JPS6146007B2 - - Google Patents

Info

Publication number
JPS6146007B2
JPS6146007B2 JP19844981A JP19844981A JPS6146007B2 JP S6146007 B2 JPS6146007 B2 JP S6146007B2 JP 19844981 A JP19844981 A JP 19844981A JP 19844981 A JP19844981 A JP 19844981A JP S6146007 B2 JPS6146007 B2 JP S6146007B2
Authority
JP
Japan
Prior art keywords
polycarbonate
polyphenylene oxide
free radical
group
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19844981A
Other languages
Japanese (ja)
Other versions
JPS58101111A (en
Inventor
Shigeru Matsuo
Nobuo Ogata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP19844981A priority Critical patent/JPS58101111A/en
Publication of JPS58101111A publication Critical patent/JPS58101111A/en
Publication of JPS6146007B2 publication Critical patent/JPS6146007B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はポリカヌボネヌト共重合䜓の補造法に
関し、詳しくは特定の末端基を有するポリカヌボ
ネヌトずポリプニレンオキシドを遊離基発生手
段の介圚䞋に反応させるこずによ぀お、耐熱性、
耐薬品性等にすぐれ、たた補膜性、成圢性等の良
奜なポリカヌボネヌト共重合䜓を効率よくか぀所
望の共重合比で自圚に補造するこずのできる方法
に関する。 埓来からポリカヌボネヌト暹脂は、すぐれた機
械的、熱的、電気的性質、ずりわけその耐衝撃性
により゚ンゞニアリング暹脂ずしおよく知られ、
機械郚品、電気郚品などによく䜿われおいる。し
かしながら、ポリカヌボネヌト暹脂は、アセト
ン、ヘプタン、四塩化炭玠などず接觊するず癜化
やクレヌズが生じ、さらに応力䞋ではクラツクが
発生するずいう本質的な欠点を有しおいるため、
すぐれた特性を有する暹脂でありながらその利
甚、応甚分野が倧きく制限されおいた。たたこの
ポリカヌボネヌト暹脂はポリスチレン系暹脂など
の他の熱可塑性暹脂ずブレンドする際に盞溶性が
十分でないなどの欠点があ぀た。 これらの欠点を解消するために、ポリカヌボネ
ヌト暹脂にポリプニレンオキシドを機械的に混
合する方法もしくは溶液ずしお混合する方法が提
案されおいる特公昭42−15782号公報。しかし
ながら、この方法は単なる物理的な混合にすぎ
ず、盞溶性が十分でなく埗られる組成物は䞍透明
ずなるず共に均䞀性に劣るずいう問題点がある。 これらの埓来技術の欠点を解消する目的で本発
明者らは既にポリカヌボネヌトずポリプニレン
オキシドよりなるブロツク共重合䜓ならびにその
補造法の開発に成功しおいる特願昭56−66556
号明现曞。 本発明者らはポリカヌボネヌトずポリプニレ
ンオキシドよりなる共重合䜓をより効率よく、し
かも所望の共重合比にお自圚に補造するこずので
きる方法を開発すべく鋭意研究を重ねた。その結
果、末端に特定の官胜基を有するポリカヌボネヌ
トを甚い、これにポリプニレンオキシドを反応
させるこずにより目的を達成しうるこずを芋出
し、本発明を完成するに至぀た。すなわち本発明
は、 䞀般匏 〔匏䞭、は氎玠たたは所望の眮換基を瀺し、
R1およびR2はそれぞれアルキル基あるいはアリ
ヌル基を瀺す。〕 で衚わされる末端基を有するポリカヌボネヌトず
ポリプニレンオキシドを遊離基発生手段を介圚
させお反応させるこずを特城ずするポリカヌボネ
ヌト共重合䜓の補造法を提䟛するものである。 本発明の方法に甚いるポリカヌボネヌトは前述
の劂く、末端に䞀般匏で衚わされる官胜基
を有するものでなければならない。匏䞭は特に
制限はなく氎玠原子あるいは所望の眮換基でよい
が、通垞は氎玠原子、ハロゲン原子あるいはアル
キル基から適宜遞定される。たた、R1R2はそ
れぞれメチル基、゚チル基、プロピル基等のアル
キル基あるいはアリヌル基であるが、特にR1
R2が共にメチル基である堎合が最も䞀般的であ
る。 䞊蚘の劂きの末端基を有するポリカヌボネヌト
の本䜓は、様々なものが考えられ、各皮ゞプノ
ヌル化合物ずホスゲンあるいはゞプニルカヌボ
ネヌトを反応させお埗られるものなどが甚いられ
る。ここでゞプノヌル化合物ずしおは、通垞
は、 䞀般匏 あるいは 䞀般匏 〔匏䞭、R′は炭玠数〜の眮換もしくは非
眮換アルキレン基、−−−−−SO2−たた
は−CO−であり、Y1およびY2は氎玠たたはハロ
ゲン原子、およびは〜の敎数である。〕 で衚わされるものをあげるこずができる。これら
䞊蚘䞀般匏あるいはで衚わされるゞ
プノヌル化合物の䟋ずしおは、4′−ゞヒド
ロキシゞプニル−ビス−−ヒドロ
キシプニル−プロパンビスプノヌル
−ビス−−ヒドロキシプニ
ル−−メチルブタン−ビス−−ヒ
ドロキシプニル−シクロヘキサンαα′−
ビス−−ヒドロキシプニル−−ゞむ゜プ
ロピルベンれン−ビス−−メチル−
−ヒドロキシプニル−プロパン−
ビス−−クロロ−−ヒドロキシプニル−
プロパンビス−−ゞメチル−−ヒド
ロキシプニル−メタン−ビス−
−ゞメチル−−ヒドロキシプニルプロパ
ンビス−−ヒドロキシプニルスルホ
ンビス−−ゞメチル−−ヒドロキシ
プニルスルホン−ビス−−
ゞメチル−−ヒドロキシプニル−−メチ
ルブタン−ビス−−ゞメチル−
−ヒドロキシプニル−シクロヘキサン
αα′−ビス−−ゞメチル−−ヒドロ
キシプニル−−ゞむ゜プロピルベンれン
−ビス−−ゞクロロ−−ヒドロ
キシプニル−プロパンおよび−ビス−
−ゞブロモ−−ヒドロキシプニル−
プロパンである。ずくに奜たしいゞプノヌルの
䟋は−ビス−−ヒドロキシプニル−
プロパン−ビス−−ゞメチル−
−ヒドロキシプニル−プロパン−
ビス−−ゞクロロ−−ヒドロキシプ
ニル−プロパン−ビス−−ゞブ
ロモ−−ヒドロキシプニル−プロパンおよ
び−ビス−−ヒドロキシプニル−シ
クロヘキサンである。 これらゞプノヌルは単独で甚いるのみでなく
混合物の圢で甚いるこずもできる。 本発明の方法に甚いるポリカヌボネヌトの本䜓
は、䞊述の劂き各皮ゞ゚ノヌル化合物ずホスゲン
あるいはゞプニルカヌボネヌト等ずの反応によ
぀お埗られるポリカヌボネヌトであるが、さらに
ポリカヌボネヌトの各皮共重合䜓、䟋えばゞオキ
シゞアリヌルアルカン盞互のコポリカヌボネヌ
ト、ゞオキシゞアリヌルアルカンずそれ以倖の芳
銙族ゞオキシ化合物ずのコポリカヌボネヌト、ゞ
オキシゞアリヌルアルカンず脂肪族ゞオキシ化合
物ずのコポリカヌボネヌト、ゞオキシゞアリヌル
アルカン以倖の芳銙族ゞオキシ化合物盞互のコポ
リカヌボネヌト、ゞオキシゞアリヌルアルカン以
倖の芳銙族ゞオキシ化合物ず脂肪族ゞオキシ化合
物ずのコポリカヌボネヌトなどのホモ結合共重合
䜓あるいぱステル結合を有するポリカヌボネヌ
ト、りレタン結合を有するポリカヌボネヌト、そ
の他のヘテロ結合共重合䜓などをあげるこずがで
きる。 本発明の方法では、䞊述の劂きポリカヌボネヌ
トの末端䜍、特に䞡末端の䜍眮に䞀般匏で
衚わされる官胜基の結合したものが反応原料ずし
お甚いられる。この末端に特定の官等基を有する
ポリカヌボネヌトは、各皮方法により補造するこ
ずができる。たずえば、界面重瞮合法では䞍掻性
有機溶剀の存圚䞋、アルカリ氎溶液に溶解したゞ
プノヌル類ずホスゲンの反応においお、反応
前、反応時あるいは反応終了埌に、 䞀般匏 〔匏䞭、R1R2は前蚘ず同じ。〕 で衚わされる眮換プノヌルを加え、さらに重合
觊媒ずしお第䞉玚アミンの存圚䞋、重瞮合反応さ
せるこずによ぀お埗られる。ここで䞀般匏
で衚わされる眮換プノヌルずしおは、−む゜
プロピルプノヌル、−む゜プロピルプノヌ
ルなどがある。この際、䞊蚘䞀般匏で衚わ
される眮換プノヌルはポリカヌボネヌトの分子
量調節剀ずしお䜜甚するこずずなり、その結果、
未端に特定の官胜基を有するず共に所望の重合床
のポリカヌボネヌトあるいはそのオリゎマヌが埗
られる。ここで䟋えば䞀般匏で衚わされる
ゞプノヌル化合物ずホスゲンより補造したポリ
カヌボネヌトあるいはそのオリゎマヌを甚い、こ
れず䞀般匏で衚わされる眮換プノヌルを
反応させた堎合には、埗られる特定の末端基をも
぀ポリカヌボネヌトは、䞀般匏 で衚わされるものずなる。匏䞭、R1R2
R′Y1Y2は前蚘ず同じものであり、
たたは重合床を瀺す。この重合床は特に制限
はなく、最終的に埗られるポリカヌボネヌト共重
合䜓の䜿甚目的等に応じお適宜遞定すればよい
が、䞀般には〜100、奜たしくは〜
60の範囲ずする。 次に、䞊蚘の特定末端基を有するポリカヌボネ
ヌトず反応させるポリプニレンオキシドは各皮
のものがあるが、通垞は 䞀般匏 〔匏䞭、R3R4R5およびR6は氎玠、ハロゲ
ン、眮換もしくは非眮換炭化氎玠基であり、R3
〜R6は同じものでもよく異なるものであ぀おも
よいが、少なくずも぀はメチル基である。〕 で衚わされるものである。 この䞀般匏で衚わされるポリプニレン
オキシドは䞋蚘の䞀般匏 〔匏䞭、R3R4R5R6は前蚘ず同じ。〕 で衚わされるプノヌル類の重合によ぀お埗るこ
ずができるものである。このプノヌル類の䟋ず
しおは−ゞメチルプノヌル、−メチル
−−゚チルプノヌル、−ゞ゚チルプ
ノヌル、−ゞプニルプノヌル、−メ
チル−−プニルプノヌル、−メチル−
−クロルプノヌル、−゚チル−−−プロ
ピルプノヌル、−メチル−−ブロモプノ
ヌル、−メチル−−む゜プロピルプノヌ
ル、−メチル−−メトキシプノヌル、−
メチル−−−ブチルプノヌル、−゚チル
−−クロルプノヌルなどがあげられる。これ
らのプノヌル類の重合は酞化重合觊媒ずしおの
第䞀玚、第二玚、第䞉玚のアミノ基を䞀分子䞭に
少なくずも぀持぀アミノ化合物ず塩化第䞀銅な
どの金属塩の存圚䞋、プノヌル類ず酞玠を反応
させるこずにより行なわれる。この堎合に芳銙族
系たたは脂肪族系炭化氎玠を重合媒䜓ずしお䜿甚
するこずができる。 本発明の方法においおは、この重合䜓、すなわ
ち䞀般匏で衚わされるポリプニレンオキ
シドを反応原料ずしお、これず前述した特定の末
端基を有するポリカヌボネヌトずを反応させるこ
ずずなる。ここで、ポリプニレンオキシドを瀺
す䞀般匏䞭の重合床は、䞀般的には
〜200であるがより奜たしくは〜120であ
る。 本発明の方法では、䞊蚘の劂き特定末端基を有
するポリカヌボネヌトずポリプニレンオキシド
ずを遊離基発生手段の介圚䞋で反応させるこずが
必芁である。 ここで遊離基発生手段ずしおは、様々なものが
あるが、通垞は反応系に遊離基開始剀を存圚させ
るこずやオゟンや酞玠による凊理たたは電離性攟
射線を照射するこずなどである。遊離基開始剀ず
しおは、䟋えばベンゟむルパヌオキシド、ラりリ
ルパヌオキシド、アゟビスむ゜ブチロニトリル、
ゞクミルパヌオキシド、−ブチルヒドロパヌオ
キシドなどが奜適に甚いられる。たた電離性攟射
線ずしおはα線、β線、γ線、玫倖線、線など
が考えられ、これらを照射するず反応系に遊離基
が生じ、ラゞカル反応が進行する。 反応にあた぀おは、特定の末端基を有するポリ
カヌボネヌトずポリプニレンオキシドならびに
過酞化物等の遊離基開始剀を反応系に加えるか、
酞玠あるいはオゟン凊理するか、たたは玫倖線等
を照射しながら、これを溶媒䞭あるいは無溶媒䞋
にお加熱すればよい。ここで反応系に加える反応
原料の添加割合は特に制限はないが、通垞は特定
末端基を有するポリカヌボネヌトずポリプニレ
ンオキシドを前者埌者〜9595〜重量
比、奜たしくは10〜9090〜10重量比ず
し、さらに遊離基開始剀を甚いる堎合には前蚘の
䞡反応原料100重量郚に察しお0.001重量郚以䞊、
奜たしくは0.01〜重量郚の割合で加えるべきで
ある。 反応は溶液法あるいは溶媒法など様々な態様で
行なうこずができ、䟋えば溶液法による堎合には
70〜200℃にお分〜時間反応させればよく、
䞀方、溶融法による堎合には180〜300℃の枩床に
お反応を進行させればよい。 䞊述の条件等にお反応を行なえば、ポリカヌボ
ネヌトの末端に存圚する䞀般匏で衚わされ
る官胜基の
The present invention relates to a method for producing a polycarbonate copolymer, and more specifically, the present invention relates to a method for producing a polycarbonate copolymer, and more specifically, by reacting a polycarbonate having a specific terminal group with polyphenylene oxide in the presence of a free radical generating means, the polycarbonate copolymer has heat resistance,
The present invention relates to a method for efficiently producing a polycarbonate copolymer having excellent chemical resistance, film formability, moldability, etc., at a desired copolymerization ratio. Traditionally, polycarbonate resin has been well known as an engineering resin due to its excellent mechanical, thermal, and electrical properties, especially its impact resistance.
It is often used for mechanical parts, electrical parts, etc. However, polycarbonate resin has the inherent disadvantage that it whitens and crazes when it comes into contact with acetone, heptane, carbon tetrachloride, etc., and also cracks under stress.
Although this resin has excellent properties, its use and application fields have been severely limited. Furthermore, this polycarbonate resin has disadvantages such as insufficient compatibility when blended with other thermoplastic resins such as polystyrene resins. In order to eliminate these drawbacks, a method of mechanically mixing polyphenylene oxide with polycarbonate resin or a method of mixing it as a solution has been proposed (Japanese Patent Publication No. 15782/1982). However, this method involves mere physical mixing, and there are problems in that compatibility is insufficient and the resulting composition is opaque and has poor uniformity. In order to overcome these drawbacks of the prior art, the present inventors have already succeeded in developing a block copolymer consisting of polycarbonate and polyphenylene oxide and a method for producing the same (Japanese Patent Application No. 56-66556).
No. Specification). The present inventors have conducted extensive research in order to develop a method that can more efficiently produce a copolymer of polycarbonate and polyphenylene oxide at a desired copolymerization ratio. As a result, they discovered that the object could be achieved by using polycarbonate having a specific functional group at the end and reacting it with polyphenylene oxide, leading to the completion of the present invention. That is, the present invention has the general formula [In the formula, R represents hydrogen or a desired substituent,
R 1 and R 2 each represent an alkyl group or an aryl group. ] A method for producing a polycarbonate copolymer is provided, which comprises reacting a polycarbonate having a terminal group represented by the following with polyphenylene oxide through the intervention of a free radical generating means. As mentioned above, the polycarbonate used in the method of the present invention must have a functional group represented by the general formula () at its terminal end. In the formula, R is not particularly limited and may be a hydrogen atom or a desired substituent, but is usually appropriately selected from a hydrogen atom, a halogen atom, or an alkyl group. In addition, R 1 and R 2 are each an alkyl group such as a methyl group, an ethyl group, a propyl group, or an aryl group, but especially R 1 ,
Most commonly, both R 2 are methyl groups. Various types of polycarbonate bodies having terminal groups as described above can be considered, and those obtained by reacting various diphenol compounds with phosgene or diphenyl carbonate are used. Here, the diphenol compound usually has the general formula Or general formula [In the formula, R' is a substituted or unsubstituted alkylene group having 1 to 5 carbon atoms, -O-, -S-, -SO2- , or -CO-, and Y1 and Y2 are hydrogen or halogen atoms, a and b are integers of 1-4. ] We can list the following expressions. Examples of the diphenol compounds represented by the above general formula () or () include 4,4'-dihydroxydiphenyl; 2,2-bis-(4-hydroxyphenyl)-propane (bisphenol A); , 4-bis-(4-hydroxyphenyl)-2-methylbutane; 1,1-bis-(4-hydroxyphenyl)-cyclohexane; α, α′-
Bis-(4-hydroxyphenyl)-p-diisopropylbenzene; 2,2-bis-(3-methyl-
4-hydroxyphenyl)-propane; 2,2-
Bis-(3-chloro-4-hydroxyphenyl)-
Propane; bis-(3,5-dimethyl-4-hydroxyphenyl)-methane; 2,2-bis-(3,
5-dimethyl-4-hydroxyphenyl)propane; bis-(4-hydroxyphenyl)sulfone; bis-(3,5-dimethyl-4-hydroxyphenyl)sulfone; 2,4-bis-(3,5 −
dimethyl-4-hydroxyphenyl)-2-methylbutane; 1,1-bis-(3,5-dimethyl-
4-hydroxyphenyl)-cyclohexane;
α,α′-bis-(3,5-dimethyl-4-hydroxyphenyl)-p-diisopropylbenzene;
2,2-bis-(3,5-dichloro-4-hydroxyphenyl)-propane and 2,2-bis-
(3,5-dibromo-4-hydroxyphenyl)-
It's propane. A particularly preferred example of diphenol is 2,2-bis-(4-hydroxyphenyl)-
Propane; 2,2-bis-(3,5-dimethyl-
4-hydroxyphenyl)-propane; 2,2-
Bis-(3,5-dichloro-4-hydroxyphenyl)-propane; 2,2-bis-(3,5-dibromo-4-hydroxyphenyl)-propane and 1,1-bis-(4-hydroxy phenyl)-cyclohexane. These diphenols can be used not only alone but also in the form of a mixture. The main body of the polycarbonate used in the method of the present invention is polycarbonate obtained by the reaction of various dienol compounds as described above with phosgene or diphenyl carbonate, etc., but also various copolymers of polycarbonate, such as dioxydiaryl alkane. Mutual copolycarbonates, copolycarbonates of dioxydiarylalkane and other aromatic dioxy compounds, copolycarbonates of dioxydiarylalkane and aliphatic dioxy compounds, copolycarbonates of aromatic dioxy compounds other than dioxydiarylalkane , homobond copolymers such as copolycarbonates of aromatic dioxy compounds other than dioxydiarylalkane and aliphatic dioxy compounds, polycarbonates with ester bonds, polycarbonates with urethane bonds, and other heterobond copolymers. be able to. In the method of the present invention, a polycarbonate having a functional group represented by the general formula () bonded to the terminal position, particularly at both terminal positions, is used as a reaction raw material. This polycarbonate having a specific functional group at its terminal can be produced by various methods. For example, in the interfacial polycondensation method, in the reaction of diphenols dissolved in an alkaline aqueous solution and phosgene in the presence of an inert organic solvent, the general formula [In the formula, R, R 1 and R 2 are the same as above. ] It can be obtained by adding a substituted phenol represented by the following and further carrying out a polycondensation reaction in the presence of a tertiary amine as a polymerization catalyst. Here the general formula ()
Examples of substituted phenols represented by include p-isopropylphenol and m-isopropylphenol. At this time, the substituted phenol represented by the above general formula () acts as a molecular weight regulator for polycarbonate, and as a result,
A polycarbonate or an oligomer thereof having a specific functional group at the end and a desired degree of polymerization can be obtained. Here, for example, if a diphenol compound represented by the general formula () and a polycarbonate or its oligomer made from phosgene are used, and this is reacted with a substituted phenol represented by the general formula (), the resulting specific terminal group is Polycarbonate has the general formula It will be expressed as. In the formula, R, R 1 , R 2 ,
R′, Y 1 , Y 2 , a, b are the same as above,
Further, m indicates the degree of polymerization. The degree of polymerization m is not particularly limited and may be appropriately selected depending on the purpose of use of the polycarbonate copolymer finally obtained, but generally m = 2 to 100, preferably m = 4 to 100.
The range is 60. Next, there are various types of polyphenylene oxide to be reacted with the polycarbonate having the above-mentioned specific end groups, but usually it has the general formula [In the formula, R 3 , R 4 , R 5 and R 6 are hydrogen, halogen, substituted or unsubstituted hydrocarbon group, and R 3
~R 6 may be the same or different, but at least one is a methyl group. ] It is expressed as. The polyphenylene oxide represented by this general formula () has the following general formula [In the formula, R 3 , R 4 , R 5 , and R 6 are the same as above. ] It can be obtained by polymerization of phenols represented by the following. Examples of these phenols include 2,6-dimethylphenol, 2-methyl-6-ethylphenol, 2,6-diethylphenol, 2,6-diphenylphenol, 2-methyl-6-phenylphenol, 2- Methyl-6
-Chlorphenol, 2-ethyl-6-n-propylphenol, 2-methyl-6-bromophenol, 2-methyl-6-isopropylphenol, 2-methyl-6-methoxyphenol, 2-
Examples include methyl-6-n-butylphenol and 2-ethyl-6-chlorophenol. The polymerization of these phenols is carried out in the presence of an amino compound having at least one primary, secondary, or tertiary amino group in one molecule and a metal salt such as cuprous chloride as an oxidative polymerization catalyst. This is done by reacting phenols with oxygen. Aromatic or aliphatic hydrocarbons can be used as polymerization medium in this case. In the method of the present invention, this polymer, that is, polyphenylene oxide represented by the general formula (), is used as a reaction raw material and is reacted with the polycarbonate having the above-mentioned specific terminal group. Here, the degree of polymerization n in the general formula () representing polyphenylene oxide is generally n=
Although n=2 to 200, more preferably n=4 to 120. In the method of the present invention, it is necessary to react a polycarbonate having a specific terminal group as described above with polyphenylene oxide in the presence of a free radical generating means. There are various ways to generate free radicals, but usually include the presence of a free radical initiator in the reaction system, treatment with ozone or oxygen, or irradiation with ionizing radiation. Free radical initiators include, for example, benzoyl peroxide, lauryl peroxide, azobisisobutyronitrile,
Dicumyl peroxide, t-butyl hydroperoxide and the like are preferably used. Ionizing radiation may include α rays, β rays, γ rays, ultraviolet rays, X rays, etc. When irradiated with these, free radicals are generated in the reaction system and radical reactions proceed. For the reaction, add a polycarbonate with a specific end group, polyphenylene oxide, and a free radical initiator such as peroxide to the reaction system, or
This may be heated in a solvent or without a solvent while being treated with oxygen or ozone or irradiated with ultraviolet rays or the like. There is no particular restriction on the ratio of the reaction raw materials added to the reaction system, but usually polycarbonate having a specific end group and polyphenylene oxide are used, the former: the latter = 5 to 95: 95 to 5 (weight ratio), preferably 10-90:90-10 (weight ratio), and when using a free radical initiator, 0.001 part by weight or more per 100 parts by weight of both of the above reaction materials,
It should preferably be added in a proportion of 0.01 to 5 parts by weight. The reaction can be carried out in various ways such as a solution method or a solvent method. For example, when using a solution method,
It is sufficient to react at 70 to 200℃ for 1 minute to 2 hours.
On the other hand, when using the melting method, the reaction may proceed at a temperature of 180 to 300°C. If the reaction is carried out under the above-mentioned conditions, the functional group represented by the general formula () present at the end of the polycarbonate will be

〔む゜プロピルプノヌル末端ポリカヌボネヌトの補造〕[Production of isopropylphenol-terminated polycarbonate]

邪魔板を有するの反応容噚に、末端クロロ
ホヌメヌト基含有ポリカヌボネヌトオリゎマヌ
100、−む゜プロピルプノヌル1.6を含む
塩化メチレン溶液450ml、ビスプノヌルの
芏定苛性゜ヌダ氎溶液150mlおよびトリ゚チルア
ミン50mgを仕蟌み、回転数500r.p.mで撹拌しな
がら50分間反応を行な぀た。 反応終了埌、反応混合物を塩化メチレンで
垌釈し、氎1.5を加えお撹拌した。次いで氎盞
を分離陀去埌、塩酞、氎、苛性゜ヌダ氎溶液およ
び氎の順序で掗浄を行な぀た。しかる埌有機盞を
分離し、塩化メチレンを留去しお自色粉末状のむ
゜プロピルプノヌル末端ポリカヌボネヌトを埗
た。このものの還元粘床ηSPは0.59
30℃クロロホルム0.5dlであ぀た。 参考䟋  〔ポリプニレンオキシド(ã‚€)の補造〕 10反応容噚に−ゞメチルプノヌル
1000、トル゚ン1700ml、メタノヌル2500ml、塩
化第䞀銅19およびピリゞン190mlを仕蟌み、酞
玠ガスを1.5minの吹きこみながら宀枩にお
時間反応を行な぀た。反応埌、生成した沈柱物
を別し、少量の塩酞を含むメタノヌルで掗滌、
也燥しポリプニルオキシド(ã‚€)を埗た。このポリ
マヌの収率87、数平均分子量480040量䜓で
あ぀た。 参考䟋  〔ポリプニレンオキシド(ロ)の補造〕 −ゞメチルプノヌル500、トル゚ン
2000ml、メタノヌル1000ml、塩化第䞀銅30およ
びピリゞン300mlを甚いお参考䟋に準じおポリ
プニレンオキシド(ロ)を埗た。ポリマヌの収率84
、数平均分子量770064量䜓であ぀た。 実斜䟋  参考䟋で埗られたむ゜プロピルプノヌル末
端ポリカヌボネヌト15、参考䟋で埗られたポ
リプニレンオキシド(ã‚€)、ゞクミルパヌオキ
シド400mgおよびトル゚ン200mlをオヌトクレヌブ
に仕蟌み135℃で45分間加熱反応を行な぀た。反
応終了埌メタノヌル䞭で沈柱させ、沈柱物を取
し也燥しポリカヌボネヌト共重合䜓15.5を埗
た。このものの還元粘床ηSPは0.69
30℃、クロロホルム0.5dl、ポリプニレ
ンオキシド含量26.7重量NMR枬定であ぀
た。なお、生成重合䜓を塩化メチレン30mlに
溶解させ、時間攟眮したが沈柱物はなく、生成
重合䜓䞭にポリプニレンオキシドホモポリマヌ
がないこずを確認した。 実斜䟋  参考䟋で埗られたむ゜プロピルプノヌル末
端ポリカヌボネヌト15、参考䟋で埗られたポ
リプニレンオキシド(ロ)、ゞクミルパヌオキ
シド600mg、およびトル゚ン200mlをオヌトクレヌ
ブに仕蟌み140℃で20分間加熱反応を行な぀た。
実斜䟋に準じおポリカヌボネヌト共重合䜓17.1
を埗た。このものの還元粘床ηSPは
0.7030℃、クロロホルム0.5dl、ポリプ
ニレンオキシド含量22重量NMR枬定であ
぀た。なお、生成重合䜓䞭にはポリプニレンオ
キシドホモポリマヌは認められなか぀た。 実斜䟋  実斜䟋およびで埗られたポリカヌボネヌト
共重合䜓を甚いお、クロロホルム溶液より300ÎŒ
のキダステングフむルムを補造した。このフむル
ムを折り曲げ宀枩䞋アセトン䞭に浞挬したが癜化
は生せず、時間埌にわずかに癜化した。他方ポ
リカヌボネヌトを甚いお同様に浞挬したずころ瞬
時に亀裂が生じた。
A polycarbonate oligomer containing a terminal chloroformate group was placed in one reaction vessel having a baffle plate.
100 g, 450 ml of methylene chloride solution containing 1.6 g of p-isopropylphenol, 2 of bisphenol A
150 ml of a normal aqueous sodium hydroxide solution and 50 mg of triethylamine were charged, and the reaction was carried out for 50 minutes while stirring at a rotation speed of 500 rpm. After the reaction was completed, the reaction mixture was diluted with 1 part of methylene chloride, 1.5 parts of water was added, and the mixture was stirred. After separating and removing the aqueous phase, washing was performed in the order of hydrochloric acid, water, aqueous caustic soda solution, and water. Thereafter, the organic phase was separated and methylene chloride was distilled off to obtain a self-colored powdery isopropylphenol-terminated polycarbonate. The reduced viscosity (ηSP/C) of this product is 0.59
(Chloroform 0.5g/dl at 30°C). Reference example 2 [Manufacture of polyphenylene oxide (a)] 10 2,6-dimethylphenol in a reaction vessel
1000 g, toluene 1700 ml, methanol 2500 ml, cuprous chloride 19 g and pyridine 190 ml were charged, and the reaction was carried out at room temperature for 3 hours while blowing oxygen gas at 1.5/min. After the reaction, the generated precipitate was separated into three parts and washed with methanol containing a small amount of hydrochloric acid.
It was dried to obtain polyphenyl oxide (a). The yield of this polymer was 87% and the number average molecular weight was 4800 (40 mer). Reference example 3 [Production of polyphenylene oxide (b)] 2,6-dimethylphenol 500g, toluene
According to Reference Example 2, polyphenylene oxide (b) was obtained using 2,000 ml of methanol, 1,000 ml of methanol, 30 g of cuprous chloride, and 300 ml of pyridine. Polymer yield 84
%, and the number average molecular weight was 7700 (64-mer). Example 1 15 g of isopropylphenol-terminated polycarbonate obtained in Reference Example 1, 5 g of polyphenylene oxide (a) obtained in Reference Example 2, 400 mg of dicumyl peroxide, and 200 ml of toluene were placed in an autoclave and heated at 135°C for 45 minutes. The reaction was carried out. After the reaction was completed, the mixture was precipitated in methanol, and the precipitate was collected and dried to obtain 15.5 g of a polycarbonate copolymer. The reduced viscosity (ηSP/C) of this product is 0.69
(30°C, chloroform 0.5 g/dl), and the polyphenylene oxide content was 26.7% by weight (NMR measurement). Note that 2 g of the produced polymer was dissolved in 30 ml of methylene chloride and left to stand for 6 hours, but no precipitate was found, confirming that there was no polyphenylene oxide homopolymer in the produced polymer. Example 2 15 g of isopropylphenol-terminated polycarbonate obtained in Reference Example 1, 4 g of polyphenylene oxide (B) obtained in Reference Example 3, 600 mg of dicumyl peroxide, and 200 ml of toluene were charged into an autoclave and heated at 140°C for 20 minutes. A heating reaction was carried out.
Polycarbonate copolymer 17.1 according to Example 1
I got g. The reduced viscosity (ηSP/C) of this material is
0.70 (30°C, chloroform 0.5 g/dl), and the polyphenylene oxide content was 22% by weight (NMR measurement). Note that no polyphenylene oxide homopolymer was observed in the produced polymer. Example 3 Using the polycarbonate copolymers obtained in Examples 1 and 2, 300Ό
cast film was manufactured. This film was folded and immersed in acetone at room temperature, but no whitening occurred, and the film slightly whitened after 3 hours. On the other hand, when polycarbonate was similarly immersed, cracks appeared instantly.

Claims (1)

【特蚱請求の範囲】  䞀般匏 〔匏䞭、は氎玠たたは所望の眮換基を瀺し、
R1およびR2はそれぞれアルキル基あるいはアリ
ヌル基を瀺す。〕 で衚わされる末端基を有するポリカヌボネヌトず
ポリプニレンオキシドを遊離基発生手段を介圚
させお反応させるこずを特城ずするポリカヌボネ
ヌト共重合䜓の補造法。  ポリプニレンオキシドが 䞀般匏 〔匏䞭、R3R4R5およびR6は氎玠、ハロゲ
ン眮換もしくは非眮換炭化氎玠基であり、R3〜
R6は同じものでもよく異なるものであ぀おもよ
いが、少なくずも぀はメチル基である。〕 で衚わされるものである特蚱請求の範囲第項蚘
茉の補造法。  遊離基発生手段が、反応系に遊離基開始剀を
存圚させるこずである特蚱請求の範囲第項蚘茉
の方法。  遊離基発生手段が、オゟンあるいは酞玠を甚
いるこずである特蚱請求の範囲第項蚘茉の方
法。  遊離基発生手段が、電離性攟射線を照射する
こずである特蚱請求の範囲第項蚘茉の方法。
[Claims] 1. General formula [In the formula, R represents hydrogen or a desired substituent,
R 1 and R 2 each represent an alkyl group or an aryl group. ] A method for producing a polycarbonate copolymer, which comprises reacting a polycarbonate having a terminal group represented by the following with polyphenylene oxide through the intervention of a free radical generating means. 2 Polyphenylene oxide has the general formula [In the formula, R 3 , R 4 , R 5 and R 6 are hydrogen, a halogen-substituted or unsubstituted hydrocarbon group, and R 3 -
R 6 may be the same or different, but at least one is a methyl group. ] The manufacturing method according to claim 1, which is represented by: 3. The method according to claim 1, wherein the free radical generating means is the presence of a free radical initiator in the reaction system. 4. The method according to claim 1, wherein the free radical generating means uses ozone or oxygen. 5. The method according to claim 1, wherein the free radical generating means is irradiation with ionizing radiation.
JP19844981A 1981-12-11 1981-12-11 Manufacture of polycarbonate copolymer Granted JPS58101111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19844981A JPS58101111A (en) 1981-12-11 1981-12-11 Manufacture of polycarbonate copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19844981A JPS58101111A (en) 1981-12-11 1981-12-11 Manufacture of polycarbonate copolymer

Publications (2)

Publication Number Publication Date
JPS58101111A JPS58101111A (en) 1983-06-16
JPS6146007B2 true JPS6146007B2 (en) 1986-10-11

Family

ID=16391278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19844981A Granted JPS58101111A (en) 1981-12-11 1981-12-11 Manufacture of polycarbonate copolymer

Country Status (1)

Country Link
JP (1) JPS58101111A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61264020A (en) * 1985-05-17 1986-11-21 Idemitsu Kosan Co Ltd Aromatic polycarbonate and production thereof
US4775739A (en) * 1986-06-18 1988-10-04 Mitsubishi Chemical Industries Limited Process for producing polycarbonate resin with tertiary alryl phenol molecular weight modifier
US4777221A (en) * 1987-02-17 1988-10-11 General Electric Company Polyphenylene ether-polycarbonate copolymers and method of preparation
US4902735A (en) * 1987-06-03 1990-02-20 Idemitsu Petrochemical Co., Ltd. High impact resistant polycarbonate and process for producing said polycarbonate
US4973628A (en) * 1989-09-14 1990-11-27 General Electric Company Method for preparing block polyphenylene ether-polycarbonates

Also Published As

Publication number Publication date
JPS58101111A (en) 1983-06-16

Similar Documents

Publication Publication Date Title
EP0633292B1 (en) Compositions of siloxane polyestercarbonate block terpolymers and high heat polycarbonates
US5109076A (en) Polydiorganosiloxane/polycarbonate block cocondensates based on certain dihydroxydiphenylcycloalkanes
US3879347A (en) High molecular, statistical copolycarbonates
CN108473670B (en) Polyester-polycarbonate copolymer and method for producing same
JP6860671B2 (en) Polycarbonate resin composition having excellent heat resistance and fluidity and molded products containing it
US4374233A (en) Block copolymers of polyphenylene oxides and non-sterically-hindered high molecular weight aromatic polycarbonates
JPH0391528A (en) Polycarbonate based on substituted cyclohexylidene bisphenol
JP6765432B2 (en) Polysiloxane-polycarbonate copolymer with improved transparency and flame retardancy and its production method
JPH0774268B2 (en) Method for producing copolyester carbonate
JPH0749473B2 (en) Polycarbonate-polyether block copolymer
JPS6248689B2 (en)
JPS63152623A (en) Aliphatic diol-bis-diphenolcarbonate
JPH0764924B2 (en) Aromatic polycarbonate
JPH03119054A (en) Thermoplastic material blend
JPH02245022A (en) Hydroxy-terminated polycarbonate
JP3466787B2 (en) Production of copolyestercarbonate by bischloroformate method.
JPS6146007B2 (en)
JPH1077338A (en) Polycarbonate resin and its production
EP0093914B2 (en) Process for the production of polycarbonate
JPH0112773B2 (en)
JPH02300258A (en) Heat-resistant polycarbonate molding composition
EP0230608A1 (en) Modified co-polyester-carbonate resins
US4377662A (en) Block copolymers of polyphenylene oxides and sterically-hindered aromatic polycarbonates
JPH03215551A (en) Thermoplastic composition containing polycarbonate based on n-alkyl-substituted cyclohexylidene bisphenol
JPH0114926B2 (en)