JPS614519A - Manufacture of inorganic gas separating membrane - Google Patents

Manufacture of inorganic gas separating membrane

Info

Publication number
JPS614519A
JPS614519A JP12191384A JP12191384A JPS614519A JP S614519 A JPS614519 A JP S614519A JP 12191384 A JP12191384 A JP 12191384A JP 12191384 A JP12191384 A JP 12191384A JP S614519 A JPS614519 A JP S614519A
Authority
JP
Japan
Prior art keywords
inorganic
porous body
gas
inorganic porous
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12191384A
Other languages
Japanese (ja)
Other versions
JPS6351052B2 (en
Inventor
Yoichi Matsui
洋一 松井
Kuniharu Mori
邦治 森
Yasuo Kitani
気谷 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP12191384A priority Critical patent/JPS614519A/en
Publication of JPS614519A publication Critical patent/JPS614519A/en
Publication of JPS6351052B2 publication Critical patent/JPS6351052B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an inorganic gas separating membrane remarkably high in separatability by immersing an inorganic porous body into a soln. consisting essentially of organic metallic compds. and thereafter drying and calcining it. CONSTITUTION:Glass for raw material is formed into hollow fibrous shape having 2mm. outer diamter and 1mm. inner diameter and heat-treated at 580 deg.C for 24hr and furthermore treated with sulfuric acid soln. at 90 deg.C for 24hr to make an inorganic porous body consisting of a silicate skeleton. It is preferable that the narrow pore diameter obtained with gaseous nitrogen adsorption method is 10- 300Angstrom . The inorganic porous body is immersed into a soln. consisting essentially of organic metallic compds. such as Si(OC2H5)4 and drawn up, dried and calcined to form an extremely compact inorganic membrane layer having thickness of several mu or below on the surface.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な無機ガス分離膜を製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a novel inorganic gas separation membrane.

従来技術との関係 従来よりガス分離膜には主として有機高分子材料よりな
る多孔質膜又は非多孔質膜が広く使用されてきているが
、耐熱性、耐腐蝕性、耐薬品性等を満足するものでなく
、これらの要求される利用分野では主として無機多孔質
膜が使用されてきた0就中、アルカリホウケイ酸塩系ガ
ラスを中空繊維状に成形し、しかる後熱処理してアルカ
リホウ酸塩に富む相とケイ酸塩に富む相に分離させ、更
に酸処理によってアルカリホウ酸塩に富んだ相を溶出さ
せることによって得られる中空繊維状多孔質ガラスは製
造が容易な上紙孔径が300A以下に制御でき分子流の
原理によりガス分離するのに有利なものであった。
Relationship with conventional technology Porous or non-porous membranes mainly made of organic polymer materials have traditionally been widely used as gas separation membranes, but membranes that satisfy heat resistance, corrosion resistance, chemical resistance, etc. However, inorganic porous membranes have been mainly used in these required fields of application.In particular, alkali borosilicate glass is formed into a hollow fiber shape and then heat-treated to form an alkali borate. Hollow fibrous porous glass obtained by separating into a silicate-rich phase and a silicate-rich phase and eluting the alkali borate-rich phase by acid treatment is easy to manufacture and has a pore diameter of 300A or less. It is advantageous for gas separation due to the principle of controllable molecular flow.

しかしながら従来の中空繊維状多孔質ガラスはイス分離
において分離性が未だ満足なものではなdつだ0例えば
水素ガスと窒素ガスとを分離する1合、分離係数の最大
値は3.74程度であり、又ヘリウムガスと窒素ガスと
を分離する場合、分離係数の最大値は2.65であった
However, the separation performance of conventional hollow fiber porous glass is still not satisfactory in chair separation.For example, when separating hydrogen gas and nitrogen gas, the maximum value of the separation coefficient is about 3.74. In addition, when separating helium gas and nitrogen gas, the maximum value of the separation coefficient was 2.65.

発明の目的 而して本発明者らは分離性を高め得る無機ガス分離膜の
製造方法について鋭意検討した結果、本発明を見い出す
に至ったものである。
OBJECTS OF THE INVENTION The present inventors have discovered the present invention as a result of intensive study on a method for manufacturing an inorganic gas separation membrane that can improve separation performance.

発明の構成 即ち、本発明は無機多孔質体を有機金属化合物を主成分
とする溶液に浸漬後、乾燥焼成することに要旨をおくも
のである。
Structure of the Invention: The gist of the present invention is to immerse an inorganic porous body in a solution containing an organic metal compound as a main component, and then dry and sinter it.

まず本発明に係る無機多孔質体は前述した様にして作製
される。例えば810□ 62.6%、B20327.
3%、NtL207.2%、A12o、 0.3%(%
は重量%)の原料ガラスを外径Q、Owxs、内径1.
0 mの中空繊維状に成形し、580℃、24時間熱処
理を行なう。この熱処理によりソーダホウ酸塩に富んだ
相とケイ酸塩に富んだ相が分離する。更に分離した状態
で硫酸溶液にて90℃・24時間処理しケイ@塩骨格に
よりなる無機多孔質体が作製される。上記熱処理、酸処
理等の条件については何等、′膳御を設けるものでな〈
従来の方法が採用できる、Jが1、好ましくは窒素ガス
吸着法で求めた細孔径−ずlo o X以下、より好ま
しくはlO〜100λの孔径を有するものが作製される
様にすることである。即ち、細孔径が101未満ではガ
ス透過性が著凪5 <悪くなり・又細孔径が30OAを
こえると彼・述する無機膜層がはくすし易くなるので好
ましくない。
First, the inorganic porous body according to the present invention is produced as described above. For example, 810□ 62.6%, B20327.
3%, NtL207.2%, A12o, 0.3% (%
is weight%) of raw material glass with outer diameter Q, Owxs, and inner diameter 1.
The sample was formed into a hollow fiber having a thickness of 0 m and heat treated at 580°C for 24 hours. This heat treatment separates the soda borate-rich phase and the silicate-rich phase. Furthermore, the separated state is treated with a sulfuric acid solution at 90° C. for 24 hours to produce an inorganic porous body having a silica@salt skeleton. There is no control over the conditions of the heat treatment, acid treatment, etc. mentioned above.
The conventional method can be adopted, and J is 1, preferably the pore size determined by the nitrogen gas adsorption method -Z lo o X or less, more preferably 10 to 100λ is produced. . That is, if the pore diameter is less than 101, the gas permeability will be significantly worse, and if the pore diameter is more than 30 OA, the inorganic membrane layer described by him will easily peel off, which is not preferable.

この様にして作製した無機多孔質体はこの後有機金属化
合物を主成分とする溶液に浸漬する。この溶液の好まし
いものとしてSi (002Ha )4を主成分とする
有機溶液が挙げられる。この溶液に浸漬後引き上げ乾燥
焼成して無機膜層を形成する。つまり乾燥焼成によりS
i (002Fk )4をゲル化及び脱水させ上記多孔
質体表面上に厚さ数μ以下の非常に緻密な無機膜層を形
成する〇 発明の効果 以上の様に無機多孔質体表面上に金属アルコレートを主
成分とする無機膜層を形成させた無機ガス分離膜は従来
の多孔質ガラス膜に比べて分離性を著しく高め得ること
ができたものである。
The inorganic porous body produced in this manner is then immersed in a solution containing an organometallic compound as a main component. Preferred examples of this solution include organic solutions containing Si (002Ha )4 as a main component. After being immersed in this solution, it is pulled up, dried and fired to form an inorganic film layer. In other words, by dry firing, S
i (002Fk)4 is gelled and dehydrated to form a very dense inorganic film layer with a thickness of several μ or less on the surface of the porous body. An inorganic gas separation membrane formed with an inorganic membrane layer containing alcoholate as a main component has significantly improved separation performance compared to conventional porous glass membranes.

実施例 以下実施例を記述するが本発明はかかる実施例   、
、lによって何隻制限をうけるものではない。
EXAMPLES Examples will be described below, but the present invention includes such examples,
, l does not limit the number of ships.

尚、実施例中の「分離係数」とは次の様にして測定した
値である。つまり純ガス(純度99.9%以上)を用い
・供給ガス圧力が3〜G−透過ガス+寸が大気圧、操作
温度が100℃という条件で測1走したガスの透過流量
の比であると定義する0IL)えは水素ガス、ヘリウム
ガス、窒素ガスの透逼童景を各々QHz r QHer
 QNlとした場合水素ガスと窒素ガスの分離性はQH
2/QNiなる分離係数で、又ヘリウムガスと窒素ガス
の分離性はQ、He/QN2なる分離係数で求められる
In addition, the "separation coefficient" in the examples is a value measured as follows. In other words, it is the ratio of the gas permeation flow rate measured in one run using pure gas (purity of 99.9% or more), supply gas pressure of 3 to G - permeation gas + dimension, atmospheric pressure, and operating temperature of 100°C. (Defined as 0IL) The values of hydrogen gas, helium gas, and nitrogen gas are respectively QHz r QHer
When QNl, the separability of hydrogen gas and nitrogen gas is QH
The separation coefficient of 2/QNi is determined, and the separability of helium gas and nitrogen gas is determined by the separation coefficient of Q, He/QN2.

実施例 L 細孔径が40A1水素ガスと窒素ガスの分離係数が3.
3である中空繊維状多孔質ガラスを洗浄して表面を清浄
化した後、乾燥して中空繊維状多孔質ガラスの含有水分
を減少させる。上記中空繊維状多孔質ガラスを81(O
C2Hs)4を主成分とする有機溶液に浸漬して引き上
げ乾燥して無機ガス分離膜用素材を得た。上記素材を5
00℃で30分間焼成した後、さらに500℃で24時
間焼成して膜を得た。この膜に対し上記の浸漬、乾燥、
焼成処理をくり返して無機ガス分離膜を得た。上記無機
ガス分離膜の分離係数は水素ガスと窒素ガスの場合3.
7であり、ヘリウムガスと窒素ガスの場合3.2であっ
た。
Example L Pore diameter is 40A1, separation coefficient between hydrogen gas and nitrogen gas is 3.
After washing the hollow fibrous porous glass (3) to clean the surface, drying is performed to reduce the moisture content of the hollow fibrous porous glass. The above hollow fibrous porous glass is 81 (O
The material was immersed in an organic solution containing C2Hs)4 as a main component, pulled up and dried to obtain a material for an inorganic gas separation membrane. 5 of the above materials
After firing at 00°C for 30 minutes, the film was further fired at 500°C for 24 hours. This membrane is soaked, dried,
The firing process was repeated to obtain an inorganic gas separation membrane. The separation coefficient of the above inorganic gas separation membrane is 3. for hydrogen gas and nitrogen gas.
7, and 3.2 for helium gas and nitrogen gas.

実施例 2 実施例1に記載の無機ガス分離膜用素材を500℃で3
0分間焼成した後、さらに600℃で24時間焼成して
膜を得た。この膜に対し上記の浸漬、乾)、焼成処理を
くり返して無機ガス分離膜を得た:6上記無機ガス分離
膜の分離係数は水素ガスと1、室1素ガスの場合4.7
であり、ヘリウムガスと窒素ガスの場合5.8であった
Example 2 The inorganic gas separation membrane material described in Example 1 was heated at 500°C for 3
After baking for 0 minutes, the film was further baked at 600° C. for 24 hours to obtain a film. The inorganic gas separation membrane was obtained by repeating the above-mentioned dipping, drying, and firing treatments for this membrane: 6 The separation coefficient of the above inorganic gas separation membrane was 1 for hydrogen gas, and 4.7 for 1 chamber elemental gas.
In the case of helium gas and nitrogen gas, it was 5.8.

実施例 & 実施例1に記載の無機ガス分離膜用素材を500℃で3
0分間焼成した後、さらに700℃で24時間焼成して
膜を得た。この膜に対し上記の浸漬、乾燥、焼成処理を
くり返して無機ガス分離膜を得た。上記無機ガス分離膜
の分離係数は水素ガスと窒素ガスの場合3.6であり、
ヘリウムガスと窒素ガスの場合2.9であった〇
Example & Example 1 The inorganic gas separation membrane material described in Example 1 was heated at 500°C.
After baking for 0 minutes, the film was further baked at 700° C. for 24 hours to obtain a film. This membrane was subjected to the above-described dipping, drying, and baking treatments to obtain an inorganic gas separation membrane. The separation coefficient of the above inorganic gas separation membrane is 3.6 for hydrogen gas and nitrogen gas,
In the case of helium gas and nitrogen gas, it was 2.9〇

Claims (3)

【特許請求の範囲】[Claims] (1)無機多孔質体を有機金属化合物を主成分とする溶
液に浸漬後、乾燥焼成することを特徴とする無機ガス分
離膜の製造方法。
(1) A method for producing an inorganic gas separation membrane, which comprises immersing an inorganic porous body in a solution containing an organometallic compound as a main component, and then drying and firing it.
(2)無機多孔質体が細孔径300A以下の孔径を有す
る中空繊維状多孔質ガラスである特許請求の範囲第(1
)項記載の製造方法。
(2) Claim No. 1 in which the inorganic porous body is hollow fibrous porous glass having a pore diameter of 300A or less.
) The manufacturing method described in section 2.
(3)浴液がSi(OC_2H_5)_4を主成分とす
る有機液体である特許請求の範囲第(1)項記載の製造
方法。
(3) The manufacturing method according to claim (1), wherein the bath liquid is an organic liquid containing Si(OC_2H_5)_4 as a main component.
JP12191384A 1984-06-15 1984-06-15 Manufacture of inorganic gas separating membrane Granted JPS614519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12191384A JPS614519A (en) 1984-06-15 1984-06-15 Manufacture of inorganic gas separating membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12191384A JPS614519A (en) 1984-06-15 1984-06-15 Manufacture of inorganic gas separating membrane

Publications (2)

Publication Number Publication Date
JPS614519A true JPS614519A (en) 1986-01-10
JPS6351052B2 JPS6351052B2 (en) 1988-10-12

Family

ID=14823009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12191384A Granted JPS614519A (en) 1984-06-15 1984-06-15 Manufacture of inorganic gas separating membrane

Country Status (1)

Country Link
JP (1) JPS614519A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334449Y2 (en) * 1986-11-19 1991-07-22
JPH0484666U (en) * 1990-11-30 1992-07-23

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344580A (en) * 1976-10-05 1978-04-21 Mitsubishi Chem Ind Ltd 1,6-dihydropyridazine derivatives
JPS5959224A (en) * 1982-09-28 1984-04-05 Mitsubishi Heavy Ind Ltd Preparation of porous diaphragm

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344580A (en) * 1976-10-05 1978-04-21 Mitsubishi Chem Ind Ltd 1,6-dihydropyridazine derivatives
JPS5959224A (en) * 1982-09-28 1984-04-05 Mitsubishi Heavy Ind Ltd Preparation of porous diaphragm

Also Published As

Publication number Publication date
JPS6351052B2 (en) 1988-10-12

Similar Documents

Publication Publication Date Title
DE19618920B4 (en) Porous ceramic composite hollow fiber and process for its production
JP3373057B2 (en) Manufacturing method of hydrogen separation membrane
KR970000315A (en) Method of manufacturing inorganic material film for hydrogen separation
CN108283889B (en) Composite membrane, preparation method thereof and application thereof in gas separation and purification
US4640901A (en) High temperature membrane
JPS614519A (en) Manufacture of inorganic gas separating membrane
JP4427545B2 (en) Titania composite membrane for water / alcohol separation and method for producing the same
US3813232A (en) Process for making carbon-containing glasses
US4340408A (en) High silica glass
JPH0788227B2 (en) Glass body manufacturing method and apparatus
JP2717969B2 (en) Manufacturing method of oxygen concentration membrane
JPH04349926A (en) Hydrogen gas separation membrane
JPS63201025A (en) Production of high-purity transparent glass
JPH01281119A (en) Glass-ceramic-type filtration material and its manufacture
JP2642860B2 (en) Inorganic xerogel membrane, method for producing the same, and gas separation membrane comprising inorganic xerogel membrane
JPS5855005A (en) Separating membrane for gas
JPS61227936A (en) Manufacture of glass body
JP2002253919A (en) Gas separation filter
JPS614513A (en) Manufacture of porous glass membrane
JPH038813B2 (en)
JPH0250064B2 (en)
JPH0199618A (en) Production of ceramics porous film
JPH02258639A (en) Production of quartz glass
US3573088A (en) Preparation of vanadium dioxide
Ohya et al. Preparation of composite microporous glass membrane on ceramic tubing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term