JPS614522A - Method for removing hydrogen sulfide contained in gas - Google Patents

Method for removing hydrogen sulfide contained in gas

Info

Publication number
JPS614522A
JPS614522A JP59123782A JP12378284A JPS614522A JP S614522 A JPS614522 A JP S614522A JP 59123782 A JP59123782 A JP 59123782A JP 12378284 A JP12378284 A JP 12378284A JP S614522 A JPS614522 A JP S614522A
Authority
JP
Japan
Prior art keywords
gas
liquid
hydrogen sulfide
air
rotary atomizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59123782A
Other languages
Japanese (ja)
Inventor
Kenji Iwasaki
岩崎 賢治
Toru Seto
徹 瀬戸
Masaaki Yanagi
正明 柳
Takayoshi Kawaoka
川岡 孝義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59123782A priority Critical patent/JPS614522A/en
Publication of JPS614522A publication Critical patent/JPS614522A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accelerate the regenerating reaction of an absorbing soln. in the inside of a regeneration tower, to diminish the consumed amount of air and to make an apparatus small-sized in the Takahax process by by oxidizing and regenerating the absorbing soln. with a bubble tower type regeneration tower provided with a rotary atomizer. CONSTITUTION:The gas contg. H2S is brought into contact with the absorbing soln. contg. 1,4-naphthoquinone-2-sulfonate catalyst in an absorption tower to absorb and remove H2S. Then, the absorbing soln. is fed to a regeneration tower. A rotary atomizer is provided to the lower part of the regeneration tower and air is fed from an air feeding port 3 of the inside of cup by rotating a cup- shaped rotator 2 at high velocity and dispersed into the soln. as fine bubbles. The regenerating reaction is allowed to proceed quickly by making the dispersion diameter of air fed by the rotary atomizer small and increasing the gas- liquid contacting area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明方法はガス中の硫化水素を除去する方法に関し、
特にタカハックス法による湿式ガス精製法の改良に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The method of the present invention relates to a method for removing hydrogen sulfide from gas,
In particular, it relates to improvements in the wet gas purification method using the Takahax method.

〔従来の技術〕[Conventional technology]

従来、酸化基を導入して水溶化したキノン類。 Traditionally, quinones have been made water-soluble by introducing oxidizing groups.

ハイドロキノン類又はこれらの金属塩類のアルカリ性水
溶液をもって、精製すべきガス中に存収液を酸化して硫
黄を析出し、該硫黄を分離して吸収液を再び循環使用す
る湿式ガス精製法はタカハックス法として知られており
、その詳細は、特公昭39−1015号公報、特公昭5
3−1284号公報に示されている。
The Takahax method is a wet gas purification method that uses an alkaline aqueous solution of hydroquinones or their metal salts to oxidize the remaining liquid in the gas to be purified to precipitate sulfur, then separate the sulfur and recirculate the absorbed liquid. It is known as
3-1284.

この方法において実用されているプロセスは、触媒とし
て1.4−ナフトキノン−2−スルホン酸ナトリウムを
添加し、又アルカリ源として水酸化ナトリウム、炭酸ナ
トリウム、重炭酸ナトリウム等を溶解した吸収液を吸収
塔頂部から流下して塔底部から導入する硫化水素を含有
するガスと気液接触し7、含有する硫化水素を吸収させ
た後、該液を多孔質ガス分散筒等を有する再生塔の塔底
部に導入し、同時に該塔底部から圧縮空気を圧入して液
中に溶解される酸素及び上記吸収液中の触媒の作用によ
り、吸収された硫化水素を酸化して硫黄を析出させ、該
液を吸収液として再生して再び吸収塔に循環する方法で
ある。
In the process used in this method, sodium 1,4-naphthoquinone-2-sulfonate is added as a catalyst, and an absorption liquid containing sodium hydroxide, sodium carbonate, sodium bicarbonate, etc. as an alkali source is added to an absorption tower. The liquid is brought into contact with a gas containing hydrogen sulfide flowing down from the top and introduced from the bottom of the tower 7, and after absorbing the contained hydrogen sulfide, the liquid is transferred to the bottom of a regeneration tower having a porous gas dispersion tube, etc. At the same time, compressed air is injected from the bottom of the column, and the action of the oxygen dissolved in the liquid and the catalyst in the absorption liquid oxidizes the absorbed hydrogen sulfide to precipitate sulfur, and the liquid is absorbed. This method regenerates it as a liquid and circulates it back to the absorption tower.

しかし従来法では吸収液の再生には通常気泡塔(分散板
又は分散管を有する)が使用されていたので、吸収液の
再生塔内における滞留時間が大となり、装置が大型とな
る欠点、さらに使用する空気量が多大となシ、分散板圧
損が大のため、動力の増加という問題点があった。
However, in the conventional method, a bubble column (having a dispersion plate or a dispersion tube) is usually used to regenerate the absorption liquid, which has the disadvantage that the residence time of the absorption liquid in the regeneration tower is long and the equipment becomes large. There was a problem that the amount of air used was large and the pressure loss of the distribution plate was large, resulting in an increase in power.

本発明はかかる実情に鑑み、上記の問題点を解決せんと
してなされたものであって、気液接触効率の高いロータ
リアトマイザ式の気泡塔を採用することによって、硫化
水素を大量に含有する吸収液の酸化再生を促進し、液滞
留時間の低減、さらには空気使用量の低減をはかつて、
吸収液の循環量あたり硫化水素の処理能力を向上し、装
置を小型化し、硫化水素含有液を高い効率で除去するよ
う改良された酸化再生技術を提供することを目的として
いる。
In view of the above circumstances, the present invention has been made to solve the above problems, and by adopting a rotary atomizer-type bubble column with high gas-liquid contact efficiency, an absorption liquid containing a large amount of hydrogen sulfide can be used. It used to promote oxidation regeneration, reduce liquid residence time, and reduce air usage.
The purpose of the present invention is to provide an improved oxidation regeneration technology that improves the hydrogen sulfide treatment capacity per circulating amount of absorption liquid, downsizes the device, and removes hydrogen sulfide-containing liquid with high efficiency.

〔問題点を解決する手段〕[Means to solve problems]

d       本発明は、硫化水素を含む排ガスを、
1.4−ナフトキノン−2−スルホン酸塩触媒を添加し
たアルカリ水溶液よりなる吸収液と接触させ、上記硫化
水素を除去した後、上記吸収液をロータリアトマイザを
有する気泡塔式再生塔にょシ酸化再生することを特徴と
するガス中の硫化水素除去方法により上記目的を達成す
るものである。
d The present invention uses exhaust gas containing hydrogen sulfide,
1. After removing the hydrogen sulfide by bringing it into contact with an absorption liquid made of an alkaline aqueous solution containing a 4-naphthoquinone-2-sulfonate catalyst, the absorption liquid is transferred to a bubble column type regeneration tower having a rotary atomizer for oxidation and regeneration. The above object is achieved by a method for removing hydrogen sulfide from gas, which is characterized by the following.

〔作 用〕[For production]

以下、本発明方法の一実施態様例を図面に基き説明し、
併せて各成分間の反応について詳述する。
Hereinafter, one embodiment of the method of the present invention will be explained based on the drawings,
At the same time, reactions between each component will be explained in detail.

第1図は本発明の一実施態様例の系統図であって、精製
すべきガス中には硫化水素が含有されておシ、該ガスは
導管15から吸収塔1に導入され、塔頂部の撒液管15
から撒布される吸収液と向流接触され、硫化水素を除去
されたガスは導管14から排出される。吸収塔内では硫
化水素と吸収液中の例えば炭酸ソーダが下記(1)式の
ように反応して、水硫化ソーダを生じる。
FIG. 1 is a system diagram of an embodiment of the present invention, in which hydrogen sulfide is contained in the gas to be purified, and the gas is introduced into the absorption tower 1 through a conduit 15, and the gas is introduced into the absorption tower 1 from the top of the tower. Liquid spray tube 15
The gas, which has been brought into countercurrent contact with the absorbing liquid sprayed from the pipe and from which hydrogen sulfide has been removed, is discharged from the conduit 14. In the absorption tower, hydrogen sulfide and, for example, sodium carbonate in the absorption liquid react as shown in equation (1) below to produce sodium hydrogen sulfide.

H! S + N al C03−チN a HEI 
+N a HCo、   (1)      シ吸収塔
1から流出する吸収液は導管6を通ってタンク5に集め
られるが、この間に吸収液中に溶存する1、4−ナフト
キノン−2−スルホン酸ソーダとNa1S  とは次式
(2)のごとく反応する。
H! S + N al C03-chi N a HEI
+N a HCo, (1) The absorption liquid flowing out from the absorption tower 1 passes through the conduit 6 and is collected in the tank 5, but during this time, sodium 1,4-naphthoquinone-2-sulfonate and Na1S dissolved in the absorption liquid are reacts as shown in the following equation (2).

即ちキノン型触媒が硫化水素と反応して、硫化水素は主
として硫黄になシ、キノン型触媒はハイドロキノン型触
媒になる。
That is, the quinone type catalyst reacts with hydrogen sulfide, the hydrogen sulfide is mainly converted into sulfur, and the quinone type catalyst becomes a hydroquinone type catalyst.

次いで吸収液はポンプ7′によって導管21を経て再生
塔2の塔頂部撒液管16から撒布され、圧縮機19から
送入される空気又は酸素含有ガスと向流接触又は並流接
触し、次式の如き触媒の酸化再生が行われる。
The absorption liquid is then sprayed from the top spray pipe 16 of the regeneration tower 2 via the conduit 21 by the pump 7', brought into countercurrent or cocurrent contact with the air or oxygen-containing gas fed in from the compressor 19, and then Oxidative regeneration of the catalyst is carried out as shown in Eq.

OHO かくして十分に再生された吸収液は、導管22を通って
タンク4に集められポンプ7によって導管1Bを経て再
び吸収塔1に循環する。
OHO The absorbent thus sufficiently regenerated is collected in the tank 4 through the conduit 22 and circulated by the pump 7 to the absorption tower 1 via the conduit 1B.

又、吸収液の一部はフィルターブレス12に圧入され、
液中に懸濁する析出硫黄が濾過回収される。
Also, a part of the absorption liquid is press-fitted into the filter breath 12,
Precipitated sulfur suspended in the liquid is collected by filtration.

ここで、本発明は吸収液の空気又は酸素含有ガスによる
酸化再生に従来の気泡塔に代えて、気液接触効率の高い
ロータリアトマイザ−を用いた気泡塔を使用するので、
吸収液の処理に優れている。
Here, the present invention uses a bubble column using a rotary atomizer with high gas-liquid contact efficiency in place of the conventional bubble column for oxidation regeneration of the absorption liquid with air or oxygen-containing gas.
Excellent in processing absorbent liquids.

第2図はt4−ナフトキノン−2−スルホン酸ソーダを
含んでいる水硫化物を生成したアルカリ性水溶液に、空
気を接触する際に従来の気泡塔を使用した場合、及び本
発明のロータリアトマイザを使用した気泡塔を使用した
場合における水硫化イオン濃度の経時的減少状態の比較
を示すグラフであシ、図中のイは前者を、口は後者を示
す。図中0部分で水溶液中の水硫化イオンは短時間に減
少し、0部分でゆるやかな傾斜で減少する点では両者と
もほぼ同様の傾向をたどるが、両者は明らかに有意差を
もつとみとめられる。第2図で0部が液境膜内に酸素を
供給する速度に関係する拡散律速反応であることを示し
ている。従って酸素濃度を高め、吸収液と、酸素との接
触効率を高める再生方式を採用すれば再生反応を迅速に
進行させることが可能であるとわかる。
Figure 2 shows a case in which a conventional bubble column is used to bring air into contact with an alkaline aqueous solution containing sodium t4-naphthoquinone-2-sulfonate that produces hydrosulfide, and a case in which a rotary atomizer according to the present invention is used. This is a graph showing a comparison of how the hydrogen sulfide ion concentration decreases over time when using a bubble column. In the 0 part of the figure, the hydrosulfide ions in the aqueous solution decrease in a short time, and in the 0 part they decrease with a gentle slope, so both follow almost the same trend, but it is clearly seen that there is a significant difference between the two. . In FIG. 2, 0 parts indicates that it is a diffusion-limited reaction that is related to the rate of supplying oxygen into the liquid film. Therefore, it can be seen that by adopting a regeneration method that increases the oxygen concentration and increases the contact efficiency between the absorption liquid and oxygen, it is possible to rapidly advance the regeneration reaction.

本発明方法は、上記の拡散律速反応を効率的に進行さぜ
る為、反応器下部にロータリアトマイザを設置すること
によって、供給する空気又は酸素含有ガスの分散径を小
さくシ、気液表面積を犬にし、接触効率を高める再生塔
を採用していることを特徴とする。
In order to efficiently advance the above-mentioned diffusion-limited reaction, the method of the present invention installs a rotary atomizer at the bottom of the reactor to reduce the dispersion diameter of the supplied air or oxygen-containing gas and to reduce the gas-liquid surface area. It is characterized by the adoption of a regeneration tower that increases contact efficiency.

第6図に本発明方法に用いられるロータリアトマイザの
一例を示す。図中1はH,sを含有する液、2はカップ
状の回転体(ローター)、3は空気供給口、4は軸封装
置、5は駆動装置である。
FIG. 6 shows an example of a rotary atomizer used in the method of the present invention. In the figure, 1 is a liquid containing H and s, 2 is a cup-shaped rotating body (rotor), 3 is an air supply port, 4 is a shaft sealing device, and 5 is a driving device.

ロータリアトマイザは第3図に示すように、−液体1や
アカツブ状。。転4.オ高、−C0転うせ、そのカップ
の内側に空気供給口3よシ空気を連続的に送入し、カッ
プ下端からガスを溢流させ、溢流したガスはガスと液体
との比重差にもとづく遠心力効果によって回転体20表
面にガス層を形成する。このガス層と回転体まわりの液
との間には相対速度があるため、この間の摩擦によって
ガス層は引きちぎられ、微細な気泡となって液中に分散
させるものである。
As shown in Fig. 3, the rotary atomizer produces -liquid 1 and a bulge-like shape. . Roll 4. Turn over -C0, and continuously feed air into the inside of the cup through the air supply port 3, causing the gas to overflow from the bottom end of the cup, and the overflowing gas is due to the difference in specific gravity between the gas and the liquid. A gas layer is formed on the surface of the rotating body 20 due to the centrifugal force effect. Since there is a relative velocity between this gas layer and the liquid around the rotating body, the gas layer is torn off by the friction between them, forming fine bubbles and dispersing them in the liquid.

回転体2を高速で回転させる為に駆動装置5を必要とす
るが、回転体に突起部がないこと、回転体のまわりの雰
囲気が気体に近いことなどから、その消費動力は通常の
攪拌翼に比べると非常に少ないという特長をもっている
A drive device 5 is required to rotate the rotating body 2 at high speed, but because the rotating body has no protrusions and the atmosphere around the rotating body is close to gas, its power consumption is comparable to that of a normal stirring blade. It has the advantage of being very small compared to .

また、軸封部4に接する流体は気体のみであり、液中に
硫黄粒子のような固形物が含まれていても液体は軸封部
4に接しない為、固形物の混入による軸封部破損の懸念
はなく、多孔板。
In addition, the fluid that comes into contact with the shaft seal 4 is only gas, and even if the liquid contains solid matter such as sulfur particles, the liquid does not come into contact with the shaft seal 4. There is no fear of damage, it is a perforated plate.

多孔質分散筒におけるような細孔がない為、穴の目づま
シ等のトラブルは完全にさけられる。
Since there are no pores like in a porous dispersion cylinder, problems such as clogging of holes can be completely avoided.

← ロータリアトマイザの気泡径を小さくシ、気     
1i液接触面積を増大させる効果によシ、単位液中H,
s量当たりの空気所要量の大巾な低減が可能となった。
← Reduce the bubble diameter of the rotary atomizer and
1i Due to the effect of increasing the liquid contact area, H in the unit liquid,
It has become possible to significantly reduce the amount of air required per s amount.

第4図は気泡分散に従来のタイプの分散板又は分散筒を
使用した再生塔の反応速度及び本発明のロータリアトマ
イザを使用した場合の反応速度を比較したグラフである
FIG. 4 is a graph comparing the reaction rate of a regeneration tower using a conventional type dispersion plate or dispersion cylinder for bubble dispersion and the reaction rate when using the rotary atomizer of the present invention.

第4図グラフの横軸は空塔速度を示し、縦軸の反応速度
比は、ロータリアトマイザ、従来型気泡塔の夫々を使用
した場合のデータを処理して得られた反応速度〔例えば
(1/h )の単位での一次反応速度定数〕の絶対値を
、空塔速度2、9 twy’日のロータリアトマイザの
反応速度下限値を100としたものに対する比率で表し
である。
The horizontal axis of the graph in Fig. 4 shows the superficial velocity, and the vertical axis shows the reaction rate ratio. The absolute value of the first-order reaction rate constant in units of /h) is expressed as a ratio to the lower limit of the reaction rate of a rotary atomizer with a superficial velocity of 2.9 twy' days as 100.

斜線部は運転条件例えば供給液の水硫化イオン濃度、空
気利用率、処理液の水硫化イオン濃度。
The shaded area shows the operating conditions, such as the concentration of hydrogen sulfide ions in the feed liquid, the air utilization rate, and the concentration of hydrogen sulfide ions in the treated liquid.

触媒濃度、ロータリアトマイザの攪拌条件等により変動
する反応速度比の巾を示している。即ち同一反応速度を
得る為の空塔速度は例えば従来型で2.9 cm/θ要
するとき本発明では[15cm/B程度でよいことが第
4図かられかる。しかし、高反応速度を必要とするほど
、この比は100%に近づく傾向を示しているので、本
発明では従来型の分散板の空塔速度を上まわらないよう
考慮して、空塔速度の範囲を0.5σ/θからU−一の
範囲とすることが好ましい。
It shows the range of the reaction rate ratio that varies depending on the catalyst concentration, the stirring conditions of the rotary atomizer, etc. That is, it can be seen from FIG. 4 that the superficial velocity to obtain the same reaction rate is, for example, 2.9 cm/.theta. in the conventional method, whereas in the present invention, it may be about 15 cm/.theta. However, the higher the reaction rate is required, the more this ratio tends to approach 100%. Therefore, in the present invention, the superficial velocity is taken into consideration so as not to exceed the superficial velocity of the conventional dispersion plate. Preferably, the range is from 0.5σ/θ to U-1.

本空塔速度の最適値は若干変化するものの、硫化水素含
有液処理における必要十分な操作域となる。
Although the optimum value of the superficial velocity varies slightly, it is within the necessary and sufficient operating range for treating hydrogen sulfide-containing liquids.

さらに、本発明のロータリアトマイザを付設した再生塔
では、空塔速度の低減すなわち空気量を低減できるに加
えて、該再生塔内では吸収液の再生反応が迅速に行われ
るため再生塔の容積は少なくてすみ、装置の小型化が可
能となる。
Furthermore, in the regeneration tower equipped with the rotary atomizer of the present invention, in addition to being able to reduce the superficial velocity, that is, the amount of air, the regeneration reaction of the absorption liquid takes place quickly in the regeneration tower, so the volume of the regeneration tower can be reduced. It is possible to reduce the size of the device.

〔実施例〕〔Example〕

内径200能≠×高さ750 trsで底部にロータリ
ーアトマイザ−を有する装置内に実液(タカハックス液
; Na1O031−5X 、 NaHCOa 1〜5
%。
Actual liquid (Takahax liquid; Na1O031-5X, NaHCOa 1-5
%.

Na2820210〜30 X HNaps 1〜10
 mot/nl +触媒 1〜1 o mat/rl 
)をはシこんだ。該ロータリーアトマイザの空気導入口
よシ下記第1表に示す所定量の空気を吹き込みながら一
定時間毎(0,5,10分)に液のサンプリングをして
、タカハックス液中の水硫化イオン濃度(H8−)を実
測した。各条件及び試験結果を第1表にまとめて示す。
Na2820210~30 X HNaps 1~10
mot/nl + catalyst 1~1 o mat/rl
) was inserted. While blowing a predetermined amount of air shown in Table 1 below through the air inlet of the rotary atomizer, sample the liquid at fixed time intervals (0, 5, and 10 minutes) to determine the concentration of hydrosulfide ions in the Takahax liquid ( H8-) was actually measured. Each condition and test result is summarized in Table 1.

第1表 〔発明の効果〕 以上詳述したところおよび実施例からも明ら4    
  かなように、本発明方法は気液接触効果の高いロー
タリアトマイザ式気泡塔を用いることによシ、空気量の
低減、再生塔内での吸収液再生反応が迅速化され、硫化
水素処理能力は向上する一方、装置は小型化できるので
、効率のよい硫化水素除去が可能である。さらにロータ
リアトマイザの使用は消費電力の大巾低減をもたらす上
に、従来の多孔板、多孔質分散筒における如き目づまシ
等のトラブルも生じないという太きな利点を有する。
Table 1 [Effects of the invention] It is clear from the detailed explanation above and the examples that 4
In other words, the method of the present invention uses a rotary atomizer type bubble column with high gas-liquid contact effect, which reduces the amount of air, speeds up the absorption liquid regeneration reaction in the regeneration column, and improves the hydrogen sulfide treatment capacity. Since the equipment can be made smaller and the hydrogen sulfide removed efficiently. Furthermore, the use of a rotary atomizer has the great advantage of not only significantly reducing power consumption, but also eliminating problems such as clogging, which occur with conventional perforated plates and porous dispersion tubes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様例の系統図、第2図はアル
カリ水溶液中の水硫化イオン濃度(rrtnot/l 
)の経時変化を示すグラフ、第5図は再生装置下部に付
設のロータリアトマイザの説明図、そして第4図は従来
型気泡塔(分散板9分散筒使用)と、本発明のロータリ
アトマイザ使用の気泡塔の夫々の反応速度の比較を示す
線図である。 復代理人   内 1)   明      t・1 復代理人   萩 原 亮 − 第3図 第4図
FIG. 1 is a system diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing the concentration of hydrosulfide ions (rrtnot/l
), Figure 5 is an explanatory diagram of the rotary atomizer attached to the lower part of the regenerator, and Figure 4 is a graph showing the conventional bubble column (using 9 dispersion plates) and the rotary atomizer of the present invention. FIG. 2 is a diagram showing a comparison of reaction rates of bubble columns. Sub-Agent 1) Akira T・1 Sub-Agent Ryo Hagiwara - Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 硫化水素を含む排ガスを、1,4−ナフトキノン−2−
スルホン酸塩触媒を添加したアルカリ水溶液よりなる吸
収液と接触させ、上記硫化水素を除去した後、上記吸収
液をロータリアトマイザを有する気泡塔式再生塔により
酸化再生することを特徴とするガス中の硫化水素除去方
法。
Exhaust gas containing hydrogen sulfide is treated with 1,4-naphthoquinone-2-
A method for removing hydrogen sulfide by contacting an absorption liquid made of an alkaline aqueous solution containing a sulfonate catalyst, and then oxidizing and regenerating the absorption liquid using a bubble column type regeneration tower having a rotary atomizer. Hydrogen sulfide removal method.
JP59123782A 1984-06-18 1984-06-18 Method for removing hydrogen sulfide contained in gas Pending JPS614522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59123782A JPS614522A (en) 1984-06-18 1984-06-18 Method for removing hydrogen sulfide contained in gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59123782A JPS614522A (en) 1984-06-18 1984-06-18 Method for removing hydrogen sulfide contained in gas

Publications (1)

Publication Number Publication Date
JPS614522A true JPS614522A (en) 1986-01-10

Family

ID=14869155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59123782A Pending JPS614522A (en) 1984-06-18 1984-06-18 Method for removing hydrogen sulfide contained in gas

Country Status (1)

Country Link
JP (1) JPS614522A (en)

Similar Documents

Publication Publication Date Title
KR0136372B1 (en) Wet-type exhaust gas desulfurizing apparatus
US5585005A (en) Method for effecting gas-liquid contact
JP2506596B2 (en) Method and apparatus for removing H2S by separate absorber and oxidizer and reaction chamber between them
CA1159434A (en) Composition and method for removing hydrogen sulfide from gas stream
JPH07507005A (en) Gas-liquid contact method and device
JP2007136251A (en) Method and apparatus for wetly desulfurizing hydrogen sulfide-containing gas
US4919914A (en) Removal of hydrogen sulphide from gaseous streams
CN101890286A (en) Method and device for removing hydrogen sulfide from gas by using suspension of ferric oxide powder
US5139753A (en) Continuous process for mass transfer of a liquid reagent with two different gases
US5302361A (en) Multi-bed mass transfer column with mobile packing
US5296205A (en) Multi-bed mass transfer column with mobile packing
CN106166438B (en) A kind of method and device of photodissociation chlorine aqueous solution induced radical removing hydrogen sulfide
CA1071613A (en) Removal of hydrogen sulfide from gases
JP3308590B2 (en) Method and apparatus for removing sulfur dioxide from a gas stream
JPS614522A (en) Method for removing hydrogen sulfide contained in gas
CN106039972A (en) Method for purifying industrial exhaust by use of phosphoric ore pulp
JPS61204024A (en) Removing apparatus for hydrogen sulfide contained in gas
JPS61255993A (en) Method of regenerating desulfurizing solution
JP2001025640A (en) Method and apparatus for treating hydrogen sulfide- containing gas by recirculating reduced catalyst solution
CN214426458U (en) Blast furnace gas desulfurization system
CA2003010A1 (en) Composition and method for removing hydrogen sulfide from gas streams
CN113680200A (en) Iron chelate double-tower desulfurization process
JP2000140557A (en) Method and apparatus for desulfurization
US5500130A (en) Method for effecting gas-liquid contact
JPS61259730A (en) Wet exhaust gas desulfurization apparatus