
The filter member 4 causes the carbon particulates in the exhaust gas flowing in from the inlet side passage as shown by the arrow in FIG. Basically, the trap #4 function is achieved by the mechanism of collision trapping. Here, the filter member 4
All distances within! It is important that the carbon fine particles are uniformly deposited to a length of 1 m in 12 in order to efficiently collect the carbon particles in a certain volume and to minimize the increase in pressure loss.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記従来のいわゆるハニカムフオーム型のヒ
ラミック構造体は、断面積が一定な中空  !孔を互い
に平行に配列した構造をとっていたため、第8図に示す
ように微粒子の多くが中空孔の入口近傍及び出口近傍で
捕集されやすく、均一な捕集が行なわれないために捕集
効率が悪いという欠点があった。(尚、311!81i
1中の付着率とは、セラミックス100g中に捕集され
る□微粒子量をいう)また、第6図に電気ヒータ5とし
て示すように、従来からヒータやニクロム線を設けて捕
集した゛スス″(カーボン微粒手)をM焼させ、フィル
タ部材を再生させる作業が行なわれているが、従来のフ
ィルタ部材においては入口端及び出口端で集中的に捕集
され中央部で捕集される”スス”が極めて少ないために
燃焼伝幅がなされず、これゆえにフィルタ部材の再生が
非常に難しいという欠点がありた。  ・ 〔問題点を解決するための手段〕 本発明は、上記従来の欠点を解消せんとするもので、軸
方向に穿設された一群の入口穴と、該軸方向に隔壁をへ
だてて前記一群の入口穴と隣接する一群の出口穴とを有
し、前記入口穴は前端が間口で後端が封止され、前記出
口穴は1yI端が封止で後端が開口されている多孔質ヒ
ラミック構造体において、 前記入口穴内に、前記隔壁の網目よりも目の粗い網状体
を設けたことを特徴とするものである。
However, the conventional helical structure of the so-called honeycomb form type described above is a hollow structure with a constant cross-sectional area! Because the structure had holes arranged parallel to each other, most of the particles tend to be collected near the entrance and exit of the hollow holes, as shown in Figure 8, and the collection is not uniform. The drawback was that it was inefficient. (In addition, 311!81i
(The adhesion rate in 1 refers to the amount of fine particles collected in 100 g of ceramics.) Also, as shown in Fig. 6 as electric heater 5, the adhesion rate in 1 refers to the amount of soot collected in 100 g of ceramics. ``Work is being done to regenerate filter members by burning carbon particles, but in conventional filter members, they are collected intensively at the inlet and outlet ends, and are collected in the center.'' Since the amount of "soot" is extremely small, combustion propagation is not possible, which makes it extremely difficult to regenerate the filter member. It has a group of inlet holes drilled in the axial direction, and a group of outlet holes adjacent to the group of inlet holes with a partition wall in the axial direction, and the inlet hole is located at the front end. is a porous helical structure having a frontage and a rear end sealed, and the exit hole is sealed at the 1yI end and opened at the rear end; It is characterized by having the following.

ここにおいて網状体は、25〜144メツシユ/int
の大きさのものであればよく、三次元網目状構造体でも
、またペレット状粒状体でもよい。
Here, the reticular body has 25 to 144 meshes/int
It may be a three-dimensional network structure or a pellet-like granule.

ペレット状粒状体としては例えば大きさ約2mm、のア
ルミナ粒状体が好ましい。
As the pellet-like particles, for example, alumina particles having a size of about 2 mm are preferable.

本発明に係る多孔質セラミック構造体は、上記のように
一群の入口穴と一群の出口穴とを有しそれらが隔壁トよ
って隔壁されているね咳であるが、該隔壁は三次元網目
状構造体であって目の粗さは1600〜2500メツシ
ュ/In’のもノテする。前記入口穴及び14口穴の断
面形状は円でも多角形でもよく、断面積は軸方向に渡っ
て一定でも、またテーバ状でもよい。
The porous ceramic structure according to the present invention has a group of inlet holes and a group of outlet holes as described above and is partitioned by a partition wall, and the partition wall has a three-dimensional mesh shape. It is also noted that the structure has a mesh roughness of 1,600 to 2,500 mesh/In'. The cross-sectional shape of the inlet hole and the 14-port hole may be circular or polygonal, and the cross-sectional area may be constant in the axial direction or tapered.

前記入口穴及び出口穴の[17i而形状は円で・も多角
形でもよく、断面積は軸方向に渡って一定でも、また一
様に弯形してもよい。
The shape of the inlet hole and the outlet hole may be circular or polygonal, and the cross-sectional area may be constant in the axial direction or uniformly curved.

また入口穴内に充填する網状体は入口穴の軸方向全体に
渡って充°填するのが好ましいが、必ず軸方向全体に渡
って充填しなければならないというものではない。
Further, it is preferable that the net-like material filled in the entrance hole be filled throughout the entire axial direction of the entrance hole, but it is not necessarily necessary to fill the entire axial direction.

尚、フィルタ部材の材質としてはコーディエライトが好
ましいが、これに限られるものではなく、例えばSi 
C,813N4.Al t03系、β−スボジューメン
系等の種々のセラミック材料でもよい。
The material of the filter member is preferably cordierite, but is not limited to this. For example, Si
C, 813N4. Various ceramic materials such as Al t03 type and β-subodumene type may be used.

以下、本発°明をさらに具体的に説明すべく、実施例に
ついて詳説ザる。
Hereinafter, in order to explain the present invention more specifically, examples will be explained in detail.

〔実施例〕〔Example〕

第1図は本発明に係る多孔質セラミック構造体の実施例
を示すもので、第7図のフィルタ部材4と同様なフィル
タ部材41として形成された場合を示してあり、例えば
コージェライトの如き多孔質セラミックスでつくられて
いる。第1図(a、)は縦断面図、第1図(b)は左側
面図の左半分を示す。
FIG. 1 shows an embodiment of the porous ceramic structure according to the present invention, in which it is formed as a filter member 41 similar to the filter member 4 of FIG. Made of quality ceramics. FIG. 1(a) is a longitudinal sectional view, and FIG. 1(b) is a left half of the left side view.

本第1図の如く入口側にn口端を有する一群の入口穴2
2と出口側に開口端を有する一群の出口穴23とが、互
いに111M!24によって分離された状態で形成され
ている。入口穴22の出口側、及び出口穴23の入口側
は封止壁22a 、23aによってそれぞれ封止されて
いる。
A group of inlet holes 2 with n-ends on the inlet side as shown in Figure 1
2 and a group of exit holes 23 having open ends on the exit side are 111M apart from each other! 24. The outlet side of the inlet hole 22 and the inlet side of the outlet hole 23 are sealed by sealing walls 22a and 23a, respectively.

両射止壁22aと23aとは前記隔g124によって連
結されており該l@壁24の厚さは一定である。
Both stop walls 22a and 23a are connected by the gap g124, and the thickness of the l@ wall 24 is constant.

入口穴22及び出自穴23の断面形状は本実施例におい
ては正方形で、断面積はその軸方向に渡つて一定であ・
る。
The cross-sectional shapes of the inlet hole 22 and the origin hole 23 are square in this embodiment, and the cross-sectional area is constant in the axial direction.
Ru.

フィルタ部材41の外周には補強用として円管状の緻密
なセラミック41aが設けてあり、該フィルタ部材41
自体は多孔質セラミックスで形成しであるため、矢印方
向から入口穴22に流入する排気ガスは、1600〜2
50oメツシュ/in!程度の細かな三次元網目構造と
なっているwA壁24を通過してとなりの出口穴23に
至り、矢印方向に流出する。晶記隔壁24を通過すると
きにガス中の微粒子が捕集されるものであるが、入口穴
22内にはその軸方向全体に渡って、25〜400メツ
シュ/In2程度の網目の比較的大きな三次元網目状構
造体22bが設けられているので、この網目の大きな部
分を通過するときにある程度の微粒子が捕集され、ざら
に1lIiJW!24を通過するときに前記微粒子が捕
集される。
A circular tubular dense ceramic 41a is provided on the outer periphery of the filter member 41 for reinforcement.
Since it is made of porous ceramics, the exhaust gas flowing into the inlet hole 22 from the direction of the arrow has a
50o mesh/in! It passes through the wA wall 24, which has a fine three-dimensional network structure, reaches the adjacent outlet hole 23, and flows out in the direction of the arrow. Fine particles in the gas are collected when passing through the partition wall 24, and the inlet hole 22 has a relatively large mesh of about 25 to 400 mesh/In2 throughout the axial direction. Since the three-dimensional mesh structure 22b is provided, a certain amount of fine particles are collected when passing through the large part of this mesh, and roughly 1lIiJW! When passing through 24, the fine particles are collected.

ここで、フィルタ部材41の製造方法について説明する
。一般に、三次元網目状構造のII!壁を有するハニカ
ムlI&Nのセラミックフィルタを得るには、同様な三
次元網目状構造を有するポリウレタンフォームなどの有
機化合物を骨材として使用し、該骨材の表面にセラミッ
ク材料を固着してこれを焼成すると、母材たる前記有機
化合物が燃焼飛散し、nunのセラミック材が焼結し母
材と同様な構造となることを利用する。このため、母材
となる有機化合物を成形する際に、所望の4j4造のも
のを得れば、セラミックフィルタとして希望の構造のも
のが得られる。
Here, a method for manufacturing the filter member 41 will be explained. In general, II! of three-dimensional network structure! To obtain a honeycomb lI&N ceramic filter with walls, an organic compound such as polyurethane foam with a similar three-dimensional network structure is used as an aggregate, a ceramic material is fixed on the surface of the aggregate, and this is fired. Then, the organic compound, which is the base material, burns and scatters, and the nun ceramic material is sintered to have a structure similar to that of the base material. Therefore, if a desired 4J4 structure is obtained when molding the organic compound serving as the base material, a desired structure can be obtained as a ceramic filter.

以下、具体的な製造方法を次に述べる。A specific manufacturing method will be described below.

第2図は成形型容器部25を示し、同図(a)は平面図
、同図(b)はx−X線矢視fIi面図である。該成形
型容器部25は、端面26と、該端面26上に植設され
た複数個の柱状部27と、端面26の外周部に植設され
て柱状部27を取巻く円管状側!!部28とから成って
いる。柱状部27の断面形状は正方形である。端面26
の反対側は間口状態となっている。
FIG. 2 shows the mold container portion 25, with FIG. 2(a) being a plan view and FIG. 2(b) being a view taken along line x--X arrow fIi. The mold container portion 25 includes an end surface 26, a plurality of columnar sections 27 planted on the end surface 26, and a cylindrical side that is planted on the outer periphery of the end surface 26 and surrounds the columnar sections 27! ! It consists of a section 28. The cross-sectional shape of the columnar portion 27 is square. End face 26
The opposite side is open.

第3図は上記成形型容器部25に施蓋するための成形型
11部30を示し、同図(a)は平面図、同図(,1)
)はY−Yll!矢視断面図である。該成形型蓋部30
は、端−面蓋部31と、*a部31上に植設された複数
個の柱状部32とから成ってい、る。
FIG. 3 shows the mold 11 part 30 for covering the mold container part 25, FIG. 3(a) is a plan view, and FIG.
) is Y-Yll! It is an arrow sectional view. The mold lid part 30
It consists of an end-face cover part 31 and a plurality of columnar parts 32 implanted on the *a part 31.

端面蓋部31には、柱状部32と干渉しない位置に貫通
孔31aが穿設されている。柱状部32は、後述のよう
に成形g!蓋部30を容器部25に被せたときに、容器
部25の柱状部27に干渉しないように考慮して設けら
れている。また端面蓋部31の外周4等分箇所には、容
器部25に蓋部30を固定するためめ組付用孔31bI
fNg設されている。
A through hole 31 a is bored in the end cover 31 at a position that does not interfere with the columnar section 32 . The columnar portion 32 is formed by molding g! as described later. It is provided in consideration of not interfering with the columnar part 27 of the container part 25 when the lid part 30 is placed over the container part 25. Additionally, there are mounting holes 31bI in the outer circumference of the end cover 31 that are equally divided into four parts for fixing the cover 30 to the container 25.
fNg is provided.

第4図は、成形型容器部25に成形型蓋部30を組付け
てビス38により固定し成形型8とした状態、を、示し
ている。容器i25と蓋部30との間には空間(キャビ
ティ)34が生じ、この空11J34に、孔31aかう
ウレタンフオーム原料混合液を注入゛する。。該混合液
は空間34内で発泡するので、発ra後120℃で20
〜60分間加熱して硬化させる。硬化後に、容器部25
と蓋部30とを分離させればハニカム構造のウレタンフ
オーム成形体を得る。
FIG. 4 shows a state in which the mold lid 30 is assembled to the mold container part 25 and fixed with screws 38 to form the mold 8. A space (cavity) 34 is created between the container i25 and the lid part 30, and the urethane foam raw material mixture liquid is injected into the hole 31a into this space 11J34. . Since the mixed liquid foams in the space 34, it is heated to 20°C at 120°C after foaming.
Heat to cure for ~60 minutes. After curing, the container part 25
By separating the lid portion 30 and the lid portion 30, a urethane foam molded body having a honeycomb structure is obtained.

このようにして得たウレタンフオーム成形体は三次元綱
目状をなす骨格間にセル族とよばれる薄膜を有するので
このウレタンフオーム成形体を容器中に設置し可燃性ガ
スと空気又は酸素を導入してこれに火花点火しセル膜を
燃焼させて除去する。
The urethane foam molded product obtained in this way has a thin film called a cell group between the three-dimensional mesh-like skeletons, so this urethane foam molded product is placed in a container and flammable gas and air or oxygen are introduced. A spark ignites this, burning the cell membrane and removing it.

次に、コージェライトを主成分とする粉末と水とポリビ
ニルアルコールとを混合撹拌したセラミックスラリ−の
中に前記ウレタンフオーム成形体を浸漬し、該成形体の
骨格表面にセラミックスラリ−を付着させる。そして余
分なスラリーを遠心分1li11などの手段で取り除い
た後、100〜120℃で加熱乾燥さ縫、この浸漬、乾
燥を1!数回繰返ず。
Next, the urethane foam molded body is immersed in a ceramic slurry made by mixing and stirring a powder containing cordierite as a main component, water, and polyvinyl alcohol, and the ceramic slurry is adhered to the skeletal surface of the molded body. After removing excess slurry by centrifugation, etc., heat drying at 100 to 120°C, immerse, and dry. Repeat several times.

、最後に上記スラリー含浸のウレタンフオーム成形体を
1300〜1470℃の1!度で2〜6時間焼成する。
, Finally, the slurry-impregnated urethane foam molded body was heated to 1300 to 1470°C. Bake for 2 to 6 hours at 30°C.

この焼成により有機化合物のウレタンフオーム成分が燃
焼散逸され、かつセラミックスラリ−が焼き上げられる
By this firing, the urethane foam component of the organic compound is burned and dissipated, and the ceramic slurry is fired.

この様にして作成したセラミックスラリ−を付C同化さ
せたものの入口穴22内に、ウレタンフオーム64〜1
00メツシユ/Inlのものの表面にセラミックスラリ
−を前記と同様な方法にて付着したものを挿入し、再度
電子レンジ等にて乾燥させる。そして、これを1360
〜1400℃のトンネル炉(又は電気炉)中に設置し、
約4〜10時間焼成することにより所望の多孔質セラミ
ックフィルタ41を得る。
The ceramic slurry thus prepared is assimilated into the inlet hole 22 of the urethane foam 64-1.
The ceramic slurry adhered to the surface of the 00 mesh/Inl in the same manner as described above is inserted and dried again in a microwave oven or the like. And this is 1360
Installed in a tunnel furnace (or electric furnace) at ~1400°C,
A desired porous ceramic filter 41 is obtained by firing for about 4 to 10 hours.

このように入口穴2.2内に、目の粗い三次元網目状の
セラミックが充填されたフィルタ部材41   1の特
性は、第5図の曲線c、dの如くになる。ここにおいて
、曲@Cは入口穴22内に充填するセラミックの目の大
きさが64メツシユ/1n2の場合であり、曲線dは同
じく100メツシユ/1n2の場合である。入口穴内が
単なる空間となっている従来のフィルタ部材においては
、第8図のように長手方向中央部での付着率が悪いのに
対し、本発明におけるフィルタ部材においては、特に曲
線Cのように充填するセラミックの目の大きさを適切な
ものとすれば、長手方向中央部においても付着率が向上
し均一な曲線が得られる。
The characteristics of the filter member 411 in which the inlet hole 2.2 is filled with ceramic in the form of a coarse three-dimensional mesh are as shown by curves c and d in FIG. 5. Here, the curve @C is for the case where the size of the ceramic mesh filled in the entrance hole 22 is 64 meshes/1n2, and the curve d is also for the case where the size is 100 meshes/1n2. In the conventional filter member in which the inlet hole is a mere space, the adhesion rate is poor at the center in the longitudinal direction as shown in FIG. If the size of the openings of the ceramic to be filled is appropriate, the adhesion rate will be improved even in the center in the longitudinal direction, and a uniform curve will be obtained.

実験の結果、入口穴22内に充填するセラミックの目の
大きさが121メツシユ/1n2よりも細かなものにす
ると圧力損失の上昇が大となり、中央部及び出口端部で
の付着率が悪くなるので、100メツシユ、’insが
限界である。また16メツシユ/1n2よりも粗いもの
とすると従来品とはとんと変わりないものとなるので、
粗い方の限界−は25メツシユ/ln2である。
As a result of experiments, it was found that if the size of the ceramic mesh filled in the inlet hole 22 was made smaller than 121 mesh/1n2, the pressure loss would increase significantly and the adhesion rate at the center and outlet end would worsen. Therefore, the limit is 100 meshes or 'ins. Also, if it is coarser than 16 mesh/1n2, it will be no different from the conventional product, so
The coarser limit is 25 meshes/ln2.

[変形例] 上記実施例においては、64〜100メツシユ/in’
のウレタンフオームの表面に、セラミックスラリ−を付
着したものを、入口穴22内に設置ないしは充填する構
成としているが、ベレット状の粒状体を充填する構成と
してもよい。ベレット状の粒状体としては、大きさ約2
mmのアルミナが好ましい。
[Modification] In the above embodiment, 64 to 100 meshes/in'
The inlet hole 22 is installed or filled with a ceramic slurry adhered to the surface of the urethane foam, but it may also be filled with pellet-shaped granules. As a pellet-like granule, the size is about 2
mm alumina is preferred.

ここで、粒の大きさをimm以下にすると、上記実施例
の場合と同様に圧力損失の上界が大となり、逆に3mm
以上にすると従来品と変わりないものとなってしまうの
で1〜3mmの間の粒の大きさとするのがよい。
Here, if the grain size is set to imm or less, the upper limit of the pressure loss becomes large as in the case of the above example, and conversely, if the grain size is set to 3 mm or less, the upper limit of the pressure loss becomes large.
If the size is above, the product will be the same as the conventional product, so it is preferable to set the grain size to between 1 and 3 mm.

(n明の効FA) このように本発明は、入口穴内に目の粗い網状体を設置
する構成としたため、構造体の全長に渡フて均一にカー
ボン微粒子を捕集することができ、これゆえに捕集効率
をより一周向上させることができる。 ′ また、前記のように構造体の全長に渡って均一にカーボ
ン微粒子を捕集できるので、電気ヒータ等を入口端に設
けて前記微粒子を15焼させる場合、41り造林の全長
に渡って均一に燃える。このため、フィルタの再生を容
易かつ完全に行なうことができる。
(Effect of n-light FA) As described above, the present invention has a configuration in which a coarse net-like body is installed in the inlet hole, so that carbon fine particles can be collected uniformly over the entire length of the structure. Therefore, the collection efficiency can be further improved. 'Also, as mentioned above, carbon particles can be collected uniformly over the entire length of the structure, so if an electric heater or the like is installed at the entrance end to burn the carbon particles, it will be possible to collect the carbon particles uniformly over the entire length of the afforestation tree. It burns. Therefore, the filter can be easily and completely regenerated.

【図面の簡単な説明】 第1図は本発明の一実施例を示すもので第1図(a)の
か側面図、第2図〜M4図は第1因のフィルタ部材41
の製造方法を示ずものでvn2図(a ’)は成形型容
器部25の平面図、第2図(b)は第2図<a >のX
−Xa矢視断面図、第3図(、a)は成形型蓋部3°0
の平面図、第3図(b )は第3図<a >のY−Yl
l断−面図、第4図は第2図の成形型容器、部25と第
3図の成形型蓋部30とを組合せた状態を示すtllr
lfr面図、第5図は測定結果を示すグラフ図、第6図
は従来の微粒子捕集状況を示す全体図、17図は第6図
のフィルタ部材4を示す斜視図、第8図は従来のフィル
タ部材4の付着率を示すグラフ図である。 41・・・フィルタ部材 22・・・入口穴 23・・・出口穴 24・・・隔壁
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 shows an embodiment of the present invention. FIG. 1(a) is a side view, and FIGS.
Figure 2 (a') is a plan view of the mold container part 25, and Figure 2 (b) is the X of Figure 2 <a>.
-Xa arrow sectional view, Figure 3 (, a) is the mold lid part 3°0
The plan view of FIG. 3(b) is Y-Yl of FIG. 3<a>.
FIG. 4 is a cross-sectional view showing a state in which the mold container 25 of FIG. 2 and the mold lid 30 of FIG. 3 are combined.
Fig. 5 is a graph showing the measurement results, Fig. 6 is an overall view showing the conventional particulate collection situation, Fig. 17 is a perspective view showing the filter member 4 in Fig. 6, and Fig. 8 is the conventional FIG. 3 is a graph showing the adhesion rate of filter member 4 in FIG. 41... Filter member 22... Inlet hole 23... Outlet hole 24... Partition wall

Claims (4)

【特許請求の範囲】[Claims] (1)軸線方向に穿設された一群の入口穴と、該軸線方
向に隔壁をへだてて前記一群の入口穴と隣接する一群の
出口穴とを有し、前記入口穴は前端が開口で後端が封止
され、前記出口穴は前端が封止で後端が開口されている
多孔質セラミック構造体において、 前記入口穴内に、前記隔壁の網目よりも目の粗い網状体
を設置したことを特徴とする多孔質セラミック構造体
(1) A group of inlet holes drilled in the axial direction, and a group of outlet holes adjacent to the group of inlet holes separated from the partition wall in the axial direction, and the inlet holes are open at the front end and at the rear. In a porous ceramic structure whose end is sealed and whose front end is sealed and whose rear end is open, a mesh member having a mesh coarser than the mesh of the partition wall is installed in the entrance hole. Characteristic porous ceramic structure
(2)網状体は、25〜144メッシュ/in^2の大
きさの三次元網目状構造体である特許請求の範囲1項記
載の多孔質セラミック構造体。
(2) The porous ceramic structure according to claim 1, wherein the network is a three-dimensional network structure having a size of 25 to 144 mesh/in^2.
(3)網状体は、ペレット状粒状体である特許請求の範
囲第1項記載の多孔質セラミック構造体。
(3) The porous ceramic structure according to claim 1, wherein the network body is a pellet-like granular body.
(4)ペレット状粒状体は、大きさ約2mmのアルミナ
粒状体である特許請求の範囲第3項記載の多孔質セラミ
ック構造体。
(4) The porous ceramic structure according to claim 3, wherein the pellet-like granules are alumina granules having a size of about 2 mm.
JP59168673A 1984-08-10 1984-08-10 Porous ceramic structure Pending JPS6146216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59168673A JPS6146216A (en) 1984-08-10 1984-08-10 Porous ceramic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59168673A JPS6146216A (en) 1984-08-10 1984-08-10 Porous ceramic structure

Publications (1)

Publication Number Publication Date
JPS6146216A true JPS6146216A (en) 1986-03-06

Family

ID=15872365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59168673A Pending JPS6146216A (en) 1984-08-10 1984-08-10 Porous ceramic structure

Country Status (1)

Country Link
JP (1) JPS6146216A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747579A2 (en) * 1995-05-30 1996-12-11 Sumitomo Electric Industries, Limited Particulate trap for diesel engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0747579A2 (en) * 1995-05-30 1996-12-11 Sumitomo Electric Industries, Limited Particulate trap for diesel engine
EP0747579A3 (en) * 1995-05-30 1997-03-26 Sumitomo Electric Industries Particulate trap for diesel engine
US5709722A (en) * 1995-05-30 1998-01-20 Sumitomo Electric Industries, Ltd. Particulate trap for diesel engine

Similar Documents

Publication Publication Date Title
US4519820A (en) Fitter apparatus for purifying exhaust gases
EP0206250B1 (en) Ceramic structure
JPS61424A (en) Ceramic filter
EP1371406B1 (en) Honeycomb structural body
US4264346A (en) Diesel exhaust particulate traps
US4420316A (en) Filter apparatus and method of making it
US5194078A (en) Exhaust filter element and exhaust gas-treating apparatus
US6942712B2 (en) Honeycomb filter for exhaust gas purification
US5514446A (en) Ceramic honeycomb structural body
US4670304A (en) Process for producing porous ceramic bosy
US4396565A (en) Method for producing a filter
JP2004113887A (en) Honeycomb catalyst carrier and its production method
AU624037B2 (en) Exhaust filter element and exhaust gas-treating apparatus
JP2590943Y2 (en) Exhaust gas purification device
JPS6146216A (en) Porous ceramic structure
JPS6133209A (en) Porous ceramic structural body
JPS59520A (en) Fine grain arresting device for internal-combustion engine
JPS6161608A (en) Collecting filter for fine particles in waste gas
JPS5893915A (en) Fine particle purifier of exhaust gas
JPS60237109A (en) Ceramic filter for collecting fine particle in internal-combustion engine
JPS59516A (en) Device for arresting fine grain within exhaust gas of diesel engine
RU2075603C1 (en) Exhaust gas regenerable soot filter
JPS5799315A (en) Structure for cleaning exhaust gas
JPH0217209B2 (en)
JPH059450Y2 (en)