JPS6145073B2 - - Google Patents

Info

Publication number
JPS6145073B2
JPS6145073B2 JP56055909A JP5590981A JPS6145073B2 JP S6145073 B2 JPS6145073 B2 JP S6145073B2 JP 56055909 A JP56055909 A JP 56055909A JP 5590981 A JP5590981 A JP 5590981A JP S6145073 B2 JPS6145073 B2 JP S6145073B2
Authority
JP
Japan
Prior art keywords
pressure port
opening
hole
piston
piston chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56055909A
Other languages
Japanese (ja)
Other versions
JPS57171086A (en
Inventor
Tokihiko Umeda
Hiroshi Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP56055909A priority Critical patent/JPS57171086A/en
Publication of JPS57171086A publication Critical patent/JPS57171086A/en
Publication of JPS6145073B2 publication Critical patent/JPS6145073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts
    • F04B1/2042Valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Description

【発明の詳細な説明】 本発明はピストンポンプの改良に関する。[Detailed description of the invention] The present invention relates to improvements in piston pumps.

第1図および第2図はこの種のピストンポンプ
の一例を示す。このポンプは、駆動軸1、駆動軸
1にスプライン連結され且つ駆動軸1の回りに駆
動軸と平行に複数個のピストン室2を形成するシ
リンダブロツク3、ピストン室2に嵌挿されたピ
ストン4の行程を規制する斜板5、バルブブロツ
ク6に固定され且つシリンダブロツク3と接する
弁板7、ハウジング8等で構成されている。
1 and 2 show an example of this type of piston pump. This pump includes a drive shaft 1, a cylinder block 3 connected to the drive shaft 1 by splines and forming a plurality of piston chambers 2 around the drive shaft 1 in parallel with the drive shaft, and a piston 4 fitted into the piston chambers 2. The valve plate 7 is fixed to the valve block 6 and is in contact with the cylinder block 3, a housing 8, etc.

シリンダブロツク3は、駆動軸1との間に介装
されたばね9により弁板7に押し当てられ、駆動
軸1にて駆動される。このシリンダブロツク3の
回転によりピストン4は駆動軸上を公転しながら
斜板5の傾斜角αで規制された行程を往復運動
し、弁板7の流体吸入用の低圧口10と流体吐出
用の高圧口11を介してポンプ作用を行う。
The cylinder block 3 is pressed against the valve plate 7 by a spring 9 interposed between the cylinder block 3 and the drive shaft 1, and is driven by the drive shaft 1. Due to this rotation of the cylinder block 3, the piston 4 revolves on the drive shaft and reciprocates through a stroke regulated by the inclination angle α of the swash plate 5. Pumping action is performed via the high pressure port 11.

弁板7は、第2図に示す如く、シリンダブロツ
ク3に対向する面に円弧状の低圧口10と高圧口
11を形成している。ピストン室2につながる開
口12は、低圧口10と高圧口11のピツチ円1
3上にあつて、シリンダブロツク3が回転する
と、低圧口10と高圧口11に交互に連通し、ピ
ストン室2内の圧力は、ピストン4が吸入行程に
ある時には略低圧口10の圧力を一致し、吐出行
程にある時には略高圧口11の圧力と一致する。
ピストン4が吸込行程を終えて吐出行程に移ろう
とするとき、則ち、開口12が低圧口10を出て
高圧口11の手前に達するときには、開口12は
低圧口10と高圧口11のいずれとも遮断ないし
略遮断された状態にあり、ピストン室2の圧力が
略低圧口10の圧力から略高圧口11の圧力に遷
移する行程、いわゆる昇圧の圧力切換行程〔以
下、昇圧行程という〕にある。逆に、ピストン4
が吐出行程から吸入行程に移ろうとするときの開
口12は、降圧の圧力切換行程〔以下、降圧行程
という〕にある。
As shown in FIG. 2, the valve plate 7 has an arc-shaped low pressure port 10 and a high pressure port 11 formed on the surface facing the cylinder block 3. The opening 12 connected to the piston chamber 2 has a pitch circle 1 between the low pressure port 10 and the high pressure port 11.
3, when the cylinder block 3 rotates, it communicates alternately with the low pressure port 10 and the high pressure port 11, and the pressure in the piston chamber 2 is approximately equal to the pressure in the low pressure port 10 when the piston 4 is in the suction stroke. Therefore, during the discharge stroke, the pressure substantially matches the pressure of the high pressure port 11.
When the piston 4 finishes the suction stroke and is about to move on to the discharge stroke, that is, when the opening 12 leaves the low pressure port 10 and reaches before the high pressure port 11, the opening 12 is connected to both the low pressure port 10 and the high pressure port 11. It is in a shut-off or substantially shut-off state, and is in a step in which the pressure in the piston chamber 2 transitions from the pressure in the low-pressure port 10 to the pressure in the high-pressure port 11, a so-called pressure-up pressure switching step (hereinafter referred to as a pressure-up step). Conversely, piston 4
When the opening 12 is about to move from the discharge stroke to the suction stroke, the opening 12 is in the pressure-reducing pressure switching stroke (hereinafter referred to as the pressure-reducing stroke).

昇圧行程では開口12が高圧口11に連通する
瞬間にピストン室2の圧力が急激に上昇し、降圧
行程では開口12が低圧口10に連通する瞬間に
ピストン室2の圧力が急激に低下する。この昇・
降圧行程における瞬間的な圧力変化は、ポンプ内
部にシリンダブロツク3の回転に同調した周期的
な衝撃力を生ぜしめ、これがピストンポンプの騒
音、振動発生の主原因となつていた。
In the pressure increasing stroke, the pressure in the piston chamber 2 rapidly increases at the moment the opening 12 communicates with the high pressure port 11, and in the pressure decreasing stroke, the pressure in the piston chamber 2 rapidly decreases at the moment the opening 12 communicates with the low pressure port 10. This noboru・
The instantaneous pressure change during the pressure reduction stroke generates a periodic impact force within the pump that is synchronized with the rotation of the cylinder block 3, and this is the main cause of noise and vibration in the piston pump.

そこで、従来ではピストンポンプの騒音や振動
を低減する目的で前述の昇・降圧行程におけるピ
ストン室2内の圧力変化をゆるやかにするための
工夫がなされている。即ち、低・高圧口の圧力差
を変化時間で除した値である圧力変化率を小さく
するために、第3図および第4図に示すように高
圧口11に連通する切欠溝14と低圧口10に連
通する切欠溝14を設けるか、または第5図およ
び第6図に示すようにバルブブロツク対向面に形
成した油溝15を介して高圧口11に連通する主
導油孔16と油溝17を介して低圧口10に連通
する主導油孔16を設けるものであり、昇圧行程
では切欠溝14または主導油孔16の絞り作用で
高圧口11の流体が徐々に開口12を介してピス
トン室2内に流入することにより、昇圧の圧力変
化率が小さくなり、前述の衝撃力が緩和される。
降圧行程でも同様にして衝撃力が緩和されること
になる。この対策は騒音や振動の低減に大いに役
立ち、ピストンポンプに普及している。
Therefore, in the past, in order to reduce the noise and vibration of the piston pump, efforts have been made to make the pressure change in the piston chamber 2 more gradual during the above-mentioned pressure raising and lowering strokes. That is, in order to reduce the pressure change rate, which is the value obtained by dividing the pressure difference between the low and high pressure ports by the change time, the notched groove 14 communicating with the high pressure port 11 and the low pressure port are connected as shown in FIGS. 3 and 4. A main oil hole 16 and an oil groove 17 that communicate with the high pressure port 11 through a notch groove 14 communicating with the valve block 10 or an oil groove 15 formed on the opposing surface of the valve block as shown in FIGS. 5 and 6. A main oil hole 16 is provided which communicates with the low pressure port 10 through the pressure increase stroke, and the fluid in the high pressure port 11 gradually flows through the opening 12 into the piston chamber 2 due to the throttling action of the notch groove 14 or the main oil hole 16. By flowing into the interior, the rate of pressure change due to pressurization becomes small, and the above-mentioned impact force is alleviated.
The impact force will be alleviated in the same way during the pressure-reducing stroke. This measure greatly helps reduce noise and vibration, and is widely used in piston pumps.

ところで、昇圧行程において、第7図および第
9図に示すように、ピストン室2の開口12が切
欠溝14ないし主導油孔16と連通する瞬間は、
ピストン室2と高圧口11との圧力差が大きいた
め、切欠溝14ないし主導油孔16からの流体が
矢印方向に噴流状態で開口12へ流入する。鉱物
油を用いた実験によれば、圧力差が200Kgf/cm2
おいて噴流の平均流速は200m/sであつた。この
ような高速の流体が開口12ないしピストン室2
の壁面に衝突すると、金属表面のキヤビテーシヨ
ンエロージヨン〔以下、壊食という〕が発生す
る。キヤビテーシヨンの強度および金属表面の壊
食の度合は、絞りの前後の圧力差、流体の粘度お
よび比重、流体中への空気の混合率、開口12の
低圧口側壁面と絞りとの距離および低圧側自体の
圧力等に依存するが、特に圧力差の影響を強く受
け、圧力差の増大に対し壊食の度合いは幾何級数
的に増大する。従つて、ピストンポンプがその特
徴を生かすべくより高圧領域で使用されるように
なると、開口12ないしピストン室2の壊食の影
響が無視できなくなり、これがピストンポンプの
使用限界圧力の上限を制限する大きな原因となつ
ている。
By the way, in the pressure increase stroke, as shown in FIGS. 7 and 9, at the moment when the opening 12 of the piston chamber 2 communicates with the notch groove 14 or the main oil hole 16,
Since the pressure difference between the piston chamber 2 and the high pressure port 11 is large, the fluid from the notch groove 14 or the main oil hole 16 flows into the opening 12 in a jet state in the direction of the arrow. According to an experiment using mineral oil, the average flow velocity of the jet was 200 m/s at a pressure difference of 200 Kgf/cm 2 . Such high-speed fluid flows through the opening 12 or the piston chamber 2.
When the metal collides with the wall, cavitation erosion (hereinafter referred to as erosion) occurs on the metal surface. The strength of cavitation and the degree of erosion on the metal surface are determined by the pressure difference before and after the throttle, the viscosity and specific gravity of the fluid, the mixing ratio of air into the fluid, the distance between the low-pressure port side wall of the opening 12 and the throttle, and the low-pressure side. Although it depends on its own pressure, etc., it is particularly strongly influenced by the pressure difference, and the degree of erosion increases exponentially as the pressure difference increases. Therefore, as piston pumps come to be used in higher pressure areas to take advantage of their characteristics, the influence of erosion of the opening 12 or the piston chamber 2 cannot be ignored, and this limits the upper limit of the working pressure of the piston pump. This is a major cause.

発明者等の実験結果によれば、第11図に示す
ように昇圧行程で開口12と主導油孔16が連通
する直前の状態、即ち、シリンダブロツク3と弁
板7間に形成された油膜厚さΔhおよび微小の正
重合量Δxとが存在する状態においては、主導油
孔16′からの主噴流18は、すきまΔhにより
方向ずけられて弁板7の摺動面19と略平行に噴
出して開口12の低圧口側に衝突し、開口12の
低圧口側角部20や弁板7の低圧口側角部21に
著しい壊食をひき起こす。ところで、シリンダブ
ロツク3は弁板7を境界潤滑状態で高速周動する
ため、通常いずれかの表面に銅合金を始めとする
比較的硬度の低い摺動材料を用いているが、この
摺動材料表面の壊食が特に著しく、また弁板7も
表面硬度が低い場合には前述と同様の壊食が発生
し、ポンプ効率、特に容積効率が著しく劣化す
る。なお、シリンダブロツク3と弁板7間に形成
されたすきまΔhに示すより方向づけられた噴流
18は、第13図に示すような開口12の端部お
よび主導油孔16の端部を面取り24するような
マクロ的な形成によつて方向を変えることが困難
なことが実験で確認されている。
According to the experimental results of the inventors, as shown in FIG. 11, the thickness of the oil film formed between the cylinder block 3 and the valve plate 7 is the state immediately before the opening 12 and the main oil hole 16 communicate with each other during the pressure increase stroke. When the gap Δh and the small amount of positive polymerization Δx exist, the main jet flow 18 from the main oil hole 16' is directed by the gap Δh and is ejected approximately parallel to the sliding surface 19 of the valve plate 7. and collides with the low-pressure port side of the opening 12, causing significant erosion to the low-pressure port side corner 20 of the opening 12 and the low-pressure port side corner 21 of the valve plate 7. By the way, since the cylinder block 3 rotates around the valve plate 7 at high speed in a state of boundary lubrication, a relatively low-hardness sliding material such as a copper alloy is normally used on one of the surfaces. If the surface erosion is particularly severe and the valve plate 7 also has a low surface hardness, the same erosion as described above will occur, and the pump efficiency, especially the volumetric efficiency, will be significantly degraded. Incidentally, the jet flow 18, which is oriented as shown by the gap Δh formed between the cylinder block 3 and the valve plate 7, chamfers 24 the end of the opening 12 and the end of the main oil hole 16 as shown in FIG. Experiments have confirmed that it is difficult to change the direction due to such macroscopic formations.

本発明は、前記の点に鑑み検討の結果なされた
もので、従来の弁板に小孔を付加する程度の簡潔
な構成により、ポンプ効率を低下させることなし
に前述の壊食現象を解消することに成功したもの
である。
The present invention has been made as a result of studies in view of the above points, and uses a simple structure that involves adding small holes to a conventional valve plate, thereby eliminating the above-mentioned erosion phenomenon without reducing pump efficiency. It was extremely successful.

以下本発明の実施例を図面について説明する。
第14図に示すものは、弁板7の低圧口10と高
圧口11間に、高圧口11に油溝15を介して連
通する主導油孔16よりも先にピストン室2の開
口12と連通させる副導油孔22を穿設してこれ
を油溝15と連通すると共に、低圧口10に油溝
17を介して連通する主導油孔16よりも先にピ
ストン室2の開口12と連通させる副導油孔22
を穿設してこれを油溝17の連通するものであ
る。第15図に示すものは、弁板7の低圧口10
と高圧口11間に、高圧口11に通じる切欠溝1
4よりも先にピストン室2の開口12と連通させ
る副導油孔22を穿設してこれを油溝15により
高圧口11に連通すると共に、低圧口10に通じ
る切欠溝14よりも先に開口12と連通させる副
導油孔22を穿設してれを油溝17により低圧口
10に連通するものである。第14図および第1
5図において副導油孔22が降圧側にも設けられ
ているには、ポンプが両傾転使用の場合、弁板7
の高・低圧口が入れかわるためであり、片傾転使
用で高・低圧口が固定している場合は昇圧側のみ
に設ければよい。
Embodiments of the present invention will be described below with reference to the drawings.
The one shown in FIG. 14 communicates between the low pressure port 10 and high pressure port 11 of the valve plate 7 with the opening 12 of the piston chamber 2 before the main oil hole 16 communicates with the high pressure port 11 via the oil groove 15. A sub oil guide hole 22 is drilled to communicate with the oil groove 15, and is also communicated with the opening 12 of the piston chamber 2 before the main oil hole 16, which communicates with the low pressure port 10 via the oil groove 17. Sub oil guide hole 22
is bored and communicated with the oil groove 17. What is shown in FIG. 15 is the low pressure port 10 of the valve plate 7.
A cutout groove 1 communicating with the high pressure port 11 is provided between the high pressure port 11 and the high pressure port 11.
A sub-lubrication hole 22 is bored to communicate with the opening 12 of the piston chamber 2 before the opening 12 of the piston chamber 2, and this is communicated with the high-pressure port 11 through the oil groove 15, and also before the notch groove 14 that communicates with the low-pressure port 10. A sub oil guide hole 22 is bored to communicate with the opening 12, and the sub oil guide hole 22 is communicated with the low pressure port 10 through an oil groove 17. Figure 14 and 1
In Fig. 5, the sub-lubrication hole 22 is also provided on the pressure-reducing side.
This is because the high and low pressure ports of the pump are switched, and if the high and low pressure ports are fixed when using a single tilt rotation, it is only necessary to provide them on the boost side.

なお、副導油孔22の直径は主導油孔16の数
分の1と小さく、また、副導油孔22が開口12
に開口した直後に主導油孔16から流体が噴出す
るように副導油孔22と主導油孔16〔または切
欠溝14〕間の間隔を選定している。
The diameter of the sub oil guide hole 22 is as small as a fraction of the main oil hole 16, and the sub oil guide hole 22 is smaller than the opening 12.
The interval between the auxiliary oil guide hole 22 and the main oil hole 16 (or the notched groove 14) is selected so that fluid is ejected from the main oil hole 16 immediately after the main oil hole 16 opens.

本実施例は前記するような構成であるから、第
16図に示すようにピストン室2の開口12が一
部低圧口10から脱し副導油孔22からの副噴流
23が弁板7の摺動面19に沿つて噴射し始める
状態では主導油孔16からは流体の噴書はない。
副導油孔22が開口12に開口すると、第18図
に示すように主導油孔16から主噴流18が摺動
面19に沿つて噴出し始め、この主噴流18は副
導油孔22から噴出するピストン4軸線と略平行
な副噴流23により噴出角θが大となる方向へ大
きく方向変換せしめられる。これにより主噴流1
8はピストン室2ないしピストン4内壁との衝突
位置までの距離が長くなる。従つて、噴流による
壊食の発生を防ぐことができる。なお、主噴流1
8がピストン室2ないしピストン4内壁の壁面硬
度の高い部位に当たるように副導油孔22の穿設
方向や大きさ等を設定するようにしてもよい。第
19図は切欠溝14からの主噴流18が噴導油孔
22からの副噴流23により噴出角θが大となる
方向へ大きく方向変換せしめられた状態を示す。
Since this embodiment has the above-mentioned configuration, the opening 12 of the piston chamber 2 partially escapes from the low-pressure port 10, and the sub-jet 23 from the sub-lubrication hole 22 flows through the valve plate 7. When the fluid starts to be jetted along the moving surface 19, there is no jet of fluid from the main oil hole 16.
When the sub oil guide hole 22 opens into the opening 12, the main jet 18 starts to jet from the main oil guide hole 16 along the sliding surface 19 as shown in FIG. The sub-jet flow 23, which is substantially parallel to the 4-axis axis of the ejecting piston, causes the direction to change significantly in the direction in which the ejection angle θ becomes large. As a result, the main jet 1
8, the distance from the piston chamber 2 to the collision position with the inner wall of the piston 4 is longer. Therefore, it is possible to prevent erosion caused by the jet flow. In addition, the main jet 1
The direction, size, etc. of the auxiliary oil guide hole 22 may be set so that the hole 8 hits a portion of the inner wall of the piston chamber 2 or the piston 4 that has a high wall surface hardness. FIG. 19 shows a state in which the direction of the main jet 18 from the notched groove 14 is greatly changed by the auxiliary jet 23 from the jet oil hole 22 in a direction in which the jet angle θ becomes large.

実験によれば、容量がおよそ100c.c./revのピス
トンポンプで主導油孔16の直径が1〜2mmで
は、副導油孔22は0.5mm位で十分に主噴流の方
向制御が可能であり、シリンダブロツク3、弁板
7の表面の壊食現象を防止できること、そして、
これはポンプ吐出圧力が400Kgf/cm2の高圧であつ
ても有効であることが判明した。また、副導油孔
22からの摺動面に沿う副噴流23は、第17図
に示すように噴流の長さS+Δxおよび幅Wとも
小さく、これによる壊食現象は無視できること、
さらに、副導油孔22は直径が小さいので、ポン
プ効率特に容積効率の低減率は十分に小さく、そ
の影響は無視できる程度のものであることが確認
されている。
According to experiments, when the diameter of the main oil hole 16 is 1 to 2 mm in a piston pump with a capacity of about 100 c.c./rev, the direction of the main jet flow can be sufficiently controlled with the auxiliary oil guide hole 22 of about 0.5 mm. Yes, it is possible to prevent erosion of the surfaces of the cylinder block 3 and valve plate 7, and
This was found to be effective even when the pump discharge pressure was as high as 400 Kgf/cm 2 . Furthermore, the length S+Δx and width W of the sub-jet 23 along the sliding surface from the sub-lubrication hole 22 are small, as shown in FIG. 17, and the erosion phenomenon caused by this can be ignored;
Furthermore, since the diameter of the sub-lubrication hole 22 is small, the rate of reduction in pump efficiency, particularly volumetric efficiency, is sufficiently small, and it has been confirmed that the effect thereof is negligible.

なお、ピストン室2の開口12には、第20図
に示すような斜孔としたものがあるが、この場合
には、第21図に示すように主導油孔16および
副導油孔22を低圧口10、高圧口11のピツチ
円13から外すなどして噴流18が斜孔の開口壁
面に衝突しないようにする必要がある。
Note that the opening 12 of the piston chamber 2 may have an oblique hole as shown in FIG. It is necessary to prevent the jet stream 18 from colliding with the opening wall surface of the diagonal hole by removing it from the pitch circle 13 of the low pressure port 10 and high pressure port 11.

以上説明したように本発明においては、弁板に
ポンプ騒音等の低減対策用の主導油孔ないし切欠
溝からの主噴流の噴射角を大きく変え得る副導油
孔を形成したから、従来の弁板に小孔を付加する
程度の簡潔な構成によつて壊食現象の発生を防止
することができ、ポンプをより高圧領域で使用で
きると共に、ポンプの耐久性、信頼性を高め得
る。また、既存の弁板にも簡単に適用でき、しか
も副導油孔は直径が小さいので、ポンプ効率を損
うことがない。
As explained above, in the present invention, the sub-lubrication hole is formed in the valve plate to greatly change the injection angle of the main jet flow from the main oil hole or notched groove for reducing pump noise, etc. A simple configuration of adding small holes to the plate can prevent the occurrence of erosion phenomena, allow the pump to be used in a higher pressure region, and improve the durability and reliability of the pump. In addition, it can be easily applied to existing valve plates, and since the auxiliary oil guide hole has a small diameter, pump efficiency will not be impaired.

なお、前述の図面および記載は、主にピストン
ポンプについてであつたが、ピストンモータでは
低圧口は流体吐出側に高圧口が流体吸入側となつ
て作動することになる。
Although the above-mentioned drawings and descriptions mainly refer to a piston pump, a piston motor operates with the low pressure port on the fluid discharge side and the high pressure port on the fluid suction side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はアキシアルピストンポンプの一部縦断
面図、第2図は第1図のA−A線矢視図、第3図
および第5図はそれぞれ騒音防止対策を施した弁
板の正面図、第4図は第3図のB−B線断面図、
第6図は第5図のC−C線断面図、第7図および
第9図はそれぞれ昇圧行程時の主噴流噴出方向を
示す平面図、第8図は第7図のD−D線断面図、
第10図は第9図のE−E線断面図、第11図は
昇圧行程時主導油孔からの主噴流の噴出状態を示
す断面図、第12図は昇圧行程時切欠溝からの主
噴流の噴出状態を示す断面図、第13図は昇圧行
程時面取りした切欠溝からの主噴流の噴出状態を
示す断面図、第14図は本発明の一実施例である
弁板部分の平面図、第15図は本発明のいま一つ
の実施例である弁板部分の平面図、第16図は副
導油孔からの副噴流の噴出状態を示す縦断面図、
第17図は第16図に示す副噴流の平面図、第1
8図および第19図はそれぞれ副噴流による主噴
流噴出方向変換状態を示す縦断面図、第20図は
アキシアルピストンポンプのピストン室の開口付
近の一例を示す一部切欠縦断面図、第21図は第
20図の傾斜開口に対する主・副導油孔の配置例
図である。 1……駆動軸、2……ピストン室、3……シリ
ンダブロツク、4……ピストン、5……斜板、6
……バルブブロツク、7……弁板、10……低圧
口、11……高圧口、12……開口、14……切
欠溝、15,17……油溝、16……主導油孔、
18……主噴流、22……副導油孔、23……副
噴流。
Figure 1 is a partial vertical sectional view of the axial piston pump, Figure 2 is a view taken along the line A-A in Figure 1, and Figures 3 and 5 are front views of the valve plate with noise prevention measures taken respectively. , FIG. 4 is a sectional view taken along line B-B in FIG. 3,
6 is a sectional view taken along the line C-C in FIG. 5, FIGS. 7 and 9 are plan views showing the main jet ejection direction during the boost stroke, and FIG. 8 is a sectional view taken along the line D-D in FIG. 7. figure,
Fig. 10 is a sectional view taken along the line E-E in Fig. 9, Fig. 11 is a sectional view showing the jetting state of the main jet from the main oil hole during the boost stroke, and Fig. 12 is the main jet from the notch during the boost stroke. FIG. 13 is a cross-sectional view showing the jetting state of the main jet flow from the chamfered notch groove during the boost stroke; FIG. 14 is a plan view of the valve plate portion according to an embodiment of the present invention; FIG. 15 is a plan view of a valve plate portion according to another embodiment of the present invention, and FIG. 16 is a longitudinal cross-sectional view showing the state of the sub-jet ejected from the sub-oil guide hole.
Figure 17 is a plan view of the secondary jet shown in Figure 16;
8 and 19 are longitudinal cross-sectional views showing a state in which the main jet ejecting direction is changed by the sub-jet, respectively. FIG. 20 is a partially cutaway longitudinal cross-sectional view showing an example of the vicinity of the opening of the piston chamber of an axial piston pump. 20 is a diagram illustrating an example of the arrangement of main and auxiliary oil guide holes for the inclined opening in FIG. 20. 1... Drive shaft, 2... Piston chamber, 3... Cylinder block, 4... Piston, 5... Swash plate, 6
... Valve block, 7 ... Valve plate, 10 ... Low pressure port, 11 ... High pressure port, 12 ... Opening, 14 ... Notch groove, 15, 17 ... Oil groove, 16 ... Main oil hole,
18...Main jet, 22...Sub oil guide hole, 23...Sub jet.

Claims (1)

【特許請求の範囲】[Claims] 1 弁板の低圧口と高圧口との間にある高圧口よ
り低圧のピストン室の開口を主導油孔ないし切欠
溝を介して高圧口に連通するようにしたものにお
いて、弁板に主導油孔ないし切欠溝より先にピス
トン室の開口に通じる副導油孔を設け、この副導
油孔は主導油孔より小径で高圧口に連通すると共
に、その副噴流により主導油孔ないし切欠溝の先
端がピストン室に開口する直前に生じる主噴流が
ピストン室の奥部の方へ向きを変えるように副導
油孔の開口の位置と向きを定めたことを特徴とす
るピストンポンプ。
1 In a device in which the opening of a piston chamber with a lower pressure than the high pressure port located between the low pressure port and the high pressure port of the valve plate is communicated with the high pressure port via the main oil hole or notched groove, there is a main oil hole in the valve plate. A sub oil guide hole that communicates with the opening of the piston chamber is provided before the main oil hole or the notch groove, and this sub oil guide hole has a smaller diameter than the main oil hole and communicates with the high pressure port, and the tip of the main oil hole or the notch groove is A piston pump characterized in that the position and direction of the opening of the auxiliary oil guide hole are determined so that the main jet flow generated immediately before the auxiliary oil guide hole opens into the piston chamber changes its direction toward the inner part of the piston chamber.
JP56055909A 1981-04-13 1981-04-13 Piston pump Granted JPS57171086A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56055909A JPS57171086A (en) 1981-04-13 1981-04-13 Piston pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56055909A JPS57171086A (en) 1981-04-13 1981-04-13 Piston pump

Publications (2)

Publication Number Publication Date
JPS57171086A JPS57171086A (en) 1982-10-21
JPS6145073B2 true JPS6145073B2 (en) 1986-10-06

Family

ID=13012232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56055909A Granted JPS57171086A (en) 1981-04-13 1981-04-13 Piston pump

Country Status (1)

Country Link
JP (1) JPS57171086A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118572U (en) * 1985-01-09 1986-07-26

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4550645A (en) * 1984-04-27 1985-11-05 Sundstrand Corporation Thin valve plate for a hydraulic unit
JP2578119Y2 (en) * 1991-07-31 1998-08-06 川崎重工業株式会社 Hydraulic motor
KR980009921A (en) * 1996-07-31 1998-04-30 김무 Valve Plate Structure of Axial Piston Pump
JP4657520B2 (en) * 2001-08-22 2011-03-23 東芝機械株式会社 Piston pump / motor
CN102434420A (en) * 2012-01-13 2012-05-02 无锡威孚精密机械制造有限责任公司 Gas etching preventing distribution disk
JP2023042733A (en) 2021-09-15 2023-03-28 ナブテスコ株式会社 Fluid machine and construction machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129905A (en) * 1975-04-24 1976-11-11 Lucas Industries Ltd Hydraulic rotary machines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51129905A (en) * 1975-04-24 1976-11-11 Lucas Industries Ltd Hydraulic rotary machines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61118572U (en) * 1985-01-09 1986-07-26

Also Published As

Publication number Publication date
JPS57171086A (en) 1982-10-21

Similar Documents

Publication Publication Date Title
CN100447410C (en) Axial piston hydraulic pump motor
JPS6145073B2 (en)
JP4884135B2 (en) Hydraulic rotating machine
US5230274A (en) Variable displacement hydraulic pump with quiet timing
JPH05504103A (en) axial bearing
JP4657520B2 (en) Piston pump / motor
KR101772734B1 (en) Pulsation swash plate type piston pump having the function of preventing
CN114294193A (en) Hydrostatic axial piston machine
CN110094316B (en) Hydraulic press
JP2578119Y2 (en) Hydraulic motor
JPS597786A (en) Piston-type fluid machine
KR20130065996A (en) Valve plate
JPS6045314B2 (en) piston pump
JP2000345955A (en) Piston pump/motor
KR19980069663A (en) Valve plate
KR19980067343A (en) Valve plate
KR19980079198A (en) Hydraulic piston pump
JPH0578977U (en) Piston pump
KR200203910Y1 (en) Axial piston type hydraulic pump and hydraulic motor
US6893231B2 (en) Hydraulic device
US7090472B2 (en) Pump or motor with interconnected chambers in the rotor
KR20150115042A (en) Valve plate for piston type hydraulic motor
KR980009921A (en) Valve Plate Structure of Axial Piston Pump
KR100674656B1 (en) Inclined Board Structure for Oil Hydraulic Pump
JP2000080976A (en) Piston pump